@ -102,7 +102,16 @@ This c++ function, compiled by clang-cl with `mcmodel=large`, will generate a ro
0x9D ?LoopDemo@@YAXXZ endp
```
Uh oh, `jnb loc_99`?, thats RIP relative! In order to handle branching operations, a "jump table" is generated by `obfuscation::obfuscate` explicit default constructor. Instead of branching to the RIP relative code, it will instead branch to an inline jump (`JMP [RIP+0x0]`).
Uh oh, `jnb loc_99`?, thats RIP relative! In order to handle branching operations, a "jump table" is generated by `obfuscation::obfuscate` explicit default constructor. Instead of branching to the RIP relative code, it will instead branch to an inline jump (`JMP [RIP+0x0]`). As demonstrated below, the branching operation is altered to branch to an asbolute jump.
The linker is able to get the address of the branching code by taking the rip relative virtual address of the branching operation, which is a signed number, and adding it to the current byte offset into the current routine, plus the size of the branching instruction. For example `LoopDemo@17` + size of the branching instruction, which is six bytes, then adding the signed relative virtual address (0x2A). The result of this simple calculation gives us `LoopDemo@65`, which is correct, the branch goes to `add rsp, 28h` in the above example.