Jit linker, mapper, obfuscator, and mutator
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
Go to file
_xeroxz 8a13549130
Update README.md
4 years ago
Examples added examples 4 years ago
Theodosius added examples 4 years ago
imgs added imgs 4 years ago
README.md Update README.md 4 years ago
Theodosius.sln added examples 4 years ago
clang.zip added clang... 4 years ago

README.md

Theodosius - Jit linker, Mapper, Mutator, and Obfuscator

Theodosius (Theo for short) is a jit linker created entirely for obfuscation and mutation of both code, and code flow. The project is extremely modular in design and supports both kernel and usermode projects. Since Theo inherits HMDM (highly modular driver mapper), any vulnerable driver that exposes arbitrary MSR writes, or physical memory read/write can be used with this framework to map unsigned code into the kernel. This is possible since HMDM inherits VDM (vulnerable driver manipulation), and MSREXEC (elevation of arbitrary MSR writes to kernel execution).

Since Theo is a jit linker, unexported symbols can be jit linked. Resolving such symbols is open ended and allows the programmer of this framework to handle how they want to resolve symbols. More on this later (check out example projects).

RIP Relative Addressing

In order to allow for a routine to be scattered throughout a 64bit address space, RIP relative addressing must not be used. In order to facilitate this, a very special version of clang-cl is used which can use mcmodel=large. This will generate instructions which do not use RIP relative addressing when referencing symbols outside of the routine in which the instruction itself resides. The only exception to this is JCC instructions, (besides call) also known as branching instructions. Take this c++ code for an example:

ObfuscateRoutine 
extern "C" int ModuleEntry()
{
	MessageBoxA(0, "Demo", "Hello From Obfuscated Routine!", 0);
	UsermodeMutateDemo();
	UsermodeNoObfuscation();
}

This c++ function, compiled by clang-cl with mcmodel=large, will generate a routine with the following instructions:

0x00:                               ; void UsermodeNoObfuscation(void)
0x00:                                               public ?UsermodeNoObfuscation@@YAXXZ
0x00:                               ?UsermodeNoObfuscation@@YAXXZ proc near ; CODE XREF: ModuleEntry+42↓p
0x00:                               var_4           = dword ptr -4
0x00: 48 83 EC 28                                   sub     rsp, 28h
0x04: C7 44 24 24 00 00 00 00                       mov     [rsp+28h+var_4], 0
0x0C:                               loc_C:
0x0C: 83 7C 24 24 05                                cmp     [rsp+28h+var_4], 5
0x11: 0F 83 38 00 00 00                             jnb     loc_4F
0x17: 31 C0                                         xor     eax, eax
0x19: 48 BA 28 01 00 00 00 00 00 00                 mov     rdx, offset ??_C@_04DKDMNOEB@Demo?$AA@ ; "Demo"
0x23: 49 B8 00 01 00 00 00 00 00 00                 mov     r8, offset ??_C@_0CD@JEJKPGNA@Hello?5... ; "Hello From Non-Obfuscated Routine!"
0x2D: 48 B8 A0 01 00 00 00 00 00 00                 mov     rax, offset MessageBoxA
0x37: 45 31 C9                                      xor     r9d, r9d        ; uType
0x3A: 44 89 C9                                      mov     ecx, r9d        ; hWnd
0x3D: FF D0                                         call    rax ; MessageBoxA
0x3F: 8B 44 24 24                                   mov     eax, [rsp+28h+var_4]
0x43: 83 C0 01                                      add     eax, 1
0x46: 89 44 24 24                                   mov     [rsp+28h+var_4], eax
0x4A: E9 BD FF FF FF                                jmp     loc_C
0x4F:                               loc_4F:
0x4F: 48 83 C4 28                                   add     rsp, 28h
0x53: C3                                            retn
0x53:                               ?UsermodeNoObfuscation@@YAXXZ endp

As you can see from the code above, (sorry for the terrible syntax highlighting), references to strings and calls to functions are done by first loading the address of the symbol into a register and then interfacing with the symbol.

0x2D: 48 B8 A0 01 00 00 00 00 00 00                 mov     rax, offset MessageBoxA
; ...
0x3D: FF D0                                         call    rax ; MessageBoxA

Each of these instructions can be anywhere in virtual memory and it would not effect code execution one bit. However this is not the case with routines which have conditional branches. Take the following c++ code for example.

ObfuscateRoutine 
void LoopDemo()
{
    for (auto idx = 0u; idx < 10; ++idx)
		DbgPrint("> Loop Demo: %d\n", idx);
}

This c++ function, compiled by clang-cl with mcmodel=large, will generate a routine with the following instructions:


Obfuscation

The usage of the word obfuscation in this project is use to define any changes made to code, this includes code flow. obfuscation::obfuscate, a base class, which is inherited and expanded upon by obfuscation::mutation, obfuscates code flow by inserting JMP [RIP+0x0] instructions after every single instruction. This allows for a routine to be broken up into unique allocations of memory and thus provides more canvas room for creative ideas.

Obfuscation - Base Class

The base class, as described in the above section, contains a handful of util routines and a single explicit constructor which is the corner stone of the class. The constructor fixes JCC relative virtual addresses so that if the condition is met, instead of jumping instruction pointer relativitly, it will jump to an addition jmp (JMP [RIP+0x0]). LEA, nor CALL are rip relative, even for symbols defined inside of the routine in which the instruction is compiled into. In other words JCC instructions are the only instruction pointer relative instructions that are generated.

Mutation - Inherts Obfuscation