You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Theodosius/Examples/Theodosius-Usermode/asmjit/x86/x86instdb.h

475 lines
25 KiB

// AsmJit - Machine code generation for C++
//
// * Official AsmJit Home Page: https://asmjit.com
// * Official Github Repository: https://github.com/asmjit/asmjit
//
// Copyright (c) 2008-2020 The AsmJit Authors
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#ifndef ASMJIT_X86_X86INSTDB_H_INCLUDED
#define ASMJIT_X86_X86INSTDB_H_INCLUDED
#include "../x86/x86globals.h"
ASMJIT_BEGIN_SUB_NAMESPACE(x86)
//! \addtogroup asmjit_x86
//! \{
//! Instruction database (X86).
namespace InstDB {
// ============================================================================
// [asmjit::x86::InstDB::Mode]
// ============================================================================
//! Describes which mode is supported by an instruction or instruction signature.
enum Mode : uint32_t {
kModeNone = 0x00u, //!< Invalid.
kModeX86 = 0x01u, //!< X86 mode supported.
kModeX64 = 0x02u, //!< X64 mode supported.
kModeAny = 0x03u //!< Both X86 and X64 modes supported.
};
static constexpr uint32_t modeFromArch(uint32_t arch) noexcept {
return arch == Environment::kArchX86 ? kModeX86 :
arch == Environment::kArchX64 ? kModeX64 : kModeNone;
}
// ============================================================================
// [asmjit::x86::InstDB::OpFlags]
// ============================================================================
//! Operand flags (X86).
enum OpFlags : uint32_t {
kOpNone = 0x00000000u, //!< No flags.
kOpGpbLo = 0x00000001u, //!< Operand can be low 8-bit GPB register.
kOpGpbHi = 0x00000002u, //!< Operand can be high 8-bit GPB register.
kOpGpw = 0x00000004u, //!< Operand can be 16-bit GPW register.
kOpGpd = 0x00000008u, //!< Operand can be 32-bit GPD register.
kOpGpq = 0x00000010u, //!< Operand can be 64-bit GPQ register.
kOpXmm = 0x00000020u, //!< Operand can be 128-bit XMM register.
kOpYmm = 0x00000040u, //!< Operand can be 256-bit YMM register.
kOpZmm = 0x00000080u, //!< Operand can be 512-bit ZMM register.
kOpMm = 0x00000100u, //!< Operand can be 64-bit MM register.
kOpKReg = 0x00000200u, //!< Operand can be 64-bit K register.
kOpSReg = 0x00000400u, //!< Operand can be SReg (segment register).
kOpCReg = 0x00000800u, //!< Operand can be CReg (control register).
kOpDReg = 0x00001000u, //!< Operand can be DReg (debug register).
kOpSt = 0x00002000u, //!< Operand can be 80-bit ST register (X87).
kOpBnd = 0x00004000u, //!< Operand can be 128-bit BND register.
kOpTmm = 0x00008000u, //!< Operand can be 0..8192-bit TMM register.
kOpAllRegs = 0x0000FFFFu, //!< Combination of all possible registers.
kOpI4 = 0x00010000u, //!< Operand can be unsigned 4-bit immediate.
kOpU4 = 0x00020000u, //!< Operand can be unsigned 4-bit immediate.
kOpI8 = 0x00040000u, //!< Operand can be signed 8-bit immediate.
kOpU8 = 0x00080000u, //!< Operand can be unsigned 8-bit immediate.
kOpI16 = 0x00100000u, //!< Operand can be signed 16-bit immediate.
kOpU16 = 0x00200000u, //!< Operand can be unsigned 16-bit immediate.
kOpI32 = 0x00400000u, //!< Operand can be signed 32-bit immediate.
kOpU32 = 0x00800000u, //!< Operand can be unsigned 32-bit immediate.
kOpI64 = 0x01000000u, //!< Operand can be signed 64-bit immediate.
kOpU64 = 0x02000000u, //!< Operand can be unsigned 64-bit immediate.
kOpAllImm = 0x03FF0000u, //!< Operand can be any immediate.
kOpMem = 0x04000000u, //!< Operand can be a scalar memory pointer.
kOpVm = 0x08000000u, //!< Operand can be a vector memory pointer.
kOpRel8 = 0x10000000u, //!< Operand can be relative 8-bit displacement.
kOpRel32 = 0x20000000u, //!< Operand can be relative 32-bit displacement.
kOpImplicit = 0x80000000u //!< Operand is implicit.
};
// ============================================================================
// [asmjit::x86::InstDB::MemFlags]
// ============================================================================
//! Memory operand flags (X86).
enum MemFlags : uint32_t {
// NOTE: Instruction uses either scalar or vector memory operands, they never
// collide. This allows us to share bits between "M" and "Vm" enums.
kMemOpAny = 0x0001u, //!< Operand can be any scalar memory pointer.
kMemOpM8 = 0x0002u, //!< Operand can be an 8-bit memory pointer.
kMemOpM16 = 0x0004u, //!< Operand can be a 16-bit memory pointer.
kMemOpM32 = 0x0008u, //!< Operand can be a 32-bit memory pointer.
kMemOpM48 = 0x0010u, //!< Operand can be a 48-bit memory pointer (FAR pointers only).
kMemOpM64 = 0x0020u, //!< Operand can be a 64-bit memory pointer.
kMemOpM80 = 0x0040u, //!< Operand can be an 80-bit memory pointer.
kMemOpM128 = 0x0080u, //!< Operand can be a 128-bit memory pointer.
kMemOpM256 = 0x0100u, //!< Operand can be a 256-bit memory pointer.
kMemOpM512 = 0x0200u, //!< Operand can be a 512-bit memory pointer.
kMemOpM1024 = 0x0400u, //!< Operand can be a 1024-bit memory pointer.
kMemOpVm32x = 0x0002u, //!< Operand can be a vm32x (vector) pointer.
kMemOpVm32y = 0x0004u, //!< Operand can be a vm32y (vector) pointer.
kMemOpVm32z = 0x0008u, //!< Operand can be a vm32z (vector) pointer.
kMemOpVm64x = 0x0020u, //!< Operand can be a vm64x (vector) pointer.
kMemOpVm64y = 0x0040u, //!< Operand can be a vm64y (vector) pointer.
kMemOpVm64z = 0x0080u, //!< Operand can be a vm64z (vector) pointer.
kMemOpBaseOnly = 0x0800u, //!< Only memory base is allowed (no index, no offset).
kMemOpDs = 0x1000u, //!< Implicit memory operand's DS segment.
kMemOpEs = 0x2000u, //!< Implicit memory operand's ES segment.
kMemOpMib = 0x4000u, //!< Operand must be MIB (base+index) pointer.
kMemOpTMem = 0x8000u //!< Operand is a sib_mem (ADX memory operand).
};
// ============================================================================
// [asmjit::x86::InstDB::Flags]
// ============================================================================
//! Instruction flags (X86).
//!
//! Details about instruction encoding, operation, features, and some limitations.
enum Flags : uint32_t {
kFlagNone = 0x00000000u, //!< No flags.
// Instruction Family
// ------------------
//
// Instruction family information.
kFlagFpu = 0x00000100u, //!< Instruction that accesses FPU registers.
kFlagMmx = 0x00000200u, //!< Instruction that accesses MMX registers (including 3DNOW and GEODE) and EMMS.
kFlagVec = 0x00000400u, //!< Instruction that accesses XMM registers (SSE, AVX, AVX512).
// Prefixes and Encoding Flags
// ---------------------------
//
// These describe optional X86 prefixes that can be used to change the instruction's operation.
kFlagTsib = 0x00000800u, //!< Instruction uses TSIB (or SIB_MEM) encoding (MODRM followed by SIB).
kFlagRep = 0x00001000u, //!< Instruction can be prefixed with using the REP(REPE) or REPNE prefix.
kFlagRepIgnored = 0x00002000u, //!< Instruction ignores REP|REPNE prefixes, but they are accepted.
kFlagLock = 0x00004000u, //!< Instruction can be prefixed with using the LOCK prefix.
kFlagXAcquire = 0x00008000u, //!< Instruction can be prefixed with using the XACQUIRE prefix.
kFlagXRelease = 0x00010000u, //!< Instruction can be prefixed with using the XRELEASE prefix.
kFlagMib = 0x00020000u, //!< Instruction uses MIB (BNDLDX|BNDSTX) to encode two registers.
kFlagVsib = 0x00040000u, //!< Instruction uses VSIB instead of legacy SIB.
kFlagVex = 0x00080000u, //!< Instruction can be encoded by VEX|XOP (AVX|AVX2|BMI|XOP|...).
kFlagEvex = 0x00100000u, //!< Instruction can be encoded by EVEX (AVX512).
kFlagPreferEvex = 0x00200000u, //!< EVEX encoding is preferred over VEX encoding (AVX515_VNNI vs AVX_VNNI).
// FPU Flags
// ---------
//
// Used to tell the encoder which memory operand sizes are encodable.
kFlagFpuM16 = 0x00200000u, //!< FPU instruction can address `word_ptr` (shared with M80).
kFlagFpuM32 = 0x00400000u, //!< FPU instruction can address `dword_ptr`.
kFlagFpuM64 = 0x00800000u, //!< FPU instruction can address `qword_ptr`.
kFlagFpuM80 = 0x00200000u, //!< FPU instruction can address `tword_ptr` (shared with M16).
// AVX and AVX515 Flags
// --------------------
//
// If both `kFlagPrefixVex` and `kFlagPrefixEvex` flags are specified it
// means that the instructions can be encoded by either VEX or EVEX prefix.
// In that case AsmJit checks global options and also instruction options
// to decide whether to emit VEX or EVEX prefix.
kFlagAvx512_ = 0x00000000u, //!< Internally used in tables, has no meaning.
kFlagAvx512K = 0x01000000u, //!< Supports masking {k1..k7}.
kFlagAvx512Z = 0x02000000u, //!< Supports zeroing {z}, must be used together with `kAvx512k`.
kFlagAvx512ER = 0x04000000u, //!< Supports 'embedded-rounding' {er} with implicit {sae},
kFlagAvx512SAE = 0x08000000u, //!< Supports 'suppress-all-exceptions' {sae}.
kFlagAvx512B32 = 0x10000000u, //!< Supports 32-bit broadcast 'b32'.
kFlagAvx512B64 = 0x20000000u, //!< Supports 64-bit broadcast 'b64'.
kFlagAvx512T4X = 0x80000000u, //!< Operates on a vector of consecutive registers (AVX512_4FMAPS and AVX512_4VNNIW).
// Combinations used by instruction tables to make AVX512 definitions more compact.
kFlagAvx512KZ = kFlagAvx512K | kFlagAvx512Z,
kFlagAvx512ER_SAE = kFlagAvx512ER | kFlagAvx512SAE,
kFlagAvx512KZ_SAE = kFlagAvx512KZ | kFlagAvx512SAE,
kFlagAvx512KZ_SAE_B32 = kFlagAvx512KZ_SAE | kFlagAvx512B32,
kFlagAvx512KZ_SAE_B64 = kFlagAvx512KZ_SAE | kFlagAvx512B64,
kFlagAvx512KZ_ER_SAE = kFlagAvx512KZ | kFlagAvx512ER_SAE,
kFlagAvx512KZ_ER_SAE_B32 = kFlagAvx512KZ_ER_SAE | kFlagAvx512B32,
kFlagAvx512KZ_ER_SAE_B64 = kFlagAvx512KZ_ER_SAE | kFlagAvx512B64,
kFlagAvx512K_B32 = kFlagAvx512K | kFlagAvx512B32,
kFlagAvx512K_B64 = kFlagAvx512K | kFlagAvx512B64,
kFlagAvx512KZ_B32 = kFlagAvx512KZ | kFlagAvx512B32,
kFlagAvx512KZ_B64 = kFlagAvx512KZ | kFlagAvx512B64
};
// ============================================================================
// [asmjit::x86::InstDB::SingleRegCase]
// ============================================================================
enum SingleRegCase : uint32_t {
//! No special handling.
kSingleRegNone = 0,
//! Operands become read-only - `REG & REG` and similar.
kSingleRegRO = 1,
//! Operands become write-only - `REG ^ REG` and similar.
kSingleRegWO = 2
};
// ============================================================================
// [asmjit::x86::InstDB::InstSignature / OpSignature]
// ============================================================================
//! Operand signature (X86).
//!
//! Contains all possible operand combinations, memory size information, and
//! a fixed register id (or `BaseReg::kIdBad` if fixed id isn't required).
struct OpSignature {
//! Operand flags.
uint32_t opFlags;
//! Memory flags.
uint16_t memFlags;
//! Extra flags.
uint8_t extFlags;
//! Mask of possible register IDs.
uint8_t regMask;
};
ASMJIT_VARAPI const OpSignature _opSignatureTable[];
//! Instruction signature (X86).
//!
//! Contains a sequence of operands' combinations and other metadata that defines
//! a single instruction. This data is used by instruction validator.
struct InstSignature {
//! Count of operands in `opIndex` (0..6).
uint8_t opCount : 3;
//! Architecture modes supported (X86 / X64).
uint8_t modes : 2;
//! Number of implicit operands.
uint8_t implicit : 3;
//! Reserved for future use.
uint8_t reserved;
//! Indexes to `OpSignature` table.
uint8_t operands[Globals::kMaxOpCount];
};
ASMJIT_VARAPI const InstSignature _instSignatureTable[];
// ============================================================================
// [asmjit::x86::InstDB::CommonInfo]
// ============================================================================
//! Instruction common information (X86)
//!
//! Aggregated information shared across one or more instruction.
struct CommonInfo {
//! Instruction flags.
uint32_t _flags;
//! First `InstSignature` entry in the database.
uint32_t _iSignatureIndex : 11;
//! Number of relevant `ISignature` entries.
uint32_t _iSignatureCount : 5;
//! Control type, see `ControlType`.
uint32_t _controlType : 3;
//! Specifies what happens if all source operands share the same register.
uint32_t _singleRegCase : 2;
//! Reserved for future use.
uint32_t _reserved : 11;
// --------------------------------------------------------------------------
// [Accessors]
// --------------------------------------------------------------------------
//! Returns instruction flags, see `InstInfo::Flags`.
inline uint32_t flags() const noexcept { return _flags; }
//! Tests whether the instruction has a `flag`, see `InstInfo::Flags`.
inline bool hasFlag(uint32_t flag) const noexcept { return (_flags & flag) != 0; }
//! Tests whether the instruction is FPU instruction.
inline bool isFpu() const noexcept { return hasFlag(kFlagFpu); }
//! Tests whether the instruction is MMX/3DNOW instruction that accesses MMX registers (includes EMMS and FEMMS).
inline bool isMmx() const noexcept { return hasFlag(kFlagMmx); }
//! Tests whether the instruction is SSE|AVX|AVX512 instruction that accesses XMM|YMM|ZMM registers.
inline bool isVec() const noexcept { return hasFlag(kFlagVec); }
//! Tests whether the instruction is SSE+ (SSE4.2, AES, SHA included) instruction that accesses XMM registers.
inline bool isSse() const noexcept { return (flags() & (kFlagVec | kFlagVex | kFlagEvex)) == kFlagVec; }
//! Tests whether the instruction is AVX+ (FMA included) instruction that accesses XMM|YMM|ZMM registers.
inline bool isAvx() const noexcept { return isVec() && isVexOrEvex(); }
//! Tests whether the instruction can be prefixed with LOCK prefix.
inline bool hasLockPrefix() const noexcept { return hasFlag(kFlagLock); }
//! Tests whether the instruction can be prefixed with REP (REPE|REPZ) prefix.
inline bool hasRepPrefix() const noexcept { return hasFlag(kFlagRep); }
//! Tests whether the instruction can be prefixed with XACQUIRE prefix.
inline bool hasXAcquirePrefix() const noexcept { return hasFlag(kFlagXAcquire); }
//! Tests whether the instruction can be prefixed with XRELEASE prefix.
inline bool hasXReleasePrefix() const noexcept { return hasFlag(kFlagXRelease); }
//! Tests whether the rep prefix is supported by the instruction, but ignored (has no effect).
inline bool isRepIgnored() const noexcept { return hasFlag(kFlagRepIgnored); }
//! Tests whether the instruction uses MIB.
inline bool isMibOp() const noexcept { return hasFlag(kFlagMib); }
//! Tests whether the instruction uses VSIB.
inline bool isVsibOp() const noexcept { return hasFlag(kFlagVsib); }
//! Tests whether the instruction uses TSIB (AMX, instruction requires MOD+SIB).
inline bool isTsibOp() const noexcept { return hasFlag(kFlagTsib); }
//! Tests whether the instruction uses VEX (can be set together with EVEX if both are encodable).
inline bool isVex() const noexcept { return hasFlag(kFlagVex); }
//! Tests whether the instruction uses EVEX (can be set together with VEX if both are encodable).
inline bool isEvex() const noexcept { return hasFlag(kFlagEvex); }
//! Tests whether the instruction uses EVEX (can be set together with VEX if both are encodable).
inline bool isVexOrEvex() const noexcept { return hasFlag(kFlagVex | kFlagEvex); }
//! Tests whether the instruction should prefer EVEX prefix instead of VEX prefix.
inline bool preferEvex() const noexcept { return hasFlag(kFlagPreferEvex); }
//! Tests whether the instruction supports AVX512 masking {k}.
inline bool hasAvx512K() const noexcept { return hasFlag(kFlagAvx512K); }
//! Tests whether the instruction supports AVX512 zeroing {k}{z}.
inline bool hasAvx512Z() const noexcept { return hasFlag(kFlagAvx512Z); }
//! Tests whether the instruction supports AVX512 embedded-rounding {er}.
inline bool hasAvx512ER() const noexcept { return hasFlag(kFlagAvx512ER); }
//! Tests whether the instruction supports AVX512 suppress-all-exceptions {sae}.
inline bool hasAvx512SAE() const noexcept { return hasFlag(kFlagAvx512SAE); }
//! Tests whether the instruction supports AVX512 broadcast (either 32-bit or 64-bit).
inline bool hasAvx512B() const noexcept { return hasFlag(kFlagAvx512B32 | kFlagAvx512B64); }
//! Tests whether the instruction supports AVX512 broadcast (32-bit).
inline bool hasAvx512B32() const noexcept { return hasFlag(kFlagAvx512B32); }
//! Tests whether the instruction supports AVX512 broadcast (64-bit).
inline bool hasAvx512B64() const noexcept { return hasFlag(kFlagAvx512B64); }
inline uint32_t signatureIndex() const noexcept { return _iSignatureIndex; }
inline uint32_t signatureCount() const noexcept { return _iSignatureCount; }
inline const InstSignature* signatureData() const noexcept { return _instSignatureTable + _iSignatureIndex; }
inline const InstSignature* signatureEnd() const noexcept { return _instSignatureTable + _iSignatureIndex + _iSignatureCount; }
//! Returns the control-flow type of the instruction.
inline uint32_t controlType() const noexcept { return _controlType; }
inline uint32_t singleRegCase() const noexcept { return _singleRegCase; }
};
ASMJIT_VARAPI const CommonInfo _commonInfoTable[];
// ============================================================================
// [asmjit::x86::InstDB::InstInfo]
// ============================================================================
//! Instruction information (X86).
struct InstInfo {
//! Index to \ref _nameData.
uint32_t _nameDataIndex : 14;
//! Index to \ref _commonInfoTable.
uint32_t _commonInfoIndex : 10;
//! Index to \ref _commonInfoTableB.
uint32_t _commonInfoIndexB : 8;
//! Instruction encoding (internal encoding identifier used by \ref Assembler).
uint8_t _encoding;
//! Main opcode value (0..255).
uint8_t _mainOpcodeValue;
//! Index to \ref _mainOpcodeTable` that is combined with \ref _mainOpcodeValue
//! to form the final opcode.
uint8_t _mainOpcodeIndex;
//! Index to \ref _altOpcodeTable that contains a full alternative opcode.
uint8_t _altOpcodeIndex;
// --------------------------------------------------------------------------
// [Accessors]
// --------------------------------------------------------------------------
//! Returns common information, see `CommonInfo`.
inline const CommonInfo& commonInfo() const noexcept { return _commonInfoTable[_commonInfoIndex]; }
//! Tests whether the instruction has flag `flag`, see `Flags`.
inline bool hasFlag(uint32_t flag) const noexcept { return commonInfo().hasFlag(flag); }
//! Returns instruction flags, see `Flags`.
inline uint32_t flags() const noexcept { return commonInfo().flags(); }
//! Tests whether the instruction is FPU instruction.
inline bool isFpu() const noexcept { return commonInfo().isFpu(); }
//! Tests whether the instruction is MMX/3DNOW instruction that accesses MMX registers (includes EMMS and FEMMS).
inline bool isMmx() const noexcept { return commonInfo().isMmx(); }
//! Tests whether the instruction is SSE|AVX|AVX512 instruction that accesses XMM|YMM|ZMM registers.
inline bool isVec() const noexcept { return commonInfo().isVec(); }
//! Tests whether the instruction is SSE+ (SSE4.2, AES, SHA included) instruction that accesses XMM registers.
inline bool isSse() const noexcept { return commonInfo().isSse(); }
//! Tests whether the instruction is AVX+ (FMA included) instruction that accesses XMM|YMM|ZMM registers.
inline bool isAvx() const noexcept { return commonInfo().isAvx(); }
//! Tests whether the instruction can be prefixed with LOCK prefix.
inline bool hasLockPrefix() const noexcept { return commonInfo().hasLockPrefix(); }
//! Tests whether the instruction can be prefixed with REP (REPE|REPZ) prefix.
inline bool hasRepPrefix() const noexcept { return commonInfo().hasRepPrefix(); }
//! Tests whether the instruction can be prefixed with XACQUIRE prefix.
inline bool hasXAcquirePrefix() const noexcept { return commonInfo().hasXAcquirePrefix(); }
//! Tests whether the instruction can be prefixed with XRELEASE prefix.
inline bool hasXReleasePrefix() const noexcept { return commonInfo().hasXReleasePrefix(); }
//! Tests whether the rep prefix is supported by the instruction, but ignored (has no effect).
inline bool isRepIgnored() const noexcept { return commonInfo().isRepIgnored(); }
//! Tests whether the instruction uses MIB.
inline bool isMibOp() const noexcept { return hasFlag(kFlagMib); }
//! Tests whether the instruction uses VSIB.
inline bool isVsibOp() const noexcept { return hasFlag(kFlagVsib); }
//! Tests whether the instruction uses VEX (can be set together with EVEX if both are encodable).
inline bool isVex() const noexcept { return hasFlag(kFlagVex); }
//! Tests whether the instruction uses EVEX (can be set together with VEX if both are encodable).
inline bool isEvex() const noexcept { return hasFlag(kFlagEvex); }
//! Tests whether the instruction uses EVEX (can be set together with VEX if both are encodable).
inline bool isVexOrEvex() const noexcept { return hasFlag(kFlagVex | kFlagEvex); }
//! Tests whether the instruction supports AVX512 masking {k}.
inline bool hasAvx512K() const noexcept { return hasFlag(kFlagAvx512K); }
//! Tests whether the instruction supports AVX512 zeroing {k}{z}.
inline bool hasAvx512Z() const noexcept { return hasFlag(kFlagAvx512Z); }
//! Tests whether the instruction supports AVX512 embedded-rounding {er}.
inline bool hasAvx512ER() const noexcept { return hasFlag(kFlagAvx512ER); }
//! Tests whether the instruction supports AVX512 suppress-all-exceptions {sae}.
inline bool hasAvx512SAE() const noexcept { return hasFlag(kFlagAvx512SAE); }
//! Tests whether the instruction supports AVX512 broadcast (either 32-bit or 64-bit).
inline bool hasAvx512B() const noexcept { return hasFlag(kFlagAvx512B32 | kFlagAvx512B64); }
//! Tests whether the instruction supports AVX512 broadcast (32-bit).
inline bool hasAvx512B32() const noexcept { return hasFlag(kFlagAvx512B32); }
//! Tests whether the instruction supports AVX512 broadcast (64-bit).
inline bool hasAvx512B64() const noexcept { return hasFlag(kFlagAvx512B64); }
//! Gets the control-flow type of the instruction.
inline uint32_t controlType() const noexcept { return commonInfo().controlType(); }
inline uint32_t singleRegCase() const noexcept { return commonInfo().singleRegCase(); }
inline uint32_t signatureIndex() const noexcept { return commonInfo().signatureIndex(); }
inline uint32_t signatureCount() const noexcept { return commonInfo().signatureCount(); }
inline const InstSignature* signatureData() const noexcept { return commonInfo().signatureData(); }
inline const InstSignature* signatureEnd() const noexcept { return commonInfo().signatureEnd(); }
};
ASMJIT_VARAPI const InstInfo _instInfoTable[];
static inline const InstInfo& infoById(uint32_t instId) noexcept {
ASMJIT_ASSERT(Inst::isDefinedId(instId));
return _instInfoTable[instId];
}
} // {InstDB}
//! \}
ASMJIT_END_SUB_NAMESPACE
#endif // ASMJIT_X86_X86INSTDB_H_INCLUDED