You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Theodosius/Examples/Theodosius-Usermode/asmjit/core/zonevector.cpp

378 lines
12 KiB

// AsmJit - Machine code generation for C++
//
// * Official AsmJit Home Page: https://asmjit.com
// * Official Github Repository: https://github.com/asmjit/asmjit
//
// Copyright (c) 2008-2020 The AsmJit Authors
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#include "../core/api-build_p.h"
#include "../core/support.h"
#include "../core/zone.h"
#include "../core/zonevector.h"
ASMJIT_BEGIN_NAMESPACE
// ============================================================================
// [asmjit::ZoneVectorBase - Helpers]
// ============================================================================
Error ZoneVectorBase::_grow(ZoneAllocator* allocator, uint32_t sizeOfT, uint32_t n) noexcept {
uint32_t threshold = Globals::kGrowThreshold / sizeOfT;
uint32_t capacity = _capacity;
uint32_t after = _size;
if (ASMJIT_UNLIKELY(std::numeric_limits<uint32_t>::max() - n < after))
return DebugUtils::errored(kErrorOutOfMemory);
after += n;
if (capacity >= after)
return kErrorOk;
// ZoneVector is used as an array to hold short-lived data structures used
// during code generation. The growing strategy is simple - use small capacity
// at the beginning (very good for ZoneAllocator) and then grow quicker to
// prevent successive reallocations.
if (capacity < 4)
capacity = 4;
else if (capacity < 8)
capacity = 8;
else if (capacity < 16)
capacity = 16;
else if (capacity < 64)
capacity = 64;
else if (capacity < 256)
capacity = 256;
while (capacity < after) {
if (capacity < threshold)
capacity *= 2;
else
capacity += threshold;
}
return _reserve(allocator, sizeOfT, capacity);
}
Error ZoneVectorBase::_reserve(ZoneAllocator* allocator, uint32_t sizeOfT, uint32_t n) noexcept {
uint32_t oldCapacity = _capacity;
if (oldCapacity >= n) return kErrorOk;
uint32_t nBytes = n * sizeOfT;
if (ASMJIT_UNLIKELY(nBytes < n))
return DebugUtils::errored(kErrorOutOfMemory);
size_t allocatedBytes;
uint8_t* newData = static_cast<uint8_t*>(allocator->alloc(nBytes, allocatedBytes));
if (ASMJIT_UNLIKELY(!newData))
return DebugUtils::errored(kErrorOutOfMemory);
void* oldData = _data;
if (_size)
memcpy(newData, oldData, size_t(_size) * sizeOfT);
if (oldData)
allocator->release(oldData, size_t(oldCapacity) * sizeOfT);
_capacity = uint32_t(allocatedBytes / sizeOfT);
ASMJIT_ASSERT(_capacity >= n);
_data = newData;
return kErrorOk;
}
Error ZoneVectorBase::_resize(ZoneAllocator* allocator, uint32_t sizeOfT, uint32_t n) noexcept {
uint32_t size = _size;
if (_capacity < n) {
ASMJIT_PROPAGATE(_grow(allocator, sizeOfT, n - size));
ASMJIT_ASSERT(_capacity >= n);
}
if (size < n)
memset(static_cast<uint8_t*>(_data) + size_t(size) * sizeOfT, 0, size_t(n - size) * sizeOfT);
_size = n;
return kErrorOk;
}
// ============================================================================
// [asmjit::ZoneBitVector - Ops]
// ============================================================================
Error ZoneBitVector::copyFrom(ZoneAllocator* allocator, const ZoneBitVector& other) noexcept {
BitWord* data = _data;
uint32_t newSize = other.size();
if (!newSize) {
_size = 0;
return kErrorOk;
}
if (newSize > _capacity) {
// Realloc needed... Calculate the minimum capacity (in bytes) requied.
uint32_t minimumCapacityInBits = Support::alignUp<uint32_t>(newSize, kBitWordSizeInBits);
if (ASMJIT_UNLIKELY(minimumCapacityInBits < newSize))
return DebugUtils::errored(kErrorOutOfMemory);
// Normalize to bytes.
uint32_t minimumCapacity = minimumCapacityInBits / 8;
size_t allocatedCapacity;
BitWord* newData = static_cast<BitWord*>(allocator->alloc(minimumCapacity, allocatedCapacity));
if (ASMJIT_UNLIKELY(!newData))
return DebugUtils::errored(kErrorOutOfMemory);
// `allocatedCapacity` now contains number in bytes, we need bits.
size_t allocatedCapacityInBits = allocatedCapacity * 8;
// Arithmetic overflow should normally not happen. If it happens we just
// change the `allocatedCapacityInBits` to the `minimumCapacityInBits` as
// this value is still safe to be used to call `_allocator->release(...)`.
if (ASMJIT_UNLIKELY(allocatedCapacityInBits < allocatedCapacity))
allocatedCapacityInBits = minimumCapacityInBits;
if (data)
allocator->release(data, _capacity / 8);
data = newData;
_data = data;
_capacity = uint32_t(allocatedCapacityInBits);
}
_size = newSize;
_copyBits(data, other.data(), _wordsPerBits(newSize));
return kErrorOk;
}
Error ZoneBitVector::_resize(ZoneAllocator* allocator, uint32_t newSize, uint32_t idealCapacity, bool newBitsValue) noexcept {
ASMJIT_ASSERT(idealCapacity >= newSize);
if (newSize <= _size) {
// The size after the resize is lesser than or equal to the current size.
uint32_t idx = newSize / kBitWordSizeInBits;
uint32_t bit = newSize % kBitWordSizeInBits;
// Just set all bits outside of the new size in the last word to zero.
// There is a case that there are not bits to set if `bit` is zero. This
// happens when `newSize` is a multiply of `kBitWordSizeInBits` like 64, 128,
// and so on. In that case don't change anything as that would mean settings
// bits outside of the `_size`.
if (bit)
_data[idx] &= (BitWord(1) << bit) - 1u;
_size = newSize;
return kErrorOk;
}
uint32_t oldSize = _size;
BitWord* data = _data;
if (newSize > _capacity) {
// Realloc needed, calculate the minimum capacity (in bytes) requied.
uint32_t minimumCapacityInBits = Support::alignUp<uint32_t>(idealCapacity, kBitWordSizeInBits);
if (ASMJIT_UNLIKELY(minimumCapacityInBits < newSize))
return DebugUtils::errored(kErrorOutOfMemory);
// Normalize to bytes.
uint32_t minimumCapacity = minimumCapacityInBits / 8;
size_t allocatedCapacity;
BitWord* newData = static_cast<BitWord*>(allocator->alloc(minimumCapacity, allocatedCapacity));
if (ASMJIT_UNLIKELY(!newData))
return DebugUtils::errored(kErrorOutOfMemory);
// `allocatedCapacity` now contains number in bytes, we need bits.
size_t allocatedCapacityInBits = allocatedCapacity * 8;
// Arithmetic overflow should normally not happen. If it happens we just
// change the `allocatedCapacityInBits` to the `minimumCapacityInBits` as
// this value is still safe to be used to call `_allocator->release(...)`.
if (ASMJIT_UNLIKELY(allocatedCapacityInBits < allocatedCapacity))
allocatedCapacityInBits = minimumCapacityInBits;
_copyBits(newData, data, _wordsPerBits(oldSize));
if (data)
allocator->release(data, _capacity / 8);
data = newData;
_data = data;
_capacity = uint32_t(allocatedCapacityInBits);
}
// Start (of the old size) and end (of the new size) bits
uint32_t idx = oldSize / kBitWordSizeInBits;
uint32_t startBit = oldSize % kBitWordSizeInBits;
uint32_t endBit = newSize % kBitWordSizeInBits;
// Set new bits to either 0 or 1. The `pattern` is used to set multiple
// bits per bit-word and contains either all zeros or all ones.
BitWord pattern = Support::bitMaskFromBool<BitWord>(newBitsValue);
// First initialize the last bit-word of the old size.
if (startBit) {
uint32_t nBits = 0;
if (idx == (newSize / kBitWordSizeInBits)) {
// The number of bit-words is the same after the resize. In that case
// we need to set only bits necessary in the current last bit-word.
ASMJIT_ASSERT(startBit < endBit);
nBits = endBit - startBit;
}
else {
// There is be more bit-words after the resize. In that case we don't
// have to be extra careful about the last bit-word of the old size.
nBits = kBitWordSizeInBits - startBit;
}
data[idx++] |= pattern << nBits;
}
// Initialize all bit-words after the last bit-word of the old size.
uint32_t endIdx = _wordsPerBits(newSize);
while (idx < endIdx) data[idx++] = pattern;
// Clear unused bits of the last bit-word.
if (endBit)
data[endIdx - 1] = pattern & ((BitWord(1) << endBit) - 1);
_size = newSize;
return kErrorOk;
}
Error ZoneBitVector::_append(ZoneAllocator* allocator, bool value) noexcept {
uint32_t kThreshold = Globals::kGrowThreshold * 8;
uint32_t newSize = _size + 1;
uint32_t idealCapacity = _capacity;
if (idealCapacity < 128)
idealCapacity = 128;
else if (idealCapacity <= kThreshold)
idealCapacity *= 2;
else
idealCapacity += kThreshold;
if (ASMJIT_UNLIKELY(idealCapacity < _capacity)) {
if (ASMJIT_UNLIKELY(_size == std::numeric_limits<uint32_t>::max()))
return DebugUtils::errored(kErrorOutOfMemory);
idealCapacity = newSize;
}
return _resize(allocator, newSize, idealCapacity, value);
}
// ============================================================================
// [asmjit::ZoneVector / ZoneBitVector - Unit]
// ============================================================================
#if defined(ASMJIT_TEST)
template<typename T>
static void test_zone_vector(ZoneAllocator* allocator, const char* typeName) {
int i;
int kMax = 100000;
ZoneVector<T> vec;
INFO("ZoneVector<%s> basic tests", typeName);
EXPECT(vec.append(allocator, 0) == kErrorOk);
EXPECT(vec.empty() == false);
EXPECT(vec.size() == 1);
EXPECT(vec.capacity() >= 1);
EXPECT(vec.indexOf(0) == 0);
EXPECT(vec.indexOf(-11) == Globals::kNotFound);
vec.clear();
EXPECT(vec.empty());
EXPECT(vec.size() == 0);
EXPECT(vec.indexOf(0) == Globals::kNotFound);
for (i = 0; i < kMax; i++) {
EXPECT(vec.append(allocator, T(i)) == kErrorOk);
}
EXPECT(vec.empty() == false);
EXPECT(vec.size() == uint32_t(kMax));
EXPECT(vec.indexOf(T(kMax - 1)) == uint32_t(kMax - 1));
EXPECT(vec.rbegin()[0] == kMax - 1);
vec.release(allocator);
}
static void test_zone_bitvector(ZoneAllocator* allocator) {
Zone zone(8096 - Zone::kBlockOverhead);
uint32_t i, count;
uint32_t kMaxCount = 100;
ZoneBitVector vec;
EXPECT(vec.empty());
EXPECT(vec.size() == 0);
INFO("ZoneBitVector::resize()");
for (count = 1; count < kMaxCount; count++) {
vec.clear();
EXPECT(vec.resize(allocator, count, false) == kErrorOk);
EXPECT(vec.size() == count);
for (i = 0; i < count; i++)
EXPECT(vec.bitAt(i) == false);
vec.clear();
EXPECT(vec.resize(allocator, count, true) == kErrorOk);
EXPECT(vec.size() == count);
for (i = 0; i < count; i++)
EXPECT(vec.bitAt(i) == true);
}
INFO("ZoneBitVector::fillBits() / clearBits()");
for (count = 1; count < kMaxCount; count += 2) {
vec.clear();
EXPECT(vec.resize(allocator, count) == kErrorOk);
EXPECT(vec.size() == count);
for (i = 0; i < (count + 1) / 2; i++) {
bool value = bool(i & 1);
if (value)
vec.fillBits(i, count - i * 2);
else
vec.clearBits(i, count - i * 2);
}
for (i = 0; i < count; i++) {
EXPECT(vec.bitAt(i) == bool(i & 1));
}
}
}
UNIT(zone_vector) {
Zone zone(8096 - Zone::kBlockOverhead);
ZoneAllocator allocator(&zone);
test_zone_vector<int>(&allocator, "int");
test_zone_vector<int64_t>(&allocator, "int64_t");
test_zone_bitvector(&allocator);
}
#endif
ASMJIT_END_NAMESPACE