You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

560 lines
21 KiB

// AsmJit - Machine code generation for C++
//
// * Official AsmJit Home Page: https://asmjit.com
// * Official Github Repository: https://github.com/asmjit/asmjit
//
// Copyright (c) 2008-2020 The AsmJit Authors
//
// This software is provided 'as-is', without any express or implied
// warranty. In no event will the authors be held liable for any damages
// arising from the use of this software.
//
// Permission is granted to anyone to use this software for any purpose,
// including commercial applications, and to alter it and redistribute it
// freely, subject to the following restrictions:
//
// 1. The origin of this software must not be misrepresented; you must not
// claim that you wrote the original software. If you use this software
// in a product, an acknowledgment in the product documentation would be
// appreciated but is not required.
// 2. Altered source versions must be plainly marked as such, and must not be
// misrepresented as being the original software.
// 3. This notice may not be removed or altered from any source distribution.
#ifndef ASMJIT_CORE_INST_H_INCLUDED
#define ASMJIT_CORE_INST_H_INCLUDED
#include "../core/cpuinfo.h"
#include "../core/operand.h"
#include "../core/string.h"
#include "../core/support.h"
ASMJIT_BEGIN_NAMESPACE
//! \addtogroup asmjit_instruction_db
//! \{
// ============================================================================
// [asmjit::BaseInst]
// ============================================================================
//! Instruction id, options, and extraReg in a single structure. This structure
//! exists mainly to simplify analysis and validation API that requires `BaseInst`
//! and `Operand[]` array.
class BaseInst {
public:
//! Instruction id, see \ref BaseInst::Id or {arch-specific}::Inst::Id.
uint32_t _id;
//! Instruction options, see \ref BaseInst::Options or {arch-specific}::Inst::Options.
uint32_t _options;
//! Extra register used by instruction (either REP register or AVX-512 selector).
RegOnly _extraReg;
enum Id : uint32_t {
//! Invalid or uninitialized instruction id.
kIdNone = 0x00000000u,
//! Abstract instruction (BaseBuilder and BaseCompiler).
kIdAbstract = 0x80000000u
};
enum Options : uint32_t {
//! Used internally by emitters for handling errors and rare cases.
kOptionReserved = 0x00000001u,
//! Prevents following a jump during compilation (BaseCompiler).
kOptionUnfollow = 0x00000002u,
//! Overwrite the destination operand(s) (BaseCompiler).
//!
//! Hint that is important for register liveness analysis. It tells the
//! compiler that the destination operand will be overwritten now or by
//! adjacent instructions. BaseCompiler knows when a register is completely
//! overwritten by a single instruction, for example you don't have to
//! mark "movaps" or "pxor x, x", however, if a pair of instructions is
//! used and the first of them doesn't completely overwrite the content
//! of the destination, BaseCompiler fails to mark that register as dead.
//!
//! X86 Specific
//! ------------
//!
//! - All instructions that always overwrite at least the size of the
//! register the virtual-register uses , for example "mov", "movq",
//! "movaps" don't need the overwrite option to be used - conversion,
//! shuffle, and other miscellaneous instructions included.
//!
//! - All instructions that clear the destination register if all operands
//! are the same, for example "xor x, x", "pcmpeqb x x", etc...
//!
//! - Consecutive instructions that partially overwrite the variable until
//! there is no old content require `BaseCompiler::overwrite()` to be used.
//! Some examples (not always the best use cases thought):
//!
//! - `movlps xmm0, ?` followed by `movhps xmm0, ?` and vice versa
//! - `movlpd xmm0, ?` followed by `movhpd xmm0, ?` and vice versa
//! - `mov al, ?` followed by `and ax, 0xFF`
//! - `mov al, ?` followed by `mov ah, al`
//! - `pinsrq xmm0, ?, 0` followed by `pinsrq xmm0, ?, 1`
//!
//! - If allocated variable is used temporarily for scalar operations. For
//! example if you allocate a full vector like `x86::Compiler::newXmm()`
//! and then use that vector for scalar operations you should use
//! `overwrite()` directive:
//!
//! - `sqrtss x, y` - only LO element of `x` is changed, if you don't
//! use HI elements, use `compiler.overwrite().sqrtss(x, y)`.
kOptionOverwrite = 0x00000004u,
//! Emit short-form of the instruction.
kOptionShortForm = 0x00000010u,
//! Emit long-form of the instruction.
kOptionLongForm = 0x00000020u,
//! Conditional jump is likely to be taken.
kOptionTaken = 0x00000040u,
//! Conditional jump is unlikely to be taken.
kOptionNotTaken = 0x00000080u
};
//! Control type.
enum ControlType : uint32_t {
//! No control type (doesn't jump).
kControlNone = 0u,
//! Unconditional jump.
kControlJump = 1u,
//! Conditional jump (branch).
kControlBranch = 2u,
//! Function call.
kControlCall = 3u,
//! Function return.
kControlReturn = 4u
};
//! \name Construction & Destruction
//! \{
//! Creates a new BaseInst instance with `id` and `options` set.
//!
//! Default values of `id` and `options` are zero, which means none instruciton.
//! Such instruction is guaranteed to never exist for any architecture supported
//! by AsmJit.
inline explicit BaseInst(uint32_t id = 0, uint32_t options = 0) noexcept
: _id(id),
_options(options),
_extraReg() {}
inline BaseInst(uint32_t id, uint32_t options, const RegOnly& extraReg) noexcept
: _id(id),
_options(options),
_extraReg(extraReg) {}
inline BaseInst(uint32_t id, uint32_t options, const BaseReg& extraReg) noexcept
: _id(id),
_options(options),
_extraReg { extraReg.signature(), extraReg.id() } {}
//! \}
//! \name Instruction ID
//! \{
//! Returns the instruction id.
inline uint32_t id() const noexcept { return _id; }
//! Sets the instruction id to the given `id`.
inline void setId(uint32_t id) noexcept { _id = id; }
//! Resets the instruction id to zero, see \ref kIdNone.
inline void resetId() noexcept { _id = 0; }
//! \}
//! \name Instruction Options
//! \{
inline uint32_t options() const noexcept { return _options; }
inline bool hasOption(uint32_t option) const noexcept { return (_options & option) != 0; }
inline void setOptions(uint32_t options) noexcept { _options = options; }
inline void addOptions(uint32_t options) noexcept { _options |= options; }
inline void clearOptions(uint32_t options) noexcept { _options &= ~options; }
inline void resetOptions() noexcept { _options = 0; }
//! \}
//! \name Extra Register
//! \{
inline bool hasExtraReg() const noexcept { return _extraReg.isReg(); }
inline RegOnly& extraReg() noexcept { return _extraReg; }
inline const RegOnly& extraReg() const noexcept { return _extraReg; }
inline void setExtraReg(const BaseReg& reg) noexcept { _extraReg.init(reg); }
inline void setExtraReg(const RegOnly& reg) noexcept { _extraReg.init(reg); }
inline void resetExtraReg() noexcept { _extraReg.reset(); }
//! \}
};
// ============================================================================
// [asmjit::OpRWInfo]
// ============================================================================
//! Read/Write information related to a single operand, used by \ref InstRWInfo.
struct OpRWInfo {
//! Read/Write flags, see \ref OpRWInfo::Flags.
uint32_t _opFlags;
//! Physical register index, if required.
uint8_t _physId;
//! Size of a possible memory operand that can replace a register operand.
uint8_t _rmSize;
//! Reserved for future use.
uint8_t _reserved[2];
//! Read bit-mask where each bit represents one byte read from Reg/Mem.
uint64_t _readByteMask;
//! Write bit-mask where each bit represents one byte written to Reg/Mem.
uint64_t _writeByteMask;
//! Zero/Sign extend bit-mask where each bit represents one byte written to Reg/Mem.
uint64_t _extendByteMask;
//! Flags describe how the operand is accessed and some additional information.
enum Flags : uint32_t {
//! Operand is read.
kRead = 0x00000001u,
//! Operand is written.
kWrite = 0x00000002u,
//! Operand is both read and written.
kRW = 0x00000003u,
//! Register operand can be replaced by a memory operand.
kRegMem = 0x00000004u,
//! The `extendByteMask()` represents a zero extension.
kZExt = 0x00000010u,
//! Register operand must use \ref physId().
kRegPhysId = 0x00000100u,
//! Base register of a memory operand must use \ref physId().
kMemPhysId = 0x00000200u,
//! This memory operand is only used to encode registers and doesn't access memory.
//!
//! X86 Specific
//! ------------
//!
//! Instructions that use such feature include BNDLDX, BNDSTX, and LEA.
kMemFake = 0x000000400u,
//! Base register of the memory operand will be read.
kMemBaseRead = 0x00001000u,
//! Base register of the memory operand will be written.
kMemBaseWrite = 0x00002000u,
//! Base register of the memory operand will be read & written.
kMemBaseRW = 0x00003000u,
//! Index register of the memory operand will be read.
kMemIndexRead = 0x00004000u,
//! Index register of the memory operand will be written.
kMemIndexWrite = 0x00008000u,
//! Index register of the memory operand will be read & written.
kMemIndexRW = 0x0000C000u,
//! Base register of the memory operand will be modified before the operation.
kMemBasePreModify = 0x00010000u,
//! Base register of the memory operand will be modified after the operation.
kMemBasePostModify = 0x00020000u
};
// Don't remove these asserts. Read/Write flags are used extensively
// by Compiler and they must always be compatible with constants below.
static_assert(kRead == 0x1, "OpRWInfo::kRead flag must be 0x1");
static_assert(kWrite == 0x2, "OpRWInfo::kWrite flag must be 0x2");
static_assert(kRegMem == 0x4, "OpRWInfo::kRegMem flag must be 0x4");
//! \name Reset
//! \{
//! Resets this operand information to all zeros.
inline void reset() noexcept { memset(this, 0, sizeof(*this)); }
//! Resets this operand info (resets all members) and set common information
//! to the given `opFlags`, `regSize`, and possibly `physId`.
inline void reset(uint32_t opFlags, uint32_t regSize, uint32_t physId = BaseReg::kIdBad) noexcept {
_opFlags = opFlags;
_physId = uint8_t(physId);
_rmSize = uint8_t((opFlags & kRegMem) ? regSize : uint32_t(0));
_resetReserved();
uint64_t mask = Support::lsbMask<uint64_t>(regSize);
_readByteMask = opFlags & kRead ? mask : uint64_t(0);
_writeByteMask = opFlags & kWrite ? mask : uint64_t(0);
_extendByteMask = 0;
}
inline void _resetReserved() noexcept {
memset(_reserved, 0, sizeof(_reserved));
}
//! \}
//! \name Operand Flags
//! \{
//! Returns operand flags, see \ref Flags.
inline uint32_t opFlags() const noexcept { return _opFlags; }
//! Tests whether operand flags contain the given `flag`.
inline bool hasOpFlag(uint32_t flag) const noexcept { return (_opFlags & flag) != 0; }
//! Adds the given `flags` to operand flags.
inline void addOpFlags(uint32_t flags) noexcept { _opFlags |= flags; }
//! Removes the given `flags` from operand flags.
inline void clearOpFlags(uint32_t flags) noexcept { _opFlags &= ~flags; }
//! Tests whether this operand is read from.
inline bool isRead() const noexcept { return hasOpFlag(kRead); }
//! Tests whether this operand is written to.
inline bool isWrite() const noexcept { return hasOpFlag(kWrite); }
//! Tests whether this operand is both read and write.
inline bool isReadWrite() const noexcept { return (_opFlags & kRW) == kRW; }
//! Tests whether this operand is read only.
inline bool isReadOnly() const noexcept { return (_opFlags & kRW) == kRead; }
//! Tests whether this operand is write only.
inline bool isWriteOnly() const noexcept { return (_opFlags & kRW) == kWrite; }
//! Tests whether this operand is Reg/Mem
//!
//! Reg/Mem operands can use either register or memory.
inline bool isRm() const noexcept { return hasOpFlag(kRegMem); }
//! Tests whether the operand will be zero extended.
inline bool isZExt() const noexcept { return hasOpFlag(kZExt); }
//! \}
//! \name Memory Flags
//! \{
//! Tests whether this is a fake memory operand, which is only used, because
//! of encoding. Fake memory operands do not access any memory, they are only
//! used to encode registers.
inline bool isMemFake() const noexcept { return hasOpFlag(kMemFake); }
//! Tests whether the instruction's memory BASE register is used.
inline bool isMemBaseUsed() const noexcept { return (_opFlags & kMemBaseRW) != 0; }
//! Tests whether the instruction reads from its BASE registers.
inline bool isMemBaseRead() const noexcept { return hasOpFlag(kMemBaseRead); }
//! Tests whether the instruction writes to its BASE registers.
inline bool isMemBaseWrite() const noexcept { return hasOpFlag(kMemBaseWrite); }
//! Tests whether the instruction reads and writes from/to its BASE registers.
inline bool isMemBaseReadWrite() const noexcept { return (_opFlags & kMemBaseRW) == kMemBaseRW; }
//! Tests whether the instruction only reads from its BASE registers.
inline bool isMemBaseReadOnly() const noexcept { return (_opFlags & kMemBaseRW) == kMemBaseRead; }
//! Tests whether the instruction only writes to its BASE registers.
inline bool isMemBaseWriteOnly() const noexcept { return (_opFlags & kMemBaseRW) == kMemBaseWrite; }
//! Tests whether the instruction modifies the BASE register before it uses
//! it to calculate the target address.
inline bool isMemBasePreModify() const noexcept { return hasOpFlag(kMemBasePreModify); }
//! Tests whether the instruction modifies the BASE register after it uses
//! it to calculate the target address.
inline bool isMemBasePostModify() const noexcept { return hasOpFlag(kMemBasePostModify); }
//! Tests whether the instruction's memory INDEX register is used.
inline bool isMemIndexUsed() const noexcept { return (_opFlags & kMemIndexRW) != 0; }
//! Tests whether the instruction reads the INDEX registers.
inline bool isMemIndexRead() const noexcept { return hasOpFlag(kMemIndexRead); }
//! Tests whether the instruction writes to its INDEX registers.
inline bool isMemIndexWrite() const noexcept { return hasOpFlag(kMemIndexWrite); }
//! Tests whether the instruction reads and writes from/to its INDEX registers.
inline bool isMemIndexReadWrite() const noexcept { return (_opFlags & kMemIndexRW) == kMemIndexRW; }
//! Tests whether the instruction only reads from its INDEX registers.
inline bool isMemIndexReadOnly() const noexcept { return (_opFlags & kMemIndexRW) == kMemIndexRead; }
//! Tests whether the instruction only writes to its INDEX registers.
inline bool isMemIndexWriteOnly() const noexcept { return (_opFlags & kMemIndexRW) == kMemIndexWrite; }
//! \}
//! \name Physical Register ID
//! \{
//! Returns a physical id of the register that is fixed for this operand.
//!
//! Returns \ref BaseReg::kIdBad if any register can be used.
inline uint32_t physId() const noexcept { return _physId; }
//! Tests whether \ref physId() would return a valid physical register id.
inline bool hasPhysId() const noexcept { return _physId != BaseReg::kIdBad; }
//! Sets physical register id, which would be fixed for this operand.
inline void setPhysId(uint32_t physId) noexcept { _physId = uint8_t(physId); }
//! \}
//! \name Reg/Mem Information
//! \{
//! Returns Reg/Mem size of the operand.
inline uint32_t rmSize() const noexcept { return _rmSize; }
//! Sets Reg/Mem size of the operand.
inline void setRmSize(uint32_t rmSize) noexcept { _rmSize = uint8_t(rmSize); }
//! \}
//! \name Read & Write Masks
//! \{
//! Returns read mask.
inline uint64_t readByteMask() const noexcept { return _readByteMask; }
//! Returns write mask.
inline uint64_t writeByteMask() const noexcept { return _writeByteMask; }
//! Returns extend mask.
inline uint64_t extendByteMask() const noexcept { return _extendByteMask; }
//! Sets read mask.
inline void setReadByteMask(uint64_t mask) noexcept { _readByteMask = mask; }
//! Sets write mask.
inline void setWriteByteMask(uint64_t mask) noexcept { _writeByteMask = mask; }
//! Sets externd mask.
inline void setExtendByteMask(uint64_t mask) noexcept { _extendByteMask = mask; }
//! \}
};
// ============================================================================
// [asmjit::InstRWInfo]
// ============================================================================
//! Read/Write information of an instruction.
struct InstRWInfo {
//! Instruction flags (there are no flags at the moment, this field is reserved).
uint32_t _instFlags;
//! Mask of CPU flags read.
uint32_t _readFlags;
//! Mask of CPU flags written.
uint32_t _writeFlags;
//! Count of operands.
uint8_t _opCount;
//! CPU feature required for replacing register operand with memory operand.
uint8_t _rmFeature;
//! Reserved for future use.
uint8_t _reserved[18];
//! Read/Write onfo of extra register (rep{} or kz{}).
OpRWInfo _extraReg;
//! Read/Write info of instruction operands.
OpRWInfo _operands[Globals::kMaxOpCount];
//! \name Commons
//! \{
//! Resets this RW information to all zeros.
inline void reset() noexcept { memset(this, 0, sizeof(*this)); }
//! \}
//! \name Instruction Flags
//!
//! \{
inline uint32_t instFlags() const noexcept { return _instFlags; }
inline bool hasInstFlag(uint32_t flag) const noexcept { return (_instFlags & flag) != 0; }
//! }
//! \name CPU Flags Read/Write Information
//! \{
//! Returns read flags of the instruction.
inline uint32_t readFlags() const noexcept { return _readFlags; }
//! Returns write flags of the instruction.
inline uint32_t writeFlags() const noexcept { return _writeFlags; }
//! \}
//! \name Reg/Mem Information
//! \{
//! Returns the CPU feature required to replace a register operand with memory
//! operand. If the returned feature is zero (none) then this instruction
//! either doesn't provide memory operand combination or there is no extra
//! CPU feature required.
//!
//! X86 Specific
//! ------------
//!
//! Some AVX+ instructions may require extra features for replacing registers
//! with memory operands, for example VPSLLDQ instruction only supports
//! 'reg/reg/imm' combination on AVX/AVX2 capable CPUs and requires AVX-512 for
//! 'reg/mem/imm' combination.
inline uint32_t rmFeature() const noexcept { return _rmFeature; }
//! \}
//! \name Operand Read/Write Information
//! \{
//! Returns RW information of extra register operand (extraReg).
inline const OpRWInfo& extraReg() const noexcept { return _extraReg; }
//! Returns RW information of all instruction's operands.
inline const OpRWInfo* operands() const noexcept { return _operands; }
//! Returns RW information of the operand at the given `index`.
inline const OpRWInfo& operand(size_t index) const noexcept {
ASMJIT_ASSERT(index < Globals::kMaxOpCount);
return _operands[index];
}
//! Returns the number of operands this instruction has.
inline uint32_t opCount() const noexcept { return _opCount; }
//! \}
};
// ============================================================================
// [asmjit::InstAPI]
// ============================================================================
//! Instruction API.
namespace InstAPI {
//! Validation flags that can be used with \ref InstAPI::validate().
enum ValidationFlags : uint32_t {
//! Allow virtual registers in the instruction.
kValidationFlagVirtRegs = 0x01u
};
#ifndef ASMJIT_NO_TEXT
//! Appends the name of the instruction specified by `instId` and `instOptions`
//! into the `output` string.
//!
//! \note Instruction options would only affect instruction prefix & suffix,
//! other options would be ignored. If `instOptions` is zero then only raw
//! instruction name (without any additional text) will be appended.
ASMJIT_API Error instIdToString(uint32_t arch, uint32_t instId, String& output) noexcept;
//! Parses an instruction name in the given string `s`. Length is specified
//! by `len` argument, which can be `SIZE_MAX` if `s` is known to be null
//! terminated.
//!
//! Returns the parsed instruction id or \ref BaseInst::kIdNone if no such
//! instruction exists.
ASMJIT_API uint32_t stringToInstId(uint32_t arch, const char* s, size_t len) noexcept;
#endif // !ASMJIT_NO_TEXT
#ifndef ASMJIT_NO_VALIDATION
//! Validates the given instruction considering the validation `flags`, see
//! \ref ValidationFlags.
ASMJIT_API Error validate(uint32_t arch, const BaseInst& inst, const Operand_* operands, size_t opCount, uint32_t validationFlags = 0) noexcept;
#endif // !ASMJIT_NO_VALIDATION
#ifndef ASMJIT_NO_INTROSPECTION
//! Gets Read/Write information of the given instruction.
ASMJIT_API Error queryRWInfo(uint32_t arch, const BaseInst& inst, const Operand_* operands, size_t opCount, InstRWInfo* out) noexcept;
//! Gets CPU features required by the given instruction.
ASMJIT_API Error queryFeatures(uint32_t arch, const BaseInst& inst, const Operand_* operands, size_t opCount, BaseFeatures* out) noexcept;
#endif // !ASMJIT_NO_INTROSPECTION
} // {InstAPI}
//! \}
ASMJIT_END_NAMESPACE
#endif // ASMJIT_CORE_INST_H_INCLUDED