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CHAPTER 23
INTRODUCTION TO VIRTUAL MACHINE EXTENSIONS

23.1  OVERVIEW

This chapter describes the basics of virtual machine architecture and an overview of the virtual-machine extensions
(VMX) that support virtualization of processor hardware for multiple software environments.

Information about VMX instructions is provided in Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 2B. Other aspects of VMX and system programming considerations are described in chapters of Intel® 64
and 1A-32 Architectures Software Developer’'s Manual, Volume 3B.

23.2  VIRTUAL MACHINE ARCHITECTURE

Virtual-machine extensions define processor-level support for virtual machines on 1A-32 processors. Two principal
classes of software are supported:

® Virtual-machine monitors (VMM) — A VMM acts as a host and has full control of the processor(s) and other
platform hardware. A VMM presents guest software (see next paragraph) with an abstraction of a virtual
processor and allows it to execute directly on a logical processor. A VMM is able to retain selective control of
processor resources, physical memory, interrupt management, and 1/0.

® Guest software — Each virtual machine (VM) is a guest software environment that supports a stack consisting
of operating system (OS) and application software. Each operates independently of other virtual machines and
uses on the same interface to processor(s), memory, storage, graphics, and 1/0 provided by a physical
platform. The software stack acts as if it were running on a platform with no VMM. Software executing in a
virtual machine must operate with reduced privilege so that the VMM can retain control of platform resources.

23.3  INTRODUCTION TO VMX OPERATION

Processor support for virtualization is provided by a form of processor operation called VMX operation. There are
two kinds of VMX operation: VMX root operation and VMX non-root operation. In general, a VMM will run in VMX
root operation and guest software will run in VMX non-root operation. Transitions between VMX root operation and
VMX non-root operation are called VMX transitions. There are two kinds of VMX transitions. Transitions into VMX
non-root operation are called VM entries. Transitions from VMX non-root operation to VMX root operation are called
VM exits.

Processor behavior in VMX root operation is very much as it is outside VMX operation. The principal differences are
that a set of new instructions (the VMX instructions) is available and that the values that can be loaded into certain
control registers are limited (see Section 23.8).

Processor behavior in VMX non-root operation is restricted and modified to facilitate virtualization. Instead of their
ordinary operation, certain instructions (including the new VMCALL instruction) and events cause VM exits to the

VMM. Because these VM exits replace ordinary behavior, the functionality of software in VMX non-root operation is
limited. It is this limitation that allows the VMM to retain control of processor resources.

There is no software-visible bit whose setting indicates whether a logical processor is in VMX non-root operation.
This fact may allow a VMM to prevent guest software from determining that it is running in a virtual machine.

Because VMX operation places restrictions even on software running with current privilege level (CPL) O, guest
software can run at the privilege level for which it was originally designed. This capability may simplify the devel-
opment of a VMM.
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23.4  LIFE CYCLE OF VMM SOFTWARE

Figure 23-1 illustrates the life cycle of a VMM and its guest software as well as the interactions between them. The
following items summarize that life cycle:

® Software enters VMX operation by executing a VMXON instruction.

® Using VM entries, a VMM can then enter guests into virtual machines (one at a time). The VMM effects a
VM entry using instructions VMLAUNCH and VMRESUME; it regains control using VM exits.

® VM exits transfer control to an entry point specified by the VMM. The VMM can take action appropriate to the
cause of the VM exit and can then return to the virtual machine using a VM entry.

¢ Eventually, the VMM may decide to shut itself down and leave VMX operation. It does so by executing the
VMXOFF instruction.

Guest 0 Guest 1

VM NVM Entr)% Exit

VMXON — VM Monitor p—— VMXOFF

Figure 23-1. Interaction of a Virtual-Machine Monitor and Guests

23.5 VIRTUAL-MACHINE CONTROL STRUCTURE

VMX non-root operation and VMX transitions are controlled by a data structure called a virtual-machine control
structure (VMCS).

Access to the VMCS is managed through a component of processor state called the VMCS pointer (one per logical
processor). The value of the VMCS pointer is the 64-bit address of the VMCS. The VMCS pointer is read and written
using the instructions VMPTRST and VMPTRLD. The VMM configures a VMCS using the VMREAD, VMWRITE, and
VMCLEAR instructions.

A VMM could use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple
logical processors (virtual processors), the VMM could use a different VMCS for each virtual processor.

23.6  DISCOVERING SUPPORT FOR VMX

Before system software enters into VMX operation, it must discover the presence of VMX support in the processor.
System software can determine whether a processor supports VMX operation using CPUID. If
CPUID.1:ECX.VMX][bit 5] = 1, then VMX operation is supported. See Chapter 3, “Instruction Set Reference, A-L” of
Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 2A.

The VMX architecture is designed to be extensible so that future processors in VMX operation can support addi-
tional features not present in first-generation implementations of the VMX architecture. The availability of exten-
sible VMX features is reported to software using a set of VMX capability MSRs (see Appendix A, “VMX Capability
Reporting Facility”).
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23.7 ENABLING AND ENTERING VMX OPERATION

Before system software can enter VMX operation, it enables VMX by setting CR4.VMXE[bit 13] = 1. VMX operation
is then entered by executing the VMXON instruction. VMXON causes an invalid-opcode exception (#UD) if executed
with CR4.VMXE = 0. Once in VMX operation, it is not possible to clear CR4.VMXE (see Section 23.8). System soft-
ware leaves VMX operation by executing the VMXOFF instruction. CR4.VMXE can be cleared outside of VMX opera-
tion after executing of VMXOFF.

VMXON is also controlled by the 1A32_FEATURE_CONTROL MSR (MSR address 3AH). This MSR is cleared to zero
when a logical processor is reset. The relevant bits of the MSR are:

® Bit O is the lock bit. If this bit is clear, VMXON causes a general-protection exception. If the lock bit is set,
WRMSR to this MSR causes a general-protection exception; the MSR cannot be modified until a power-up reset
condition. System BIOS can use this bit to provide a setup option for BIOS to disable support for VMX. To
enable VMX support in a platform, BIOS must set bit 1, bit 2, or both (see below), as well as the lock bit.

® Bit 1 enables VMXON in SMX operation. If this bit is clear, execution of VMXON in SMX operation causes a
general-protection exception. Attempts to set this bit on logical processors that do not support both VMX
operation (see Section 23.6) and SMX operation (see Chapter 6, “Safer Mode Extensions Reference,” in Intel®
64 and 1A-32 Architectures Software Developer’s Manual, Volume 2D) cause general-protection exceptions.

® Bit 2 enables VMXON outside SMX operation. If this bit is clear, execution of VMXON outside SMX
operation causes a general-protection exception. Attempts to set this bit on logical processors that do not
support VMX operation (see Section 23.6) cause general-protection exceptions.

NOTE

A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last
execution of GETSEC[SENTER]. A logical processor is outside SMX operation if GETSEC[SENTER]
has not been executed or if GETSEC[SEXIT] was executed after the last execution of
GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and 1A-32
Architectures Software Developer’s Manual, Volume 2D.

Before executing VMXON, software should allocate a naturally aligned 4-KByte region of memory that a logical
processor may use to support VMX operation.! This region is called the VMXON region. The address of the VMXON
region (the VMXON pointer) is provided in an operand to VMXON. Section 24.11.5, “VMXON Region,” details how
software should initialize and access the VMXON region.

23.8 RESTRICTIONS ON VMX OPERATION

VMX operation places restrictions on processor operation. These are detailed below:

® In VMX operation, processors may fix certain bits in CRO and CR4 to specific values and not support other
values. VMXON fails if any of these bits contains an unsupported value (see “VMXON—Enter VMX Operation” in
Chapter 30). Any attempt to set one of these bits to an unsupported value while in VMX operation (including
VMX root operation) using any of the CLTS, LMSW, or MOV CR instructions causes a general-protection
exception. VM entry or VM exit cannot set any of these bits to an unsupported value. Software should consult
the VMX capability MSRs 1A32_VMX_CRO_FIXEDO and 1A32_VMX_CRO_FIXED1 to determine how bits in CRO
are fixed (see Appendix A.7). For CR4, software should consult the VMX capability MSRs
IA32_VMX_CR4_FIXEDO and 1A32_VMX_CR4_FIXED1 (see Appendix A.8).

NOTES

The first processors to support VMX operation require that the following bits be 1 in VMX operation:
CRO.PE, CRO.NE, CRO.PG, and CR4.VMXE. The restrictions on CRO.PE and CRO.PG imply that VMX
operation is supported only in paged protected mode (including 1A-32e mode). Therefore, guest
software cannot be run in unpaged protected mode or in real-address mode. See Section 31.2,

1. Future processors may require that a different amount of memory be reserved. If so, this fact is reported to software using the
VMX capability-reporting mechanism.
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“Supporting Processor Operating Modes in Guest Environments,” for a discussion of how a VMM
might support guest software that expects to run in unpaged protected mode or in real-address
mode.

Later processors support a VM-execution control called “unrestricted guest” (see Section 24.6.2).
If this control is 1, CRO.PE and CRO.PG may be 0 in VMX non-root operation (even if the capability
MSR 1A32_VMX_CRO_FIXEDO reports otherwise).! Such processors allow guest software to run in
unpaged protected mode or in real-address mode.

® VMXON fails if a logical processor is in A20M mode (see “VMXON—Enter VMX Operation” in Chapter 30). Once
the processor is in VMX operation, A20M interrupts are blocked. Thus, it is impossible to be in A20M mode in
VMX operation.

® The INIT signal is blocked whenever a logical processor is in VMX root operation. It is not blocked in VMX non-
root operation. Instead, INITs cause VM exits (see Section 25.2, “Other Causes of VM EXxits”).

® Intel® Processor Trace (Intel PT) can be used in VMX operation only if IA32_VMX_MISC[14] is read as 1 (see
Appendix A.6). On processors that support Intel PT but which do not allow it to be used in VMX operation,
execution of VMXON clears IA32_RTIT_CTL.TraceEn (see “VMXON—Enter VMX Operation” in Chapter 30); any
attempt to set that bit while in VMX operation (including VMX root operation) using the WRMSR instruction
causes a general-protection exception.

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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CHAPTER 24
VIRTUAL MACHINE CONTROL STRUCTURES

24.1  OVERVIEW

A logical processor uses virtual-machine control data structures (VMCSs) while it is in VMX operation. These
manage transitions into and out of VMX non-root operation (VM entries and VM exits) as well as processor behavior
in VMX non-root operation. This structure is manipulated by the new instructions VMCLEAR, VMPTRLD, VMREAD,
and VMWRITE.

A VMM can use a different VMCS for each virtual machine that it supports. For a virtual machine with multiple
logical processors (virtual processors), the VMM can use a different VMCS for each virtual processor.

A logical processor associates a region in memory with each VMCS. This region is called the VMCS region.1 Soft-
ware references a specific VMCS using the 64-bit physical address of the region (a VMCS pointer). VMCS pointers
must be aligned on a 4-KByte boundary (bits 11:0 must be zero). These pointers must not set bits beyond the
processor’s physical-address width.2:3

A logical processor may maintain a number of VMCSs that are active. The processor may optimize VMX operation
by maintaining the state of an active VMCS in memory, on the processor, or both. At any given time, at most one
of the active VMCSs is the current VMCS. (This document frequently uses the term “the VMCS” to refer to the
current VMCS.) The VMLAUNCH, VMREAD, VMRESUME, and VMWRITE instructions operate only on the current
VMCS.

The following items describe how a logical processor determines which VMCSs are active and which is current:

® The memory operand of the VMPTRLD instruction is the address of a VMCS. After execution of the instruction,
that VMCS is both active and current on the logical processor. Any other VMCS that had been active remains so,
but no other VMCS is current.

® The VMCS link pointer field in the current VMCS (see Section 24.4.2) is itself the address of a VMCS. If VM entry
is performed successfully with the 1-setting of the “VMCS shadowing” VM-execution control, the VMCS
referenced by the VMCS link pointer field becomes active on the logical processor. The identity of the current
VMCS does not change.

® The memory operand of the VMCLEAR instruction is also the address of a VMCS. After execution of the
instruction, that VMCS is neither active nor current on the logical processor. If the VMCS had been current on
the logical processor, the logical processor no longer has a current VMCS.

The VMPTRST instruction stores the address of the logical processor’s current VMCS into a specified memory loca-
tion (it stores the value FFFFFFFF_FFFFFFFFH if there is no current VMCS).

The launch state of a VMCS determines which VM-entry instruction should be used with that VMCS: the
VMLAUNCH instruction requires a VMCS whose launch state is “clear”; the VMRESUME instruction requires a VMCS
whose launch state is “launched”. A logical processor maintains a VMCS'’s launch state in the corresponding VMCS
region. The following items describe how a logical processor manages the launch state of a VMCS:

® If the launch state of the current VMCS is “clear”, successful execution of the VMLAUNCH instruction changes
the launch state to “launched”.

® The memory operand of the VMCLEAR instruction is the address of a VMCS. After execution of the instruction,
the launch state of that VMCS is “clear”.

® There are no other ways to modify the launch state of a VMCS (it cannot be modified using VMWRITE) and there
is no direct way to discover it (it cannot be read using VMREAD).

1. The amount of memory required for a VMCS region is at most 4 KBytes. The exact size is implementation specific and can be deter-
mined by consulting the VMX capability MSR IA32_VMX_BASIC to determine the size of the VMCS region (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. If IA32_VMX_BASIC[48] is read as 1, these pointers must not set any bits in the range 63:32; see Appendix A.1.
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Figure 24-1 illustrates the different states of a VMCS. It uses “X” to refer to the VMCS and “Y” to refer to any other
VMCS. Thus: “VMPTRLD X” always makes X current and active; “VMPTRLD Y” always makes X not current (because
it makes Y current); VMLAUNCH makes the launch state of X “launched” if X was current and its launch state was
“clear”; and VMCLEAR X always makes X inactive and not current and makes its launch state “clear”.

The figure does not illustrate operations that do not modify the VMCS state relative to these parameters (e.g.,
execution of VMPTRLD X when X is already current). Note that VMCLEAR X makes X “inactive, not current, and
clear,” even if X’s current state is not defined (e.g., even if X has not yet been initialized). See Section 24.11.3.

Active
Not Current
Launched

Inactive
Not Current
Clear

Active
Not Current

< < 44 VMCLEAR X < <
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T T Q7 & e T T
= NP )4 4 4
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Current VMLAUNCH: > Current
Clear Launched

Figure 24-1. States of VMCS X

Because a shadow VMCS (see Section 24.10) cannot be used for VM entry, the launch state of a shadow VMCS is
not meaningful. Figure 24-1 does not illustrate all the ways in which a shadow VMCS may be made active.

24.2 FORMAT OF THE VMCS REGION

A VMCS region comprises up to 4-KBytes.! The format of a VMCS region is given in Table 24-1.

Table 24-1. Format of the VMCS Region

Byte Offset Contents
0 Bits 30:0: VMCS revision identifier
Bit 31: shadow-VMCS indicator (see Section 24.10)
4 VMX-abort indicator
8 VMCS data (implementation-specific format)

The first 4 bytes of the VMCS region contain the VMCS revision identifier at bits 30:0.2 Processors that maintain
VMCS data in different formats (see below) use different VMCS revision identifiers. These identifiers enable soft-

1. The exact size is implementation specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC to deter-
mine the size of the VMCS region (see Appendix A.1).
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ware to avoid using a VMCS region formatted for one processor on a processor that uses a different format.! Bit 31
of this 4-byte region indicates whether the VMCS is a shadow VMCS (see Section 24.10).

Software should write the VMCS revision identifier to the VMCS region before using that region for a VMCS. The
VMCS revision identifier is never written by the processor; VMPTRLD fails if its operand references a VMCS region
whose VMCS revision identifier differs from that used by the processor. (VMPTRLD also fails if the shadow-VMCS
indicator is 1 and the processor does not support the 1-setting of the “VMCS shadowing” VM-execution control; see
Section 24.6.2) Software can discover the VMCS revision identifier that a processor uses by reading the VMX capa-
bility MSR 1A32_VMX_BASIC (see Appendix A.1).

Software should clear or set the shadow-VMCS indicator depending on whether the VMCS is to be an ordinary
VMCS or a shadow VMCS (see Section 24.10). VMPTRLD fails if the shadow-VMCS indicator is set and the processor
does not support the 1-setting of the “VMCS shadowing” VM-execution control. Software can discover support for
this setting by reading the VMX capability MSR 1A32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3).

The next 4 bytes of the VMCS region are used for the VMX-abort indicator. The contents of these bits do not
control processor operation in any way. A logical processor writes a hon-zero value into these bits if a VMX abort
occurs (see Section 27.7). Software may also write into this field.

The remainder of the VMCS region is used for VMCS data (those parts of the VMCS that control VMX non-root
operation and the VMX transitions). The format of these data is implementation-specific. VMCS data are discussed
in Section 24.3 through Section 24.9. To ensure proper behavior in VMX operation, software should maintain the
VMCS region and related structures (enumerated in Section 24.11.4) in writeback cacheable memory. Future
implementations may allow or require a different memory typez. Software should consult the VMX capability MSR
1A32_VMX_BASIC (see Appendix A.1).

24.3  ORGANIZATION OF VMCS DATA

The VMCS data are organized into six logical groups:

® Guest-state area. Processor state is saved into the guest-state area on VM exits and loaded from there on
VM entries.

® Host-state area. Processor state is loaded from the host-state area on VM exits.

® VM-execution control fields. These fields control processor behavior in VMX non-root operation. They
determine in part the causes of VM exits.

® VM-exit control fields. These fields control VM exits.
® VM-entry control fields. These fields control VM entries.

® VM-exit information fields. These fields receive information on VM exits and describe the cause and the
nature of VM exits. On some processors, these fields are read-only.3

The VM-execution control fields, the VM-exit control fields, and the VM-entry control fields are sometimes referred
to collectively as VMX controls.

2. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this
change, bit 31 of the VMCS revision identifier was O.

Logical processors that use the same VMCS revision identifier use the same size for VMCS regions.

2. Alternatively, software may map any of these regions or structures with the UC memory type. Doing so is strongly discouraged
unless necessary as it will cause the performance of transitions using those structures to suffer significantly. In addition, the pro-
cessor will continue to use the memory type reported in the VMX capability MSR IA32_VMX_BASIC with exceptions noted in Appen-
dix A.1.

3. Software can discover whether these fields can be written by reading the VMX capability MSR I1A32_VMX_MISC (see Appendix A.6).
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24.4  GUEST-STATE AREA

This section describes fields contained in the guest-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM entry (see Section 26.3.2) and stored into these fields on every VM exit (see
Section 27.3).

24.4.1 Guest Register State

The following fields in the guest-state area correspond to processor registers:

Control registers CRO, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 archi-
tecture).

Debug register DR7 (64 bits; 32 bits on processors that do not support Intel 64 architecture).

RSP, RIP, and RFLAGS (64 bits each; 32 bits on processors that do not support Intel 64 architecture).t
The following fields for each of the registers CS, SS, DS, ES, FS, GS, LDTR, and TR:

— Selector (16 bits).

— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture). The base-address
fields for CS, SS, DS, and ES have only 32 architecturally-defined bits; nevertheless, the corresponding
VMCS fields have 64 bits on processors that support Intel 64 architecture.

— Segment limit (32 bits). The limit field is always a measure in bytes.
— Access rights (32 bits). The format of this field is given in Table 24-2 and detailed as follows:

® The low 16 bits correspond to bits 23:8 of the upper 32 bits of a 64-bit segment descriptor. While bits
19:16 of code-segment and data-segment descriptors correspond to the upper 4 bits of the segment
limit, the corresponding bits (bits 11:8) are reserved in this VMCS field.

®* Bit 16 indicates an unusable segment. Attempts to use such a segment fault except in 64-bit mode.
In general, a segment register is unusable if it has been loaded with a null selector.?

®* Bits 31:17 are reserved.

Table 24-2. Format of Access Rights

Bit Position(s) Field

3.0 Segment type

4 S — Descriptor type (0 = system; 1 = code or data)
6:5 DPL — Descriptor privilege level

7 P — Segment present

11:8 Reserved

12 AVL — Available for use by system software

1.

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

There are a few exceptions to this statement. For example, a segment with a non-null selector may be unusable following a task
switch that fails after its commit point; see “Interrupt 10—Invalid TSS Exception (#TS)" in Section 6.14, “Exception and Interrupt
Handling in 64-bit Mode,” of the Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 3A. In contrast, the TR reg-
ister is usable after processor reset despite having a null selector; see Table 10-1 in the Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3A.
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Table 24-2. Format of Access Rights (Contd.)

Bit Position(s) Field
13 Reserved (except for CS)
L — 64-bit mode active (for CS only)
14 D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
15 G — Granularity
16 Segment unusable (O = usable; 1 = unusable)
31:17 Reserved

The base address, segment limit, and access rights compose the “hidden” part (or “descriptor cache”) of each
segment register. These data are included in the VMCS because it is possible for a segment register’s descriptor
cache to be inconsistent with the segment descriptor in memory (in the GDT or the LDT) referenced by the
segment register’s selector.

The value of the DPL field for SS is always equal to the logical processor’s current privilege level (CPL).*
The following fields for each of the registers GDTR and IDTR:
— Base address (64 bits; 32 bits on processors that do not support Intel 64 architecture).

— Limit (32 bits). The limit fields contain 32 bits even though these fields are specified as only 16 bits in the
architecture.

The following MSRs:
— 1A32_DEBUGCTL (64 bits)
— 1A32_SYSENTER_CS (32 hits)

— 1A32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture)

— |A32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting
of the “load 1IA32_PERF_GLOBAL_CTRL” VM-entry control.

— 1A32_PAT (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_PAT” VM-entry control or that of the “save 1A32_PAT” VM-exit control.

— 1A32_EFER (64 bits). This field is supported only on processors that support either the 1-setting of the “load
IA32_EFER” VM-entry control or that of the “save 1A32_EFER” VM-exit control.

— 1A32_BNDCFGS (64 bits). This field is supported only on processors that support either the 1-setting of the
“load 1A32_BNDCFGS” VM-entry control or that of the “clear IA32_BNDCFGS” VM-exit control.

The register SMBASE (32 bits). This register contains the base address of the logical processor’'s SMRAM image.

24.4.2 Guest Non-Register State

In addition to the register state described in Section 24.4.1, the guest-state area includes the following fields that
characterize guest state but which do not correspond to processor registers:

Activity state (32 bits). This field identifies the logical processor’s activity state. When a logical processor is
executing instructions normally, it is in the active state. Execution of certain instructions and the occurrence
of certain events may cause a logical processor to transition to an inactive state in which it ceases to execute
instructions.

The following activity states are defined:?

— 0: Active. The logical processor is executing instructions normally.

In protected mode, CPL is also associated with the RPL field in the CS selector. However, the RPL fields are not meaningful in real-
address mode or in virtual-8086 mode.
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— 1: HLT. The logical processor is inactive because it executed the HLT instruction.

— 2: Shutdown. The logical processor is inactive because it incurred a triple fault® or some other serious

error.

— 3: Wait-for-SIPI. The logical processor is inactive because it is waiting for a startup-1P1 (SIPI).

Future processors may include support for other activity states. Software should read the VMX capability MSR
IA32_VMX_MISC (see Appendix A.6) to determine what activity states are supported.

® Interruptibility state (32 bits). The 1A-32 architecture includes features that permit certain events to be
blocked for a period of time. This field contains information about such blocking. Details and the format of this

field are given in Table 24-3.

Table 24-3. Format of Interruptibility State

Bit
Position(s)

Bit Name

Notes

0

Blocking by STI

See the “STI—Set Interrupt Flag” section in Chapter 4 of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, Volume 2B.

Execution of STI with RFLAGS.IF = O blocks interrupts (and, optionally, other events) for one
instruction after its execution. Setting this bit indicates that this blocking is in effect.

Blocking by
MOV SS

See the “"MOV—Move a Value from the Stack” from Chapter 4 of the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 2B, and “POP—Pop a Value from the
Stack” from Chapter 4 of the Intel® 64 and IA-32 Architectures Software Developer's Manual,
Volume 2B, and Section 6.8.3 in the Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.

Execution of a MOV to SS or a POP to SS blocks interrupts for one instruction after its

execution. In addition, certain debug exceptions are inhibited between a MOV to SS or a POP to
SS and a subsequent instruction. Setting this bit indicates that the blocking of all these events
is in effect. This document uses the term “blocking by MOV SS,” but it applies equally to POP SS.

Blocking by SMI

See Section 34.2. System-management interrupts (SMis) are disabled while the processor is in
system-management mode (SMM). Setting this bit indicates that blocking of SMis is in effect.

Blocking by NMI

See Section 6.7.1 in the Intel® 64 and IA-32 Architectures Software Developer's Manual,
Volume 3A and Section 34.8.

Delivery of a non-maskable interrupt (NMI) or a system-management interrupt (SMI) blocks
subsequent NMiIs until the next execution of IRET. See Section 25.3 for how this behavior of
IRET may change in VMX non-root operation. Setting this bit indicates that blocking of NMiIs is
in effect. Clearing this bit does not imply that NMIs are not (temporarily) blocked for other
reasons.

If the “virtual NMIs” VM-execution control (see Section 24.6.1) is 1, this bit does not control the
blocking of NMiIs. Instead, it refers to “virtual-NMI blocking” (the fact that guest software is not
ready for an NMI).

Enclave
interruption

A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.

31:5

Reserved

VM entry will fail if these bits are not 0. See Section 26.3.1.5.

® Pending debug exceptions (64 bits; 32 bits on processors that do not support Intel 64 architecture). 1A-32
processors may recognize one or more debug exceptions without immediately delivering them.? This field
contains information about such exceptions. This field is described in Table 24-4.

2. Execution of the MWAIT instruction may put a logical processor into an inactive state. However, this VMCS field never reflects this
state. See Section 27.1.

1. A triple fault occurs when a logical processor encounters an exception while attempting to deliver a double fault.
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Table 24-4. Format of Pending-Debug-Exceptions

Bit Bit Name Notes

Position(s)

3.0 B3 -B0O When set, each of these bits indicates that the corresponding breakpoint condition was met.
Any of these bits may be set even if the corresponding enabling bit in DR7 is not set.

11:4 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5.

12 Enabled When set, this bit indicates that at least one data or I/0 breakpoint was met and was enabled in

breakpoint DR7.

13 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

14 BS When set, this bit indicates that a debug exception would have been triggered by single-step
execution mode.

15 Reserved VM entry fails if this bit is not 0. See Section 26.3.1.5.

16 RTM When set, this bit indicates that a debug exception (#DB) or a breakpoint exception (#BP)
occurred inside an RTM region while advanced debugging of RTM transactional regions was
enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 1).!

63:17 Reserved VM entry fails if these bits are not 0. See Section 26.3.1.5. Bits 63:32 exist only on processors
that support Intel 64 architecture.

NOTES:

1. In general, the format of this field matches that of DR6. However, DR6 clears bit 16 to indicate an RTM-related exception, while this
field sets the bit to indicate that condition.

VMCS link pointer (64 bits). If the “VYMCS shadowing” VM-execution control is 1, the VMREAD and VMWRITE
instructions access the VMCS referenced by this pointer (see Section 24.10). Otherwise, software should set
this field to FFFFFFFF_FFFFFFFFH to avoid VM-entry failures (see Section 26.3.1.5).

VMX-preemption timer value (32 bits). This field is supported only on processors that support the 1-setting
of the “activate VMX-preemption timer” VM-execution control. This field contains the value that the VMX-
preemption timer will use following the next VM entry with that setting. See Section 25.5.1 and Section 26.6.4.

Page-directory-pointer-table entries (PDPTEs; 64 bits each). These four (4) fields (PDPTEO, PDPTE1,
PDPTE2, and PDPTE3) are supported only on processors that support the 1-setting of the “enable EPT” VM-
execution control. They correspond to the PDPTEs referenced by CR3 when PAE paging is in use (see Section
4.4 in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A). They are used only if
the “enable EPT” VM-execution control is 1.

Guest interrupt status (16 bits). This field is supported only on processors that support the 1-setting of the
“virtual-interrupt delivery” VM-execution control. It characterizes part of the guest’s virtual-APIC state and
does not correspond to any processor or APIC registers. It comprises two 8-bit subfields:

— Requesting virtual interrupt (RV1). This is the low byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is requesting service. (The value
0 implies that there is no such interrupt.)

— Servicing virtual interrupt (SVI). This is the high byte of the guest interrupt status. The processor
treats this value as the vector of the highest priority virtual interrupt that is in service. (The value O implies
that there is no such interrupt.)

For example, execution of a MOV to SS or a POP to SS may inhibit some debug exceptions for one instruction. See Section 6.8.3 of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A. In addition, certain events incident to an instruction
(for example, an INIT signal) may take priority over debug traps generated by that instruction. See Table 6-2 in the Intel® 64 and
IA-32 Architectures Software Developer’s Manual, Volume 3A.
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See Chapter 29 for more information on the use of this field.

® PML index (16 bits). This field is supported only on processors that support the 1-setting of the “enable PML”
VM-execution control. It contains the logical index of the next entry in the page-modification log. Because the
page-modification log comprises 512 entries, the PML index is typically a value in the range 0-511. Details of
the page-modification log and use of the PML index are given in Section 28.2.5.

24.5 HOST-STATE AREA

This section describes fields contained in the host-state area of the VMCS. As noted earlier, processor state is
loaded from these fields on every VM exit (see Section 27.5).

All fields in the host-state area correspond to processor registers:
® CRO, CR3, and CR4 (64 bits each; 32 bits on processors that do not support Intel 64 architecture).
® RSP and RIP (64 bits each; 32 bits on processors that do not support Intel 64 architecture).

® Selector fields (16 bits each) for the segment registers CS, SS, DS, ES, FS, GS, and TR. There is no field in the
host-state area for the LDTR selector.

® Base-address fields for FS, GS, TR, GDTR, and IDTR (64 bits each; 32 bits on processors that do not support
Intel 64 architecture).

® The following MSRs:
— 1A32_SYSENTER_CS (32 bits)

— 1A32_SYSENTER_ESP and IA32_SYSENTER_EIP (64 bits; 32 bits on processors that do not support Intel 64
architecture).

— 1A32_PERF_GLOBAL_CTRL (64 bits). This field is supported only on processors that support the 1-setting of
the “load 1A32_PERF_GLOBAL_CTRL” VM-exit control.

— 1A32_PAT (64 bits). This field is supported only on processors that support the 1-setting of the “load
1A32_PAT” VM-exit control.

— 1A32_EFER (64 bits). This field is supported only on processors that support the 1-setting of the “load
IA32_EFER” VM-exit control.

In addition to the state identified here, some processor state components are loaded with fixed values on every
VM exit; there are no fields corresponding to these components in the host-state area. See Section 27.5 for details
of how state is loaded on VM exits.

24.6  VM-EXECUTION CONTROL FIELDS

The VM-execution control fields govern VMX non-root operation. These are described in Section 24.6.1 through
Section 24.6.8.

24.6.1 Pin-Based VM-Execution Controls

The pin-based VM-execution controls constitute a 32-bit vector that governs the handling of asynchronous events
(for example: interrupts).l Table 24-5 lists the controls. See Chapter 27 for how these controls affect processor
behavior in VMX non-root operation.

1. Some asynchronous events cause VM exits regardless of the settings of the pin-based VM-execution controls (see Section 25.2).
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Table 24-5. Definitions of Pin-Based VM-Execution Controls

Bit Position(s) | Name Description
0 External-interrupt | If this control is 1, external interrupts cause VM exits. Otherwise, they are delivered normally
exiting through the guest interrupt-descriptor table (IDT). If this control is 1, the value of RFLAGS.IF

does not affect interrupt blocking.

3 NMI exiting If this control is 1, non-maskable interrupts (NMIs) cause VM exits. Otherwise, they are
delivered normally using descriptor 2 of the IDT. This control also determines interactions
between IRET and blocking by NMI (see Section 25.3).

5 Virtual NMIs If this control is 1, NMIs are never blocked and the “blocking by NMI" bit (bit 3) in the
interruptibility-state field indicates “virtual-NMI blocking” (see Table 24-3). This control also
interacts with the "NMI-window exiting” VM-execution control (see Section 24.6.2).

6 Activate VMX- If this control is 1, the VMX-preemption timer counts down in VMX non-root operation; see
preemption timer | Section 25.5.1. A VM exit occurs when the timer counts down to zero; see Section 25.2.
7 Process posted If this control is 1, the processor treats interrupts with the posted-interrupt notification vector
interrupts (see Section 24.6.8) specially, updating the virtual-APIC page with posted-interrupt requests
(see Section 29.6).

All other bits in this field are reserved, some to O and some to 1. Software should consult the VMX capability MSRs
1A32_VMX_PINBASED_CTLS and IA32_VMX_TRUE_PINBASED_CTLS (see Appendix A.3.1) to determine how to
set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 2, and 4.
The VMX capability MSR 1A32_VMX_PINBASED_CTLS will always report that these bits must be 1. Logical proces-
sors that support the 0-settings of any of these bits will support the VMX capability MSR
1IA32_VMX_TRUE_PINBASED_CTLS MSR, and software should consult this MSR to discover support for the O-
settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.6.2 Processor-Based VM-Execution Controls

The processor-based VM-execution controls constitute two 32-bit vectors that govern the handling of synchronous
events, mainly those caused by the execution of specific instructions.? These are the primary processor-based
VM-execution controls and the secondary processor-based VM-execution controls.

Table 24-6 lists the primary processor-based VM-execution controls. See Chapter 25 for more details of how these
controls affect processor behavior in VMX non-root operation.

Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description

2 Interrupt-window | If this control is 1, a VM exit occurs at the beginning of any instruction if RFLAGS.IF = 1 and
exiting there are no other blocking of interrupts (see Section 24.4.2).

3 Use TSC offsetting | This control determines whether executions of RDTSC, executions of RDTSCP, and executions

of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by
the TSC offset field (see Section 24.6.5 and Section 25.3).

7 HLT exiting This control determines whether executions of HLT cause VM exits.

9 INVLPG exiting This determines whether executions of INVLPG cause VM exits.

10 MWAIT exiting This control determines whether executions of MWAIT cause VM exits.

11 RDPMC exiting This control determines whether executions of RDPMC cause VM exits.

12 RDTSC exiting This control determines whether executions of RDTSC and RDTSCP cause VM exits.

1. Some instructions cause VM exits regardless of the settings of the processor-based VM-execution controls (see Section 25.1.2), as
do task switches (see Section 25.2).
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Table 24-6. Definitions of Primary Processor-Based VM-Execution Controls (Contd.)

Bit Position(s) | Name Description
15 CR3-load exiting In conjunction with the CR3-target controls (see Section 24.6.7), this control determines
whether executions of MOV to CR3 cause VM exits. See Section 25.1.3.
The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
16 CR3-store exiting | This control determines whether executions of MOV from CR3 cause VM exits.
The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
19 CR8-load exiting This control determines whether executions of MOV to CR8 cause VM exits.
20 CR8-store exiting | This control determines whether executions of MOV from CR8 cause VM exits.
21 Use TPR shadow | Setting this control to 1 enables TPR virtualization and other APIC-virtualization features. See
Chapter 29.
22 NMI-window If this control is 1, a VM exit occurs at the beginning of any instruction if there is no virtual-
exiting NMI blocking (see Section 24.4.2).
23 MOV-DR exiting This control determines whether executions of MOV DR cause VM exits.
24 Unconditional I/0 | This control determines whether executions of 1/0 instructions (IN, INS/INSB/INSW/INSD, OUT,
exiting and OUTS/OUTSB/OUTSW/OUTSD) cause VM exits.
25 Use I/0 bitmaps This control determines whether I/0 bitmaps are used to restrict executions of I/0 instructions
(see Section 24.6.4 and Section 25.1.3).
For this control, “0" means “do not use I/0 bitmaps” and “1” means “use I/0 bitmaps.” If the I/0
bitmaps are used, the setting of the “unconditional I/0 exiting” control is ignored.
27 Monitor trap flag If this control is 1, the monitor trap flag debugging feature is enabled. See Section 25.5.2.
28 Use MSR bitmaps | This control determines whether MSR bitmaps are used to control execution of the RDMSR
and WRMSR instructions (see Section 24.6.9 and Section 25.1.3).
For this control, “0” means “do not use MSR bitmaps” and “1"” means “use MSR bitmaps.” If the
MSR bitmaps are not used, all executions of the RDMSR and WRMSR instructions cause
VM exits.
29 MONITOR exiting | This control determines whether executions of MONITOR cause VM exits.
30 PAUSE exiting This control determines whether executions of PAUSE cause VM exits.
31 Activate secondary | This control determines whether the secondary processor-based VM-execution controls are
controls used. If this control is O, the logical processor operates as if all the secondary processor-based
VM-execution controls were also 0.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
I1A32_VMX_PROCBASED_CTLS and 1A32_VMX_TRUE_PROCBASED_CTLS (see Appendix A.3.2) to determine how
to set reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section

26.2.1.1).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 1, 4-6, 8, 13—
16, and 26. The VMX capability MSR 1A32_VMX_PROCBASED_CTLS will always report that these bits must be 1.
Logical processors that support the O-settings of any of these bits will support the VMX capability MSR
1A32_VMX_TRUE_PROCBASED_CTLS MSR, and software should consult this MSR to discover support for the O-

settings of these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

Bit 31 of the primary processor-based VM-execution controls determines whether the secondary processor-based
VM-execution controls are used. If that bit is 0, VM entry and VMX non-root operation function as if all the
secondary processor-based VM-execution controls were 0. Processors that support only the 0-setting of bit 31 of
the primary processor-based VM-execution controls do not support the secondary processor-based VM-execution
controls.
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Table 24-7 lists the secondary processor-based VM-execution controls. See Chapter 25 for more details of how
these controls affect processor behavior in VMX non-root operation.

Table 24-7. Definitions of Secondary Processor-Based VM-Execution Controls

Bit Position(s) | Name Description
0 Virtualize APIC If this control is 1, the logical processor treats specially accesses to the page with the APIC-
accesses access address. See Section 29.4.
1 Enable EPT If this control is 1, extended page tables (EPT) are enabled. See Section 28.2.
2 Descriptor-table This control determines whether executions of LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, and
exiting STR cause VM exits.
3 Enable RDTSCP If this control is O, any execution of RDTSCP causes an invalid-opcode exception (#UD).
4 Virtualize x2APIC | If this control is 1, the logical processor treats specially RDMSR and WRMSR to APIC MSRs (in
mode the range 800H-8FFH). See Section 29.5.
5 Enable VPID If this control is 1, cached translations of linear addresses are associated with a virtual-
processor identifier (VPID). See Section 28.1.
WBINVD exiting This control determines whether executions of WBINVD cause VM exits.
Unrestricted guest | This control determines whether guest software may run in unpaged protected mode or in real-
address mode.
8 APIC-register If this control is 1, the logical processor virtualizes certain APIC accesses. See Section 29.4 and
virtualization Section 29.5.
9 Virtual-interrupt This controls enables the evaluation and delivery of pending virtual interrupts as well as the
delivery emulation of writes to the APIC registers that control interrupt prioritization.
10 PAUSE-loop exiting | This control determines whether a series of executions of PAUSE can cause a VM exit (see
Section 24.6.13 and Section 25.1.3).
11 RDRAND exiting This control determines whether executions of RDRAND cause VM exits.
12 Enable INVPCID If this control is 0, any execution of INVPCID causes a #UD.
13 Enable Setting this control to 1 enables use of the VMFUNC instruction in VMX non-root operation. See
VM functions Section 25.5.5.
14 VMCS shadowing | If this control is 1, executions of VMREAD and VMWRITE in VMX non-root operation may access
a shadow VMCS (instead of causing VM exits). See Section 24.10 and Section 30.3.
15 Enable ENCLS If this control is 1, executions of ENCLS consult the ENCLS-exiting bitmap to determine whether
exiting the instruction causes a VM exit. See Section 24.6.16 and Section 25.1.3.
16 RDSEED exiting This control determines whether executions of RDSEED cause VM exits.
17 Enable PML If this control is 1, an access to a guest-physical address that sets an EPT dirty bit first adds an
entry to the page-modification log. See Section 28.2.5.
18 EPT-violation #VE | If this controlis 1, EPT violations may cause virtualization exceptions (#VE) instead of VM exits.
See Section 25.5.6.
19 Conceal VMX non- | If this control is 1, Intel Processor Trace suppresses data packets that indicate the use of
root operation from | virtualization (see Chapter 36).
Intel PT
20 Enable If this control is 0, any execution of XSAVES or XRSTORS causes a #UD.
XSAVES/XRSTORS
22 Mode-based If this control is 1, EPT execute permissions are based on whether the linear address being
execute control for |accessed is supervisor mode or user mode. See Chapter 28.
EPT
25 Use TSC scaling This control determines whether executions of RDTSC, executions of RDTSCP, and executions
of RDMSR that read from the IA32_TIME_STAMP_COUNTER MSR return a value modified by the
TSC multiplier field (see Section 24.6.5 and Section 25.3).
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All other bits in this field are reserved to 0. Software should consult the VMX capability MSR
1A32_VMX_PROCBASED_CTLS2 (see Appendix A.3.3) to determine which bits may be set to 1. Failure to clear
reserved bits causes subsequent VM entries to fail (see Section 26.2.1.1).

24.6.3 Exception Bitmap

The exception bitmap is a 32-bit field that contains one bit for each exception. When an exception occurs, its
vector is used to select a bit in this field. If the bit is 1, the exception causes a VM exit. If the bit is 0, the exception
is delivered normally through the IDT, using the descriptor corresponding to the exception’s vector.

Whether a page fault (exception with vector 14) causes a VM exit is determined by bit 14 in the exception bitmap
as well as the error code produced by the page fault and two 32-bit fields in the VMCS (the page-fault error-code
mask and page-fault error-code match). See Section 25.2 for details.

24.6.4 1/0-Bitmap Addresses

The VM-execution control fields include the 64-bit physical addresses of 1/0 bitmaps A and B (each of which are
4 KBytes in size). 1/0 bitmap A contains one bit for each 1/0 port in the range 0000H through 7FFFH; 1/0 bitmap B
contains bits for ports in the range 8000H through FFFFH.

A logical processor uses these bitmaps if and only if the “use 1/0 bitmaps” control is 1. If the bitmaps are used,
execution of an 1/0 instruction causes a VM exit if any bit in the 1/0 bitmaps corresponding to a port it accesses is
1. See Section 25.1.3 for details. If the bitmaps are used, their addresses must be 4-KByte aligned.

24.6.5 Time-Stamp Counter Offset and Multiplier

The VM-execution control fields include a 64-bit TSC-offset field. If the “RDTSC exiting” control is O and the “use
TSC offsetting” control is 1, this field controls executions of the RDTSC and RDTSCP instructions. It also controls
executions of the RDMSR instruction that read from the 1A32_TIME_STAMP_COUNTER MSR. For all of these, the
value of the TSC offset is added to the value of the time-stamp counter, and the sum is returned to guest software
in EDX:EAX.

Processors that support the 1-setting of the “use TSC scaling” control also support a 64-bit TSC-multiplier field.
If this control is 1 (and the “RDTSC exiting” control is O and the “use TSC offsetting” control is 1), this field also
affects the executions of the RDTSC, RDTSCP, and RDMSR instructions identified above. Specifically, the contents
of the time-stamp counter is first multiplied by the TSC multiplier before adding the TSC offset.

See Chapter 27 for a detailed treatment of the behavior of RDTSC, RDTSCP, and RDMSR in VMX non-root operation.

24.6.6 Guest/Host Masks and Read Shadows for CRO and CR4

VM-execution control fields include guest/host masks and read shadows for the CRO and CR4 registers. These
fields control executions of instructions that access those registers (including CLTS, LMSW, MOV CR, and SMSW).
They are 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.

In general, bits set to 1 in a guest/host mask correspond to bits “owned” by the host:

® Guest attempts to set them (using CLTS, LMSW, or MOV to CR) to values differing from the corresponding bits
in the corresponding read shadow cause VM exits.

® Guest reads (using MOV from CR or SMSW) return values for these bits from the corresponding read shadow.

Bits cleared to O correspond to bits “owned” by the guest; guest attempts to modify them succeed and guest reads
return values for these bits from the control register itself.

See Chapter 27 for details regarding how these fields affect VMX non-root operation.
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24.6.7 CR3-Target Controls

The VM-execution control fields include a set of 4 CR3-target values and a CR3-target count. The CR3-target
values each have 64 bits on processors that support Intel 64 architecture and 32 bits on processors that do not.
The CR3-target count has 32 bits on all processors.

An execution of MOV to CR3 in VMX non-root operation does not cause a VM exit if its source operand matches one
of these values. If the CR3-target count is n, only the first n CR3-target values are considered; if the CR3-target
count is 0, MOV to CR3 always causes a VM exit

There are no limitations on the values that can be written for the CR3-target values. VM entry fails (see Section
26.2) if the CR3-target count is greater than 4.

Future processors may support a different number of CR3-target values. Software should read the VMX capability
MSR 1A32_VMX_MISC (see Appendix A.6) to determine the number of values supported.

24.6.8 Controls for APIC Virtualization

There are three mechanisms by which software accesses registers of the logical processor’s local APIC:

® If the local APIC is in XAPIC mode, it can perform memory-mapped accesses to addresses in the 4-KByte page
referenced by the physical address in the 1A32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and
Location” in the Intel® 64 and 1A-32 Architectures Software Developer’'s Manual, Volume 3A and Intel® 64
Architecture Processor Topology Enumeration).1

® If the local APIC is in Xx2APIC mode, it can accesses the local APIC’s registers using the RDMSR and WRMSR
instructions (see Intel® 64 Architecture Processor Topology Enumeration).

® In 64-bit mode, it can access the local APIC’s task-priority register (TPR) using the MOV CR8 instruction.

There are five processor-based VM-execution controls (see Section 24.6.2) that control such accesses. There are

“use TPR shadow?”, “virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-
register virtualization”. These controls interact with the following fields:

® APIC-access address (64 bits). This field contains the physical address of the 4-KByte APIC-access page.
If the “virtualize APIC accesses” VM-execution control is 1, access to this page may cause VM exits or be
virtualized by the processor. See Section 29.4.

The APIC-access address exists only on processors that support the 1-setting of the “virtualize APIC accesses”
VM-execution control.

® Virtual-APIC address (64 bits). This field contains the physical address of the 4-KByte virtual-APIC page.
The processor uses the virtual-APIC page to virtualize certain accesses to APIC registers and to manage virtual
interrupts; see Chapter 29.

Depending on the setting of the controls indicated earlier, the virtual-APIC page may be accessed by the
following operations:

— The MOV CRS8 instructions (see Section 29.3).

— Accesses to the APIC-access page if, in addition, the “virtualize APIC accesses” VM-execution control is 1
(see Section 29.4).

— The RDMSR and WRMSR instructions if, in addition, the value of ECX is in the range 800H—8FFH (indicating
an APIC MSR) and the “virtualize x2APIC mode” VM-execution control is 1 (see Section 29.5).

If the “use TPR shadow” VM-execution control is 1, VM entry ensures that the virtual-APIC address is 4-KByte
aligned. The virtual-APIC address exists only on processors that support the 1-setting of the “use TPR shadow”
VM-execution control.

® TPR threshold (32 bits). Bits 3:0 of this field determine the threshold below which bits 7:4 of VTPR (see
Section 29.1.1) cannot fall. If the “virtual-interrupt delivery” VM-execution control is 0, a VM exit occurs after
an operation (e.g., an execution of MOV to CR8) that reduces the value of those bits below the TPR threshold.
See Section 29.1.2.

1. If the local APIC does not support x2APIC mode, it is always in XAPIC mode.
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The TPR threshold exists only on processors that support the 1-setting of the “use TPR shadow” VM-execution
control.

® EOIl-exit bitmap (4 fields; 64 bits each). These fields are supported only on processors that support the 1-
setting of the “virtual-interrupt delivery” VM-execution control. They are used to determine which virtualized
writes to the APIC’s EOI register cause VM exits:

— EOI_EXITO contains bits for vectors from 0 (bit 0) to 63 (bit 63).

— EOI_EXIT1 contains bits for vectors from 64 (bit 0) to 127 (bit 63).
— EOI_EXIT2 contains bits for vectors from 128 (bit 0) to 191 (bit 63).
— EOI_EXIT3 contains bits for vectors from 192 (bit 0) to 255 (bit 63).
See Section 29.1.4 for more information on the use of this field.

® Posted-interrupt notification vector (16 bits). This field is supported only on processors that support the 1-
setting of the “process posted interrupts” VM-execution control. Its low 8 bits contain the interrupt vector that
is used to notify a logical processor that virtual interrupts have been posted. See Section 29.6 for more
information on the use of this field.

® Posted-interrupt descriptor address (64 bits). This field is supported only on processors that support the
1-setting of the “process posted interrupts” VM-execution control. It is the physical address of a 64-byte
aligned posted interrupt descriptor. See Section 29.6 for more information on the use of this field.

24.6.9 MSR-Bitmap Address

On processors that support the 1-setting of the “use MSR bitmaps” VM-execution control, the VM-execution control
fields include the 64-bit physical address of four contiguous MSR bitmaps, which are each 1-KByte in size. This
field does not exist on processors that do not support the 1-setting of that control. The four bitmaps are:

® Read bitmap for low MSRs (located at the MSR-bitmap address). This contains one bit for each MSR address
in the range 00000000H to O0O001FFFH. The bit determines whether an execution of RDMSR applied to that
MSR causes a VM exit.

® Read bitmap for high MSRs (located at the MSR-bitmap address plus 1024). This contains one bit for each
MSR address in the range COO0O0000H toCOOO01FFFH. The bit determines whether an execution of RDMSR
applied to that MSR causes a VM exit.

®  Write bitmap for low MSRs (located at the MSR-bitmap address plus 2048). This contains one bit for each
MSR address in the range 00000000H to O0001FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

® Write bitmap for high MSRs (located at the MSR-bitmap address plus 3072). This contains one bit for each
MSR address in the range COO0O0000H toCOOO01FFFH. The bit determines whether an execution of WRMSR
applied to that MSR causes a VM exit.

A logical processor uses these bitmaps if and only if the “use MSR bitmaps” control is 1. If the bitmaps are used, an
execution of RDMSR or WRMSR causes a VM exit if the value of RCX is in neither of the ranges covered by the
bitmaps or if the appropriate bit in the MSR bitmaps (corresponding to the instruction and the RCX value) is 1. See
Section 25.1.3 for details. If the bitmaps are used, their address must be 4-KByte aligned.

24.6.10 Executive-VMCS Pointer

The executive-VMCS pointer is a 64-bit field used in the dual-monitor treatment of system-management interrupts
(SMIs) and system-management mode (SMM). SMM VM exits save this field as described in Section 34.15.2.
VM entries that return from SMM use this field as described in Section 34.15.4.
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24.6.11 Extended-Page-Table Pointer (EPTP)

The extended-page-table pointer (EPTP) contains the address of the base of EPT PML4 table (see Section
28.2.2), as well as other EPT configuration information. The format of this field is shown in Table 24-8.

Table 24-8. Format of Extended-Page-Table Pointer

Bit Field
Position(s)
2.0 EPT paging-structure memory type (see Section 28.2.6):

0 = Uncacheable (UC)
6 = Write-back (WB)

Other values are reserved.!

53 This value is 1 less than the EPT page-walk length (see Section 28.2.2)
6 Setting this control to 1 enables accessed and dirty flags for EPT (see Section 28.2.4)2
11:7 Reserved
N-1:12 Bits N-1:12 of the physical address of the 4-KByte aligned EPT PML4 table3
63:N Reserved
NOTES:

1. Software should read the VMX capability MSR 1A32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT paging-struc-
ture memory types are supported.

2. Not all processors support accessed and dirty flags for EPT. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports this feature.

3. Nis the physical-address width supported by the logical processor. Software can determine a processor’s physical-address width by
executing CPUID with 80000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

The EPTP exists only on processors that support the 1-setting of the “enable EPT” VM-execution control.

24.6.12 Virtual-Processor Identifier (VPID)

The virtual-processor identifier (VPID) is a 16-bit field. It exists only on processors that support the 1-setting
of the “enable VPID” VM-execution control. See Section 28.1 for details regarding the use of this field.

24.6.13 Controls for PAUSE-Loop Exiting
On processors that support the 1-setting of the “PAUSE-loop exiting” VM-execution control, the VM-execution
control fields include the following 32-bit fields:

® PLE_Gap. Software can configure this field as an upper bound on the amount of time between two successive
executions of PAUSE in a loop.

® PLE_Window. Software can configure this field as an upper bound on the amount of time a guest is allowed to
execute in a PAUSE loop.

These fields measure time based on a counter that runs at the same rate as the timestamp counter (TSC). See
Section 25.1.3 for more details regarding PAUSE-loop exiting.
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24.6.14 VM-Function Controls

The VM-function controls constitute a 64-bit vector that governs use of the VMFUNC instruction in VMX non-root
operation. This field is supported only on processors that support the 1-settings of both the “activate secondary
controls” primary processor-based VM-execution control and the “enable VM functions” secondary processor-
based VM-execution control.

Table 24-9 lists the VM-function controls. See Section 25.5.5 for more details of how these controls affect processor
behavior in VMX non-root operation.

Table 24-9. Definitions of VM-Function Controls
Bit Position(s) | Name Description

0 EPTP switching The EPTP-switching VM function changes the EPT pointer to a value chosen from the EPTP list.
See Section 25.5.5.3.

All other bits in this field are reserved to 0. Software should consult the VMX capability MSR 1A32_VMX_VMFUNC
(see Appendix A.11) to determine which bits are reserved. Failure to clear reserved bits causes subsequent
VM entries to fail (see Section 26.2.1.1).

Processors that support the 1-setting of the “EPTP switching” VM-function control also support a 64-bit field called
the EPTP-Ilist address. This field contains the physical address of the 4-KByte EPTP list. The EPTP list comprises
512 8-Byte entries (each an EPTP value) and is used by the EPTP-switching VM function (see Section 25.5.5.3).

24.6.15 VMCS Shadowing Bitmap Addresses

On processors that support the 1-setting of the “VMCS shadowing” VM-execution control, the VM-execution control
fields include the 64-bit physical addresses of the VMREAD bitmap and the VMWRITE bitmap. Each bitmap is 4
KBytes in size and thus contains 32 KBits. The addresses are the VMREAD-bitmap address and the VMWRITE-
bitmap address.

If the “VMCS shadowing” VM-execution control is 1, executions of VMREAD and VMWRITE may consult these
bitmaps (see Section 24.10 and Section 30.3).

24.6.16 ENCLS-Exiting Bitmap

The ENCLS-exiting bitmap is a 64-bit field. If the “enable ENCLS exiting” VM-execution control is 1, execution of
ENCLS causes a VM exit if the bit in this field corresponding to the value of EAX is 1. If the bit is O, the instruction
executes normally. See Section 25.1.3 for more information.

24.6.17 Control Field for Page-Modification Logging

The PML address is a 64-bit field. It is the 4-KByte aligned address of the page-modification log. The page-
modification log consists of 512 64-bit entries. It is used for the page-modification logging feature. Details of the
page-modification logging are given in Section 28.2.5.

If the “enable PML” VM-execution control is 1, VM entry ensures that the PML address is 4-KByte aligned. The PML
address exists only on processors that support the 1-setting of the “enable PML” VM-execution control.

24.6.18 Controls for Virtualization Exceptions

On processors that support the 1-setting of the “EPT-violation #VE” VM-execution control, the VM-execution
control fields include the following:

® Virtualization-exception information address (64 bits). This field contains the physical address of the
virtualization-exception information area. When a logical processor encounters a virtualization exception,
it saves virtualization-exception information at the virtualization-exception information address; see Section
25.5.6.2.
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® EPTP index (16 bits). When an EPT violation causes a virtualization exception, the processor writes the value
of this field to the virtualization-exception information area. The EPTP-switching VM function updates this field
(see Section 25.5.5.3).

24.6.19 XSS-Exiting Bitmap

On processors that support the 1-setting of the “enable XSAVES/XRSTORS” VM-execution control, the VM-execu-
tion control fields include a 64-bit XSS-exiting bitmap. If the “enable XSAVES/XRSTORS” VM-execution control is
1, executions of XSAVES and XRSTORS may consult this bitmap (see Section 25.1.3 and Section 25.3).

24.7 VM-EXIT CONTROL FIELDS

The VM-exit control fields govern the behavior of VM exits. They are discussed in Section 24.7.1 and Section
24.7.2.

24.7.1 VM-Exit Controls

The VM-exit controls constitute a 32-bit vector that governs the basic operation of VM exits. Table 24-10 lists the
controls supported. See Chapter 27 for complete details of how these controls affect VM exits.

Table 24-10. Definitions of VM-Exit Controls

Bit Position(s) | Name Description
2 Save debug This control determines whether DR7 and the IA32_DEBUGCTL MSR are saved on VM exit.
controls The first processors to support the virtual-machine extensions supported only the 1-setting
of this control.
9 Host address- On processors that support Intel 64 architecture, this control determines whether a logical
space size processor is in 64-bit mode after the next VM exit. Its value is loaded into CS.L,

IA32_EFER.LME, and IA32_EFER.LMA on every VM exit.!
This control must be O on processors that do not support Intel 64 architecture.

12 Load This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM exit.
IA32_PERF_GLOB
AL_CTRL

15 Acknowledge This control affects VM exits due to external interrupts:

Interrupton exit | . |f such a VM exit occurs and this control is 1, the logical processor acknowledges the
interrupt controller, acquiring the interrupt's vector. The vector is stored in the VM-exit
interruption-information field, which is marked valid.

= If such a VM exit occurs and this control is O, the interrupt is not acknowledged and the
VM-exit interruption-information field is marked invalid.

18 Save IA32_PAT This control determines whether the IA32_PAT MSR is saved on VM exit.

19 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM exit.

20 Save IA32_EFER This control determines whether the IA32_EFER MSR is saved on VM exit.

21 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM exit.

22 Save VMX- This control determines whether the value of the VMX-preemption timer is saved on VM exit.
preemption timer
value

23 Clear This control determines whether the IA32_BNDCFGS MSR is cleared on VM exit.
IA32_BNDCFGS

24 Conceal VM exits | If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on
from Intel PT a VM exit (see Chapter 36).
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NOTES:

1. Since Intel 64 architecture specifies that IA32_EFER.LMA is always set to the logical-AND of CRO.PG and IA32_EFER.LME, and since
CRO.PG is always 1 in VMX operation, IA32_EFER.LMA is always identical to IA32_EFER.LME in VMX operation.

All other bits in this field are reserved, some to 0 and some to 1. Software should consult the VMX capability MSRs
1A32_VMX_EXIT_CTLS and 1A32_VMX_TRUE_EXIT_CTLS (see Appendix A.4) to determine how it should set the
reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.2).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0-8, 10, 11,
13, 14, 16, and 17. The VMX capability MSR 1A32_VMX_EXIT_CTLS always reports that these bits must be 1.
Logical processors that support the 0-settings of any of these bits will support the VMX capability MSR
1IA32_VMX_TRUE_EXIT_CTLS MSR, and software should consult this MSR to discover support for the O-settings of
these bits. Software that is not aware of the functionality of any one of these bits should set that bit to 1.

24.7.2 VM-Exit Controls for MSRs

A VMM may specify lists of MSRs to be stored and loaded on VM exits. The following VM-exit control fields deter-
mine how MSRs are stored on VM exits:

® VM-exit MSR-store count (32 bits). This field specifies the number of MSRs to be stored on VM exit. It is
recommended that this count not exceed 512 bytes.l Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.

® VM-exit MSR-store address (64 bits). This field contains the physical address of the VM-exit MSR-store area.
The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-store
count. The format of each entry is given in Table 24-11. If the VM-exit MSR-store count is not zero, the address
must be 16-byte aligned.

Table 24-11. Format of an MSR Entry

Bit Position(s) Contents
31:.0 MSR index
63:32 Reserved
127:64 MSR data

See Section 27.4 for how this area is used on VM exits.
The following VM-exit control fields determine how MSRs are loaded on VM exits:

® VM-exit MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM exit. It is
recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM exit.?

® VM-exit MSR-load address (64 bits). This field contains the physical address of the VM-exit MSR-load area.
The areais a table of entries, 16 bytes per entry, where the number of entries is given by the VM-exit MSR-load
count (see Table 24-11). If the VM-exit MSR-load count is not zero, the address must be 16-byte aligned.

See Section 27.6 for how this area is used on VM exits.

24.8 VM-ENTRY CONTROL FIELDS

The VM-entry control fields govern the behavior of VM entries. They are discussed in Sections 24.8.1 through
24.8.3.

1. Future implementations may allow more MSRs to be stored reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).

2. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).
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24.8.1 VM-Entry Controls

The VM-entry controls constitute a 32-bit vector that governs the basic operation of VM entries. Table 24-12 lists
the controls supported. See Chapter 24 for how these controls affect VM entries.

Table 24-12. Definitions of VM-Entry Controls

Bit Position(s) | Name Description
2 Load debug This control determines whether DR7 and the IA32_DEBUGCTL MSR are loaded on VM entry.
controls The first processors to support the virtual-machine extensions supported only the 1-setting of
this control.
9 IA-32e mode guest | On processors that support Intel 64 architecture, this control determines whether the logical
processor is in IA-32e mode after VM entry. Its value is loaded into IA32_EFER.LMA as part of
VM entry.1
This control must be 0 on processors that do not support Intel 64 architecture.
10 Entry to SMM This control determines whether the logical processor is in system-management mode (SMM)
after VM entry. This control must be O for any VM entry from outside SMM.
11 Deactivate dual- If set to 1, the default treatment of SMIs and SMM is in effect after the VM entry (see Section
monitor treatment | 34.15.7). This control must be O for any VM entry from outside SMM.
13 Load This control determines whether the IA32_PERF_GLOBAL_CTRL MSR is loaded on VM entry.
IA32_PERF_GLOBA
L_CTRL
14 Load IA32_PAT This control determines whether the IA32_PAT MSR is loaded on VM entry.
15 Load IA32_EFER This control determines whether the IA32_EFER MSR is loaded on VM entry.
16 Load This control determines whether the IA32_BNDCFGS MSR is loaded on VM entry.
IA32_BNDCFGS
17 Conceal VM entries | If this control is 1, Intel Processor Trace does not produce a paging information packet (PIP) on
from Intel PT a VM entry (see Chapter 36).
NOTES:

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control. If it is read as 1, every VM exit stores the value of IA32_EFER.LMA into the “IA-32e mode guest” VM-entry control
(see Section 27.2).

All other bits in this field are reserved, some to O and some to 1. Software should consult the VMX capability MSRs
IA32_VMX_ENTRY_CTLS and IA32_VMX_TRUE_ENTRY_CTLS (see Appendix A.5) to determine how it should set
the reserved bits. Failure to set reserved bits properly causes subsequent VM entries to fail (see Section 26.2.1.3).

The first processors to support the virtual-machine extensions supported only the 1-settings of bits 0—8 and 12.
The VMX capability MSR 1A32_VMX_ENTRY_CTLS always reports that these bits must be 1. Logical processors that
support the O-settings of any of these bits will support the VMX capability MSR 1A32_VMX_TRUE_ENTRY_CTLS
MSR, and software should consult this MSR to discover support for the O-settings of these bits. Software that is not
aware of the functionality of any one of these bits should set that bit to 1.

24.8.2 VM-Entry Controls for MSRs

A VMM may specify a list of MSRs to be loaded on VM entries. The following VM-entry control fields manage this
functionality:

® VM-entry MSR-load count (32 bits). This field contains the number of MSRs to be loaded on VM entry. Itis
recommended that this count not exceed 512 bytes. Otherwise, unpredictable processor behavior (including a
machine check) may result during VM entry.!

1. Future implementations may allow more MSRs to be loaded reliably. Software should consult the VMX capability MSR
IA32_VMX_MISC to determine the number supported (see Appendix A.6).
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® VM-entry MSR-load address (64 bits). This field contains the physical address of the VM-entry MSR-load
area. The area is a table of entries, 16 bytes per entry, where the number of entries is given by the VM-entry
MSR-load count. The format of entries is described in Table 24-11. If the VM-entry MSR-load count is not zero,
the address must be 16-byte aligned.

See Section 26.4 for details of how this area is used on VM entries.

24.8.3 VM-Entry Controls for Event Injection

VM entry can be configured to conclude by delivering an event through the IDT (after all guest state and MSRs have
been loaded). This process is called event injection and is controlled by the following three VM-entry control
fields:

® VM-entry interruption-information field (32 bits). This field provides details about the event to be injected.
Table 24-13 describes the field.

Table 24-13. Format of the VM-Entry Interruption-Information Field
Bit Position(s) |Content

7.0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Reserved

2: Non-maskable interrupt (NMIl)
3: Hardware exception

4. Software interrupt

5: Privileged software exception
6: Software exception

7: Other event

11 Deliver error code (0 = do not deliver; 1 = deliver)
30:12 Reserved
31 Valid

— The vector (bits 7:0) determines which entry in the IDT is used or which other event is injected.

— The interruption type (bits 10:8) determines details of how the injection is performed. In general, a VMM
should use the type hardware exception for all exceptions other than breakpoint exceptions (#BP;
generated by INT3) and overflow exceptions (#0OF; generated by INTO); it should use the type software
exception for #BP and #OF. The type other event is used for injection of events that are not delivered
through the IDT.

— For exceptions, the deliver-error-code bit (bit 11) determines whether delivery pushes an error code on
the guest stack.

— VM entry injects an event if and only if the valid bit (bit 31) is 1. The valid bit in this field is cleared on
every VM exit (see Section 27.2).

® VM-entry exception error code (32 bits). This field is used if and only if the valid bit (bit 31) and the deliver-
error-code bit (bit 11) are both set in the VM-entry interruption-information field.

® VM-entry instruction length (32 bits). For injection of events whose type is software interrupt, software
exception, or privileged software exception, this field is used to determine the value of RIP that is pushed on
the stack.

See Section 26.5 for details regarding the mechanics of event injection, including the use of the interruption type
and the VM-entry instruction length.

VM exits clear the valid bit (bit 31) in the VM-entry interruption-information field.
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249 VM-eXIT INFORMATION FIELDS

The VMCS contains a section of fields that contain information about the most recent VM exit.

On some processors, attempts to write to these fields with VMWRITE fail (see “VMWRITE—Write Field to Virtual-
Machine Control Structure” in Chapter 30).l

24.9.1 Basic VM-Exit Information

The following VM-exit information fields provide basic information about a VM exit:
® Exit reason (32 bits). This field encodes the reason for the VM exit and has the structure given in Table 24-14.

Table 24-14. Format of Exit Reason

Bit Position(s) Contents

15:.0 Basic exit reason

26:16 Reserved (cleared to 0)

27 A VM exit saves this bit as 1 to indicate that the VM exit was incident to enclave mode.
28 Pending MTF VM exit

29 VM exit from VMX root operation

30 Reserved (cleared to 0)

31 VM-entry failure (0 = true VM exit; 1 = VM-entry failure)

— Bits 15:0 provide basic information about the cause of the VM exit (if bit 31 is clear) or of the VM-entry
failure (if bit 31 is set). Appendix C enumerates the basic exit reasons.

— Bit 28 is set only by an SMM VM exit (see Section 34.15.2) that took priority over an MTF VM exit (see
Section 25.5.2) that would have occurred had the SMM VM exit not occurred. See Section 34.15.2.3.

— Bit 29 is set if and only if the processor was in VMX root operation at the time the VM exit occurred. This can
happen only for SMM VM exits. See Section 34.15.2.

— Because some VM-entry failures load processor state from the host-state area (see Section 26.7), software
must be able to distinguish such cases from true VM exits. Bit 31 is used for that purpose.

¢ Exit qualification (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field contains
additional information about the cause of VM exits due to the following: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); task switches; INVEPT; INVLPG;INVVPID; LGDT; LIDT; LLDT; LTR; SGDT;
SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; control-register accesses;
MOV DR; I/0 instructions; and MWAIT. The format of the field depends on the cause of the VM exit. See Section
27.2.1 for details.

® Guest-linear address (64 bits; 32 bits on processors that do not support Intel 64 architecture). This field is
used in the following cases:

— VM exits due to attempts to execute LMSW with a memory operand.
— VM exits due to attempts to execute INS or OUTS.

— VM exits due to system-management interrupts (SMIs) that arrive immediately after retirement of 1/0
instructions.

— Certain VM exits due to EPT violations
See Section 27.2.1 and Section 34.15.2.3 for details of when and how this field is used.

1. Software can discover whether these fields can be written by reading the VMX capability MSR IA32_VMX_MISC (see Appendix A.6).
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® Guest-physical address (64 bits). This field is used VM exits due to EPT violations and EPT misconfigurations.
See Section 27.2.1 for details of when and how this field is used.

24.9.2 Information for VM Exits Due to Vectored Events

Event-specific information is provided for VM exits due to the following vectored events: exceptions (including

those generated by the instructions INT3, INTO, BOUND, and UD2); external interrupts that occur while the

“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMIs). This information is

provided in the following fields:

® VM-exit interruption information (32 bits). This field receives basic information associated with the event
causing the VM exit. Table 24-15 describes this field.

Table 24-15. Format of the VM-Exit Interruption-Information Field
Bit Position(s) |Content

7.0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Not used

2: Non-maskable interrupt (NMI)
3: Hardware exception

4 - 5: Not used
6: Software exception
7: Not used
11 Error code valid (0 = invalid; 1 = valid)
12 NMI unblocking due to IRET
30:13 Reserved (cleared to 0)
31 Valid

® VM-exit interruption error code (32 bits). For VM exits caused by hardware exceptions that would have
delivered an error code on the stack, this field receives that error code.

Section 27.2.2 provides details of how these fields are saved on VM exits.

24.9.3 Information for VM Exits That Occur During Event Delivery
Additional information is provided for VM exits that occur during event delivery in VMX non-root operation.1 This
information is provided in the following fields:

® IDT-vectoring information (32 bits). This field receives basic information associated with the event that was
being delivered when the VM exit occurred. Table 24-16 describes this field.

1. This includes cases in which the event delivery was caused by event injection as part of VM entry; see Section 26.5.1.2.
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Table 24-16. Format of the IDT-Vectoring Information Field

Bit Position(s) | Content

7.0 Vector of interrupt or exception
10:8 Interruption type:

0: External interrupt

1: Not used

2: Non-maskable interrupt (NMI)
3: Hardware exception

4; Software interrupt

5: Privileged software exception
6: Software exception

7: Not used
11 Error code valid (O = invalid; 1 = valid)
12 Undefined
30:13 Reserved (cleared to 0)
31 Valid

® IDT-vectoring error code (32 bits). For VM exits the occur during delivery of hardware exceptions that would
have delivered an error code on the stack, this field receives that error code.

See Section 27.2.3 provides details of how these fields are saved on VM exits.

24.9.4 Information for VM Exits Due to Instruction Execution
The following fields are used for VM exits caused by attempts to execute certain instructions in VMX non-root oper-
ation:

® VM-exitinstruction length (32 bits). For VM exits resulting from instruction execution, this field receives the
length in bytes of the instruction whose execution led to the VM exit.1 See Section 27.2.4 for details of when
and how this field is used.

¢ VM-exit instruction information (32 bits). This field is used for VM exits due to attempts to execute INS,
INVEPT, INVVPID, LIDT, LGDT, LLDT, LTR, OUTS, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, or VMXON.2 The format of the field depends on the cause of the VM exit. See Section
27.2.4 for details.

The following fields (64 bits each; 32 bits on processors that do not support Intel 64 architecture) are used only for
VM exits due to SMIs that arrive immediately after retirement of 1/0 instructions. They provide information about
that 1/0 instruction:

® 1/0 RCX. The value of RCX before the 1/0 instruction started.

® 1/0 RSI. The value of RSI before the 1/0 instruction started.

® 1/0 RDI. The value of RDI before the 1/0 instruction started.

® 1/0 RIP. The value of RIP before the 1/0 instruction started (the RIP that addressed the 1/0 instruction).

24.9.5 VM-Instruction Error Field

The 32-bit VM-instruction error field does not provide information about the most recent VM exit. In fact, it is
not modified on VM exits. Instead, it provides information about errors encountered by a non-faulting execution of
one of the VMX instructions.

1. This field is also used for VM exits that occur during the delivery of a software interrupt or software exception.

2. Whether the processor provides this information on VM exits due to attempts to execute INS or OUTS can be determined by con-
sulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).
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24.10 VMCS TYPES: ORDINARY AND SHADOW

Every VMCS is either an ordinary VMCS or a shadow VMCS. A VMCS'’s type is determined by the shadow-VMCS
indicator in the VMCS region (this is the value of bit 31 of the first 4 bytes of the VMCS region; see Table 24-1): 0
indicates an ordinary VMCS, while 1 indicates a shadow VMCS. Shadow VMCSs are supported only on processors
that support the 1-setting of the “VMCS shadowing” VM-execution control (see Section 24.6.2).

A shadow VMCS differs from an ordinary VMCS in two ways:

® An ordinary VMCS can be used for VM entry but a shadow VMCS cannot. Attempts to perform VM entry when
the current VMCS is a shadow VMCS fail (see Section 26.1).

® The VMREAD and VMWRITE instructions can be used in VMX non-root operation to access a shadow VMCS but
not an ordinary VMCS. This fact results from the following:

— If the “VMCS shadowing” VM-execution control is 0, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation always cause VM exits (see Section 25.1.3).

— If the “VMCS shadowing” VM-execution control is 1, execution of the VMREAD and VMWRITE instructions in
VMX non-root operation can access the VMCS referenced by the VMCS link pointer (see Section 30.3).

— If the “VMCS shadowing” VM-execution control is 1, VM entry ensures that any VMCS referenced by the
VMCS link pointer is a shadow VMCS (see Section 26.3.1.5).

In VMX root operation, both types of VMCSs can be accessed with the VMREAD and VMWRITE instructions.

Software should not modify the shadow-VMCS indicator in the VMCS region of a VMCS that is active. Doing so may
cause the VMCS to become corrupted (see Section 24.11.1). Before modifying the shadow-VMCS indicator, soft-
ware should execute VMCLEAR for the VMCS to ensure that it is not active.

24.11 SOFTWARE USE OF THE VMCS AND RELATED STRUCTURES

This section details guidelines that software should observe when using a VMCS and related structures. It also
provides descriptions of consequences for failing to follow guidelines.

24.11.1 Software Use of Virtual-Machine Control Structures
To ensure proper processor behavior, software should observe certain guidelines when using an active VMCS.

No VMCS should ever be active on more than one logical processor. If a VMCS is to be “migrated” from one logical
processor to another, the first logical processor should execute VMCLEAR for the VMCS (to make it inactive on that
logical processor and to ensure that all VMCS data are in memory) before the other logical processor executes
VMPTRLD for the VMCS (to make it active on the second logical processor).1 A VMCS that is made active on more
than one logical processor may become corrupted (see below).

Software should not modify the shadow-VMCS indicator (see Table 24-1) in the VMCS region of a VMCS that is
active. Doing so may cause the VMCS to become corrupted. Before modifying the shadow-VMCS indicator, software
should execute VMCLEAR for the VMCS to ensure that it is not active.

Software should use the VMREAD and VMWRITE instructions to access the different fields in the current VMCS (see
Section 24.11.2). Software should never access or modify the VMCS data of an active VMCS using ordinary
memory operations, in part because the format used to store the VMCS data is implementation-specific and not
architecturally defined, and also because a logical processor may maintain some VMCS data of an active VMCS on
the processor and not in the VMCS region. The following items detail some of the hazards of accessing VMCS data
using ordinary memory operations:

® Any data read from a VMCS with an ordinary memory read does not reliably reflect the state of the VMCS.
Results may vary from time to time or from logical processor to logical processor.

1. As noted in Section 24.1, execution of the VMPTRLD instruction makes a VMCS is active. In addition, VM entry makes active any
shadow VMCS referenced by the VMCS link pointer in the current VMCS. If a shadow VMCS is made active by VM entry, it is neces-
sary to execute VMCLEAR for that VMCS before allowing that VMCS to become active on another logical processor.

24-24 \ol.3C



VIRTUAL MACHINE CONTROL STRUCTURES

®  Writing to a VMCS with an ordinary memory write is not guaranteed to have a deterministic effect on the VMCS.
Doing so may cause the VMCS to become corrupted (see below).

(Software can avoid these hazards by removing any linear-address mappings to a VMCS region before executing a
VMPTRLD for that region and by not remapping it until after executing VMCLEAR for that region.)

If a logical processor leaves VMX operation, any VMCSs active on that logical processor may be corrupted (see
below). To prevent such corruption of a VMCS that may be used either after a return to VMX operation or on
another logical processor, software should execute VMCLEAR for that VMCS before executing the VMXOFF instruc-
tion or removing power from the processor (e.g., as part of a transition to the S3 and S4 power states).

This section has identified operations that may cause a VMCS to become corrupted. These operations may cause
the VMCS’s data to become undefined. Behavior may be unpredictable if that VMCS used subsequently on any
logical processor. The following items detail some hazards of VMCS corruption:

® VM entries may fail for unexplained reasons or may load undesired processor state.

® The processor may not correctly support VMX non-root operation as documented in Chapter 27 and may
generate unexpected VM exits.

® VM exits may load undesired processor state, save incorrect state into the VMCS, or cause the logical processor
to transition to a shutdown state.

24.11.2 VMREAD, VMWRITE, and Encodings of VMCS Fields

Every field of the VMCS is associated with a 32-bit value that is its encoding. The encoding is provided in an
operand to VMREAD and VMWRITE when software wishes to read or write that field. These instructions fail if given,
in 64-bit mode, an operand that sets an encoding bit beyond bit 32. See Chapter 30 for a description of these
instructions.

The structure of the 32-bit encodings of the VMCS components is determined principally by the width of the fields
and their function in the VMCS. See Table 24-17.

Table 24-17. Structure of VMCS Component Encoding

Bit Position(s) Contents
0 Access type (0 = full; 1 = high); must be full for 16-bit, 32-bit, and natural-width fields
9:1 Index
11:10 Type:
0: control

1: VM-exit information
2: guest state
3: host state

12 Reserved (must be 0)
14:13 Width:

0: 16-bit

1: 64-bit

2: 32-bit

3: natural-width

31:15 Reserved (must be 0)

The following items detail the meaning of the bits in each encoding:
® Field width. Bits 14:13 encode the width of the field.

— A value of O indicates a 16-bit field.

— Avalue of 1 indicates a 64-bit field.
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— A value of 2 indicates a 32-bit field.

— A value of 3 indicates a natural-width field. Such fields have 64 bits on processors that support Intel 64
architecture and 32 bits on processors that do not.

Fields whose encodings use value 1 are specially treated to allow 32-bit software access to all 64 bits of the
field. Such access is allowed by defining, for each such field, an encoding that allows direct access to the high
32 bits of the field. See below.

Field type. Bits 11:10 encode the type of VMCS field: control, guest-state, host-state, or VM-exit information.
(The last category also includes the VM-instruction error field.)

Index. Bits 9:1 distinguish components with the same field width and type.

Access type. Bit 0 must be O for all fields except for 64-bit fields (those with field-width 1; see above). A
VMREAD or VMWRITE using an encoding with this bit cleared to 0 accesses the entire field. For a 64-bit field
with field-width 1, a VMREAD or VMWRITE using an encoding with this bit set to 1 accesses only the high 32 bits
of the field.

Appendix B gives the encodings of all fields in the VMCS.

The following describes the operation of VMREAD and VMWRITE based on processor mode, VMCS-field width, and
access type:

16-bit fields:

— A VMREAD returns the value of the field in bits 15:0 of the destination operand; other bits of the destination
operand are cleared to O.

— A VMWRITE writes the value of bits 15:0 of the source operand into the VMCS field; other bits of the source
operand are not used.

32-bit fields:

— A VMREAD returns the value of the field in bits 31:0 of the destination operand; in 64-bit mode, bits 63:32
of the destination operand are cleared to O.

— A VMWRITE writes the value of bits 31:0 of the source operand into the VMCS field; in 64-bit mode,
bits 63:32 of the source operand are not used.

64-bit fields and natural-width fields using the full access type outside 1A-32e mode.

— A VMREAD returns the value of bits 31:0 of the field in its destination operand; bits 63:32 of the field are
ignored.

— A VMWRITE writes the value of its source operand to bits 31:0 of the field and clears bits 63:32 of the field.

64-bit fields and natural-width fields using the full access type in 64-bit mode (only on processors that support
Intel 64 architecture).

— A VMREAD returns the value of the field in bits 63:0 of the destination operand
— A VMWRITE writes the value of bits 63:0 of the source operand into the VMCS field.
64-bit fields using the high access type.

— A VMREAD returns the value of bits 63:32 of the field in bits 31:0 of the destination operand; in 64-bit
mode, bits 63:32 of the destination operand are cleared to O.

— A VMWRITE writes the value of bits 31:0 of the source operand to bits 63:32 of the field; in 64-bit mode,
bits 63:32 of the source operand are not used.

Software seeking to read a 64-bit field outside 1A-32e mode can use VMREAD with the full access type (reading
bits 31:0 of the field) and VMREAD with the high access type (reading bits 63:32 of the field); the order of the two
VMREAD executions is not important. Software seeking to modify a 64-bit field outside 1A-32e mode should first
use VMWRITE with the full access type (establishing bits 31:0 of the field while clearing bits 63:32) and then use
VMWRITE with the high access type (establishing bits 63:32 of the field).
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24.11.3 Initializing a VMCS

Software should initialize fields in a VMCS (using VMWRITE) before using the VMCS for VM entry. Failure to do so
may result in unpredictable behavior; for example, a VM entry may fail for unexplained reasons, or a successful
transition (VM entry or VM exit) may load processor state with unexpected values.

It is not necessary to initialize fields that the logical processor will not use. (For example, it is not necessary to
unitize the MSR-bitmap address if the “use MSR bitmaps” VM-execution control is 0.)

A processor maintains some VMCS information that cannot be modified with the VMWRITE instruction; this
includes a VMCS’s launch state (see Section 24.1). Such information may be stored in the VMCS data portion of a
VMCS region. Because the format of this information is implementation-specific, there is no way for software to
know, when it first allocates a region of memory for use as a VMCS region, how the processor will determine this
information from the contents of the memory region.

In addition to its other functions, the VMCLEAR instruction initializes any implementation-specific information in
the VMCS region referenced by its operand. To avoid the uncertainties of implementation-specific behavior, soft-
ware should execute VMCLEAR on a VMCS region before making the corresponding VMCS active with VMPTRLD for
the first time. (Figure 24-1 illustrates how execution of VMCLEAR puts a VMCS into a well-defined state.)

The following software usage is consistent with these limitations:
® VMCLEAR should be executed for a VMCS before it is used for VM entry for the first time.

® VMLAUNCH should be used for the first VM entry using a VMCS after VMCLEAR has been executed for that
VMCS.

® VMRESUME should be used for any subsequent VM entry using a VMCS (until the next execution of VMCLEAR
for the VMCS).

It is expected that, in general, VMRESUME will have lower latency than VMLAUNCH. Since “migrating” a VMCS from
one logical processor to another requires use of VMCLEAR (see Section 24.11.1), which sets the launch state of the
VMCS to “clear”, such migration requires the next VM entry to be performed using VMLAUNCH. Software devel-
opers can avoid the performance cost of increased VM-entry latency by avoiding unnecessary migration of a VMCS
from one logical processor to another.

24.11.4 Software Access to Related Structures

In addition to data in the VMCS region itself, VMX non-root operation can be controlled by data structures that are
referenced by pointers in a VMCS (for example, the 1/0 bitmaps). While the pointers to these data structures are
parts of the VMCS, the data structures themselves are not. They are not accessible using VMREAD and VMWRITE
but by ordinary memory writes.

Software should ensure that each such data structure is modified only when no logical processor with a current
VMCS that references it is in VMX non-root operation. Doing otherwise may lead to unpredictable behavior
(including behaviors identified in Section 24.11.1).

24.11.5 VMXON Region

Before executing VMXON, software allocates a region of memory (called the VMXON region)1 that the logical
processor uses to support VMX operation. The physical address of this region (the VMXON pointer) is provided in
an operand to VMXON. The VMXON pointer is subject to the limitations that apply to VMCS pointers:

® The VMXON pointer must be 4-KByte aligned (bits 11:0 must be zero).

®* The VMXON pointer must not set any bits beyond the processor’s physical-address width.2-3

1. The amount of memory required for the VMXON region is the same as that required for a VMCS region. This size is implementation
specific and can be determined by consulting the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1).

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. IfIA32_VMX_BASIC[48] is read as 1, the VMXON pointer must not set any bits in the range 63:32; see Appendix A.1.
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Before executing VMXON, software should write the VMCS revision identifier (see Section 24.2) to the VMXON
region. (Specifically, it should write the 31-bit VMCS revision identifier to bits 30:0 of the first 4 bytes of the VMXON
region; bit 31 should be cleared to 0.) It need not initialize the VMXON region in any other way. Software should
use a separate region for each logical processor and should not access or modify the VMXON region of a logical
processor between execution of VMXON and VMXOFF on that logical processor. Doing otherwise may lead to unpre-
dictable behavior (including behaviors identified in Section 24.11.1).
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CHAPTER 25
VMX NON-ROOT OPERATION

In a virtualized environment using VMX, the guest software stack typically runs on a logical processor in VMX non-
root operation. This mode of operation is similar to that of ordinary processor operation outside of the virtualized
environment. This chapter describes the differences between VMX non-root operation and ordinary processor oper-
ation with special attention to causes of VM exits (which bring a logical processor from VMX non-root operation to
root operation). The differences between VMX non-root operation and ordinary processor operation are described
in the following sections:

® Section 25.1, “Instructions That Cause VM Exits”

® Section 25.2, “Other Causes of VM Exits”

® Section 25.3, “Changes to Instruction Behavior in VMX Non-Root Operation”
® Section 25.4, “Other Changes in VMX Non-Root Operation”

® Section 25.5, “Features Specific to VMX Non-Root Operation”

® Section 25.6, “Unrestricted Guests”

Chapter 26, “VM Entries,” describes the data control structures that govern VMX non-root operation. Chapter 26,
“VM Entries,” describes the operation of VM entries by which the processor transitions from VMX root operation to
VMX non-root operation. Chapter 25, “VMX Non-Root Operation,” describes the operation of VM exits by which the
processor transitions from VMX non-root operation to VMX root operation.

Chapter 28, “VMX Support for Address Translation,” describes two features that support address translation in VMX
non-root operation. Chapter 29, “APIC Virtualization and Virtual Interrupts,” describes features that support virtu-
alization of interrupts and the Advanced Programmable Interrupt Controller (APIC) in VMX non-root operation.

25.1  INSTRUCTIONS THAT CAUSE VM EXITS

Certain instructions may cause VM exits if executed in VMX non-root operation. Unless otherwise specified, such
VM exits are “fault-like,” meaning that the instruction causing the VM exit does not execute and no processor state
is updated by the instruction. Section 27.1 details architectural state in the context of a VM exit.

Section 25.1.1 defines the prioritization between faults and VM exits for instructions subject to both. Section
25.1.2 identifies instructions that cause VM exits whenever they are executed in VMX non-root operation (and thus
can never be executed in VMX non-root operation). Section 25.1.3 identifies instructions that cause VM exits
depending on the settings of certain VM-execution control fields (see Section 24.6).

25.1.1 Relative Priority of Faults and VM Exits

The following principles describe the ordering between existing faults and VM exits:

® Certain exceptions have priority over VM exits. These include invalid-opcode exceptions, faults based on
privilege level,! and general-protection exceptions that are based on checking 1/0 permission bits in the task-
state segment (TSS). For example, execution of RDMSR with CPL = 3 generates a general-protection exception
and not a VM exit.?

® Faults incurred while fetching instruction operands have priority over VM exits that are conditioned based on
the contents of those operands (see LMSW in Section 25.1.3).

® VM exits caused by execution of the INS and OUTS instructions (resulting either because the “unconditional 1/0
exiting” VM-execution control is 1 or because the “use 1/0 bitmaps control is 1) have priority over the following
faults:

1. These include faults generated by attempts to execute, in virtual-8086 mode, privileged instructions that are not recognized in that
mode.

2. MOV DR is an exception to this rule; see Section 25.1.3.
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— A general-protection fault due to the relevant segment (ES for INS; DS for OUTS unless overridden by an
instruction prefix) being unusable

— A general-protection fault due to an offset beyond the limit of the relevant segment
— An alignment-check exception

® Fault-like VM exits have priority over exceptions other than those mentioned above. For example, RDMSR of a
non-existent MSR with CPL = O generates a VM exit and not a general-protection exception.

When Section 25.1.2 or Section 25.1.3 (below) identify an instruction execution that may lead to a VM exit, it is
assumed that the instruction does not incur a fault that takes priority over a VM exit.

25.1.2 Instructions That Cause VM Exits Unconditionally

The following instructions cause VM exits when they are executed in VMX non-root operation: CPUID, GETSEC,t
INVD, and XSETBYV. This is also true of instructions introduced with VMX, which include: INVEPT, INVVPID,
VMCALL,2 VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMRESUME, VMXOFF, and VMXON.

25.1.3 Instructions That Cause VM Exits Conditionally
Certain instructions cause VM exits in VMX non-root operation depending on the setting of the VM-execution
controls. The following instructions can cause “fault-like” VM exits based on the conditions described:3

® CLTS. The CLTS instruction causes a VM exit if the bits in position 3 (corresponding to CRO.TS) are set in both
the CRO guest/host mask and the CRO read shadow.

® ENCLS. The ENCLS instruction causes a VM exit if the “enable ENCLS exiting” VM-execution control is 1 and
one of the following is true:

— The value of EAX is less than 63 and the corresponding bit in the ENCLS-exiting bitmap is 1 (see Section
24.6.16).

— The value of EAX is greater than or equal to 63 and bit 63 in the ENCLS-exiting bitmap is 1.
® HLT. The HLT instruction causes a VM exit if the “HLT exiting” VM-execution control is 1.

® IN, INS/ZINSB/INSW/INSD, OUT, OUTS/0UTSB/Z/0OUTSW/0OUTSD. The behavior of each of these instruc-
tions is determined by the settings of the “unconditional 1/0 exiting” and “use 1/0 bitmaps” VM-execution
controls:

— If both controls are 0O, the instruction executes normally.

— If the “unconditional 1/0 exiting” VM-execution control is 1 and the “use 1/0 bitmaps” VM-execution control
is 0, the instruction causes a VM exit.

— If the “use 1/0 bitmaps” VM-execution control is 1, the instruction causes a VM exit if it attempts to access
an 1/0 port corresponding to a bit set to 1 in the appropriate 1/0 bitmap (see Section 24.6.4). If an 1/0
operation “wraps around” the 16-bit 1/0-port space (accesses ports FFFFH and O000H), the 1/0 instruction
causes a VM exit (the “unconditional 1/0 exiting” VM-execution control is ignored if the “use 1/0 bitmaps”
VM-execution control is 1).

See Section 25.1.1 for information regarding the priority of VM exits relative to faults that may be caused by
the INS and OUTS instructions.

® INVLPG. The INVLPG instruction causes a VM exit if the “INVLPG exiting” VM-execution control is 1.

® INVPCID. The INVPCID instruction causes a VM exit if the “INVLPG exiting” and “enable INVPCID”
VM-execution controls are both 1.

1. An execution of GETSEC in VMX non-root operation causes a VM exit if CR4.SMXE[Bit 14] = 1 regardless of the value of CPL or RAX.
An execution of GETSEC causes an invalid-opcode exception (#UD) if CR4.SMXE[Bit 14] = 0.

2. Under the dual-monitor treatment of SMIs and SMM, executions of VMCALL cause SMM VM exits in VMX root operation outside SMM.
See Section 34.15.2.

3. Many of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR. These instructions cause VM exits if the “descriptor-table
exiting” VM-execution control is 1.

LMSW. In general, the LMSW instruction causes a VM exit if it would write, for any bit set in the low 4 bits of
the CRO guest/host mask, a value different than the corresponding bit in the CRO read shadow. LMSW never
clears bit O of CRO (CRO.PE); thus, LMSW causes a VM exit if either of the following are true:

— The bits in position 0 (corresponding to CRO.PE) are set in both the CRO guest/mask and the source
operand, and the bit in position O is clear in the CRO read shadow.

— For any bit position in the range 3:1, the bit in that position is set in the CRO guest/mask and the values of
the corresponding bits in the source operand and the CRO read shadow differ.

MONITOR. The MONITOR instruction causes a VM exit if the “MONITOR exiting” VM-execution control is 1.

MOV from CR3. The MOV from CR3 instruction causes a VM exit if the “CR3-store exiting” VM-execution
control is 1. The first processors to support the virtual-machine extensions supported only the 1-setting of this
control.

MOV from CR8. The MOV from CR8 instruction causes a VM exit if the “CR8-store exiting” VM-execution
control is 1.

MOV to CRO. The MOV to CRO instruction causes a VM exit unless the value of its source operand matches, for
the position of each bit set in the CRO guest/host mask, the corresponding bit in the CRO read shadow. (If every
bit is clear in the CRO guest/host mask, MOV to CRO cannot cause a VM exit.)

MOV to CR3. The MOV to CR3 instruction causes a VM exit unless the “CR3-load exiting” VM-execution control
is O or the value of its source operand is equal to one of the CR3-target values specified in the VMCS. If the
CR3-target count in n, only the first n CR3-target values are considered; if the CR3-target count is 0, MOV to
CR3 always causes a VM exit.

The first processors to support the virtual-machine extensions supported only the 1-setting of the “CR3-load
exiting” VM-execution control. These processors always consult the CR3-target controls to determine whether
an execution of MOV to CR3 causes a VM exit.

MOV to CR4. The MOV to CR4 instruction causes a VM exit unless the value of its source operand matches, for
the position of each bit set in the CR4 guest/host mask, the corresponding bit in the CR4 read shadow.

MOV to CR8. The MOV to CR8 instruction causes a VM exit if the “CR8-load exiting” VM-execution control is 1.

MOV DR. The MOV DR instruction causes a VM exit if the “MOV-DR exiting” VM-execution control is 1. Such
VM exits represent an exception to the principles identified in Section 25.1.1 in that they take priority over the
following: general-protection exceptions based on privilege level; and invalid-opcode exceptions that occur
because CR4.DE=1 and the instruction specified access to DR4 or DR5.

MWAIT. The MWAIT instruction causes a VM exit if the “MWAIT exiting” VM-execution control is 1. If this
control is O, the behavior of the MWAIT instruction may be modified (see Section 25.3).

PAUSE. The behavior of each of this instruction depends on CPL and the settings of the “PAUSE exiting” and
“PAUSE-loop exiting” VM-execution controls:

— CPL=0.

¢ If the “PAUSE exiting” and “PAUSE-loop exiting” VM-execution controls are both 0, the PAUSE
instruction executes normally.

* If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit (the “PAUSE-
loop exiting” VM-execution control is ignored if CPL = 0 and the “PAUSE exiting” VM-execution control
is 1).

¢ If the “PAUSE exiting” VM-execution control is O and the “PAUSE-loop exiting” VM-execution control is
1, the following treatment applies.

The processor determines the amount of time between this execution of PAUSE and the previous
execution of PAUSE at CPL 0. If this amount of time exceeds the value of the VM-execution control field
PLE_Gap, the processor considers this execution to be the first execution of PAUSE in a loop. (It also
does so for the first execution of PAUSE at CPL O after VM entry.)

Otherwise, the processor determines the amount of time since the most recent execution of PAUSE that
was considered to be the first in a loop. If this amount of time exceeds the value of the VM-execution
control field PLE_Window, a VM exit occurs.
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For purposes of these computations, time is measured based on a counter that runs at the same rate as
the timestamp counter (TSC).

— CPL = 0.
* If the “PAUSE exiting” VM-execution control is 0, the PAUSE instruction executes normally.
* If the “PAUSE exiting” VM-execution control is 1, the PAUSE instruction causes a VM exit.
The “PAUSE-loop exiting” VM-execution control is ignored if CPL > 0.
¢ RDMSR. The RDMSR instruction causes a VM exit if any of the following are true:
— The “use MSR bitmaps” VM-execution control is O.
— The value of ECX is not in the ranges 00000000H — O0001FFFH and COO0O0O000H — COOO1FFFH.

— The value of ECX is in the range 00000000H — O0001FFFH and bit n in read bitmap for low MSRs is 1, where
n is the value of ECX.

— The value of ECX is in the range COO0O0000H — CO001FFFH and bit n in read bitmap for high MSRs is 1,
where n is the value of ECX & O0001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.
¢ RDPMC. The RDPMC instruction causes a VM exit if the “RDPMC exiting” VM-execution control is 1.
® RDRAND. The RDRAND instruction causes a VM exit if the “RDRAND exiting” VM-execution control is 1.
¢ RDSEED. The RDSEED instruction causes a VM exit if the “RDSEED exiting” VM-execution control is 1.
® RDTSC. The RDTSC instruction causes a VM exit if the “RDTSC exiting” VM-execution control is 1.

® RDTSCP. The RDTSCP instruction causes a VM exit if the “RDTSC exiting” and “enable RDTSCP” VM-execution
controls are both 1.

® RSM. The RSM instruction causes a VM exit if executed in system-management mode (SMM).1
¢ VMREAD. The VMREAD instruction causes a VM exit if any of the following are true:

— The “VYMCS shadowing” VM-execution control is 0.

— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all 0.

— Bit nin VMREAD bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section
24.6.15 for details regarding how the VMREAD bitmap is identified.

If the VMREAD instruction does not cause a VM exit, it reads from the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMREAD—Read Field from Virtual-Machine Control Structure” for details of the
operation of the VMREAD instruction.

®* VMWRITE. The VMWRITE instruction causes a VM exit if any of the following are true:
— The “VYMCS shadowing” VM-execution control is 0.
— Bits 63:15 (bits 31:15 outside 64-bit mode) of the register source operand are not all O.

— Bit nin VMWRITE bitmap is 1, where n is the value of bits 14:0 of the register source operand. See Section
24.6.15 for details regarding how the VMWRITE bitmap is identified.

If the VMWRITE instruction does not cause a VM exit, it writes to the VMCS referenced by the VMCS link
pointer. See Chapter 30, “VMWRITE—Write Field to Virtual-Machine Control Structure” for details of the
operation of the VMWRITE instruction.

®  WBINVD. The WBINVD instruction causes a VM exit if the “WBINVD exiting” VM-execution control is 1.
® WRMSR. The WRMSR instruction causes a VM exit if any of the following are true:

— The “use MSR bitmaps” VM-execution control is O.

— The value of ECX is not in the ranges 00000000H — O0001FFFH and COOO0O000H — COOO1FFFH.

— The value of ECX is in the range 00000000H — O0001FFFH and bit n in write bitmap for low MSRs is 1,
where n is the value of ECX.

1. Execution of the RSM instruction outside SMM causes an invalid-opcode exception regardless of whether the processor is in VMX
operation. It also does so in VMX root operation in SMM; see Section 34.15.3.
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— The value of ECX is in the range COOO0000H — COOO1FFFH and bit n in write bitmap for high MSRs is 1,
where n is the value of ECX & O0001FFFH.

See Section 24.6.9 for details regarding how these bitmaps are identified.

XRSTORS. The XRSTORS instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control
is 1and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the
XSS-exiting bitmap (see Section 24.6.19).

XSAVES. The XSAVES instruction causes a VM exit if the “enable XSAVES/XRSTORS” VM-execution control is
1 and any bit is set in the logical-AND of the following three values: EDX:EAX, the IA32_XSS MSR, and the XSS-
exiting bitmap (see Section 24.6.19).

25.2 OTHER CAUSES OF VM EXITS

In addition to VM exits caused by instruction execution, the following events can cause VM exits:

Exceptions. Exceptions (faults, traps, and aborts) cause VM exits based on the exception bitmap (see Section
24.6.3). If an exception occurs, its vector (in the range 0—31) is used to select a bit in the exception bitmap. If
the bit is 1, a VM exit occurs; if the bit is O, the exception is delivered normally through the guest IDT. This use
of the exception bitmap applies also to exceptions generated by the instructions INT3, INTO, BOUND, and UD2.

Page faults (exceptions with vector 14) are specially treated. When a page fault occurs, a processor consults
(1) bit 14 of the exception bitmap; (2) the error code produced with the page fault [PFEC]; (3) the page-fault
error-code mask field [PFEC_MASK]; and (4) the page-fault error-code match field [PFEC_MATCH]. It checks if
PFEC & PFEC_MASK = PFEC_MATCH. If there is equality, the specification of bit 14 in the exception bitmap is
followed (for example, a VM exit occurs if that bit is set). If there is inequality, the meaning of that bit is
reversed (for example, a VM exit occurs if that bit is clear).

Thus, if software desires VM exits on all page faults, it can set bit 14 in the exception bitmap to 1 and set the
page-fault error-code mask and match fields each to 00O000000H. If software desires VM exits on no page
faults, it can set bit 14 in the exception bitmap to 1, the page-fault error-code mask field to 00000000H, and
the page-fault error-code match field to FFFFFFFFH.

Triple fault. A VM exit occurs if the logical processor encounters an exception while attempting to call the
double-fault handler and that exception itself does not cause a VM exit due to the exception bitmap. This
applies to the case in which the double-fault exception was generated within VMX non-root operation, the case
in which the double-fault exception was generated during event injection by VM entry, and to the case in which
VM entry is injecting a double-fault exception.

External interrupts. An external interrupt causes a VM exit if the “external-interrupt exiting” VM-execution
control is 1. (See Section 25.6 for an exception.) Otherwise, the interrupt is delivered normally through the
IDT. (If a logical processor is in the shutdown state or the wait-for-SIPI state, external interrupts are blocked.
The interrupt is not delivered through the IDT and no VM exit occurs.)

Non-maskable interrupts (NMIs). An NMI causes a VM exit if the “NMI exiting” VM-execution control is 1.
Otherwise, it is delivered using descriptor 2 of the IDT. (If a logical processor is in the wait-for-SIPI state, NMIs
are blocked. The NMI is not delivered through the IDT and no VM exit occurs.)

INIT signals. INIT signals cause VM exits. A logical processor performs none of the operations normally
associated with these events. Such exits do not modify register state or clear pending events as they would
outside of VMX operation. (If a logical processor is in the wait-for-SIPI state, INIT signals are blocked. They do
not cause VM exits in this case.)

Start-up IPIs (SIPIs). SIPIs cause VM exits. If a logical processor is not in the wait-for-SIPI activity state
when a SIPI arrives, no VM exit occurs and the SIPI is discarded. VM exits due to SIPIs do not perform any of
the normal operations associated with those events: they do not modify register state as they would outside of
VMX operation. (If a logical processor is not in the wait-for-SIPI state, SIPIs are blocked. They do not cause
VM exits in this case.)

Task switches. Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch
in VMX non-root operation causes a VM exit. See Section 25.4.2.

System-management interrupts (SMIs). If the logical processor is using the dual-monitor treatment of
SMIs and system-management mode (SMM), SMIs cause SMM VM exits. See Section 34.15.2.1
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VMX-preemption timer. A VM exit occurs when the timer counts down to zero. See Section 25.5.1 for details
of operation of the VMX-preemption timer.

Debug-trap exceptions and higher priority events take priority over VM exits caused by the VMX-preemption
timer. VM exits caused by the VMX-preemption timer take priority over VM exits caused by the “NMI-window
exiting” VM-execution control and lower priority events.

These VM exits wake a logical processor from the same inactive states as would a non-maskable interrupt.

Specifically, they wake a logical processor from the shutdown state and from the states entered using the HLT
and MWAIT instructions. These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

In addition, there are controls that cause VM exits based on the readiness of guest software to receive interrupts:

If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction
if RFLAGS.IF = 1 and there is no blocking of events by STI or by MOV SS (see Table 24-3). Such a VM exit
occurs immediately after VM entry if the above conditions are true (see Section 26.6.5).

Non-maskable interrupts (NMIs) and higher priority events take priority over VM exits caused by this control.
VM exits caused by this control take priority over external interrupts and lower priority events.

These VM exits wake a logical processor from the same inactive states as would an external interrupt. Specifi-
cally, they wake a logical processor from the states entered using the HLT and MWAIT instructions. These
VM exits do not occur if the logical processor is in the shutdown state or the wait-for-SIPI state.

If the “NMI-window exiting” VM-execution control is 1, a VM exit occurs before execution of any instruction if
there is no virtual-NMI blocking and there is no blocking of events by MOV SS (see Table 24-3). (A logical
processor may also prevent such a VM exit if there is blocking of events by STI.) Such a VM exit occurs
immediately after VM entry if the above conditions are true (see Section 26.6.6).

VM exits caused by the VMX-preemption timer and higher priority events take priority over VM exits caused by
this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower
priority events.

These VM exits wake a logical processor from the same inactive states as would an NMI. Specifically, they wake

a logical processor from the shutdown state and from the states entered using the HLT and MWAIT instructions.
These VM exits do not occur if the logical processor is in the wait-for-SIPI state.

25.3  CHANGES TO INSTRUCTION BEHAVIOR IN VMX NON-ROOT OPERATION

The behavior of some instructions is changed in VMX non-root operation. Some of these changes are determined
by the settings of certain VM-execution control fields. The following items detail such changes:!

CLTS. Behavior of the CLTS instruction is determined by the bits in position 3 (corresponding to CRO.TS) in the
CRO guest/host mask and the CRO read shadow:

— If bit 3 in the CRO guest/host mask is O, CLTS clears CRO.TS normally (the value of bit 3 in the CRO read
shadow is irrelevant in this case), unless CRO.TS is fixed to 1 in VMX operation (see Section 23.8), in which
case CLTS causes a general-protection exception.

— If bit 3 in the CRO guest/host mask is 1 and bit 3 in the CRO read shadow is 0, CLTS completes but does not
change the contents of CRO.TS.

— If the bits in position 3 in the CRO guest/host mask and the CRO read shadow are both 1, CLTS causes a
VM exit.

INVPCID. Behavior of the INVPCID instruction is determined first by the setting of the “enable INVPCID”

VM-execution control:

— If the “enable INVPCID” VM-execution control is 0, INVPCID causes an invalid-opcode exception (#UD).
This exception takes priority over any other exception the instruction may incur.

Under the dual-monitor treatment of SMIs and SMM, SMiIs also cause SMM VM exits if they occur in VMX root operation outside SMM.
If the processor is using the default treatment of SMIs and SMM, SMis are delivered as described in Section 34.14.1.

Some of the items in this section refer to secondary processor-based VM-execution controls. If bit 31 of the primary processor-
based VM-execution controls is 0, VMX non-root operation functions as if these controls were all 0. See Section 24.6.2.
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— If the “enable INVPCID” VM-execution control is 1, treatment is based on the setting of the “INVLPG
exiting” VM-execution control:

e |If the “INVLPG exiting” VM-execution control is O, INVPCID operates normally.
* If the “INVLPG exiting” VM-execution control is 1, INVPCID causes a VM exit.

IRET. Behavior of IRET with regard to NMI blocking (see Table 24-3) is determined by the settings of the “NMI
exiting” and “virtual NMIs” VM-execution controls:

— If the “NMI exiting” VM-execution control is O, IRET operates normally and unblocks NMls. (If the “NMI
exiting” VM-execution control is 0, the “virtual NMIs” control must be O; see Section 26.2.1.1.)

— If the “NMI exiting” VM-execution control is 1, IRET does not affect blocking of NMls. If, in addition, the
“virtual NMIs” VM-execution control is 1, the logical processor tracks virtual-NMI blocking. In this case,
IRET removes any virtual-NMI blocking.

The unblocking of NMls or virtual NMls specified above occurs even if IRET causes a fault.

LMSW. Outside of VMX non-root operation, LMSW loads its source operand into CRO[3:0], but it does not clear
CRO.PE if that bit is set. In VMX non-root operation, an execution of LMSW that does not cause a VM exit (see
Section 25.1.3) leaves unmodified any bit in CRO[3:0] corresponding to a bit set in the CRO guest/host mask.
An attempt to set any other bit in CRO[3:0] to a value not supported in VMX operation (see Section 23.8)
causes a general-protection exception. Attempts to clear CRO.PE are ignored without fault.

MOV from CRO. The behavior of MOV from CRO is determined by the CRO guest/host mask and the CRO read
shadow. For each position corresponding to a bit clear in the CRO guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CRO. For each position corresponding to a bit set in the CRO
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CRO read
shadow. Thus, if every bit is cleared in the CRO guest/host mask, MOV from CRO reads normally from CRO; if
every bit is set in the CRO guest/host mask, MOV from CRO returns the value of the CRO read shadow.

Depending on the contents of the CRO guest/host mask and the CRO read shadow, bits may be set in the
destination that would never be set when reading directly from CRO.

MOV from CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV from CR3 does not
cause a VM exit (see Section 25.1.3), the value loaded from CR3 is a guest-physical address; see Section
28.2.1.

MOV from CR4. The behavior of MOV from CR4 is determined by the CR4 guest/host mask and the CR4 read
shadow. For each position corresponding to a bit clear in the CR4 guest/host mask, the destination operand is
loaded with the value of the corresponding bit in CR4. For each position corresponding to a bit set in the CR4
guest/host mask, the destination operand is loaded with the value of the corresponding bit in the CR4 read
shadow. Thus, if every bit is cleared in the CR4 guest/host mask, MOV from CR4 reads normally from CR4; if
every bit is set in the CR4 guest/host mask, MOV from CR4 returns the value of the CR4 read shadow.

Depending on the contents of the CR4 guest/host mask and the CR4 read shadow, bits may be set in the
destination that would never be set when reading directly from CRA4.

MOV from CRS8. If the MOV from CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior
is modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

MOV to CRO. An execution of MOV to CRO that does not cause a VM exit (see Section 25.1.3) leaves
unmodified any bit in CRO corresponding to a bit set in the CRO guest/host mask. Treatment of attempts to
modify other bits in CRO depends on the setting of the “unrestricted guest” VM-execution control:

— If the control is 0, MOV to CRO causes a general-protection exception if it attempts to set any bit in CRO to
a value not supported in VMX operation (see Section 23.8).

— If the control is 1, MOV to CRO causes a general-protection exception if it attempts to set any bit in CRO
other than bit O (PE) or bit 31 (PG) to a value not supported in VMX operation. It remains the case,
however, that MOV to CRO causes a general-protection exception if it would result in CRO.PE = 0 and
CRO.PG = 1 or if it would result in CRO.PG = 1, CR4.PAE = 0, and IA32_EFER.LME = 1.

MOV to CR3. If the “enable EPT” VM-execution control is 1 and an execution of MOV to CR3 does not cause a
VM exit (see Section 25.1.3), the value loaded into CR3 is treated as a guest-physical address; see Section
28.2.1.

— If PAE paging is not being used, the instruction does not use the guest-physical address to access memory
and it does not cause it to be translated through EPT.1
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— If PAE paging is being used, the instruction translates the guest-physical address through EPT and uses the
result to load the four (4) page-directory-pointer-table entries (PDPTEs). The instruction does not use the
guest-physical addresses the PDPTEs to access memory and it does not cause them to be translated
through EPT.

MOV to CR4. An execution of MOV to CR4 that does not cause a VM exit (see Section 25.1.3) leaves

unmodified any bit in CR4 corresponding to a bit set in the CR4 guest/host mask. Such an execution causes a

general-protection exception if it attempts to set any bit in CR4 (not corresponding to a bit set in the CR4

guest/host mask) to a value not supported in VMX operation (see Section 23.8).

MOV to CRS8. If the MOV to CR8 instruction does not cause a VM exit (see Section 25.1.3), its behavior is
modified if the “use TPR shadow” VM-execution control is 1; see Section 29.3.

MWAIT. Behavior of the MWAIT instruction (which always causes an invalid-opcode exception—#UD—if
CPL > 0) is determined by the setting of the “MWAIT exiting” VM-execution control:

— If the “MWAIT exiting” VM-execution control is 1, MWAIT causes a VM exit.

— If the “MWAIT exiting” VM-execution control is 0, MWAIT operates normally if one of the following are true:
(1) ECX[0] is O; (2) RFLAGS.IF = 1; or both of the following are true: (a) the “interrupt-window exiting” VM-
execution control is 0; and (b) the logical processor has not recognized a pending virtual interrupt (see
Section 29.2.1).

— If the “MWAIT exiting” VM-execution control is 0, ECX[0] = 1, and RFLAGS.IF = 0, MWAIT does not cause
the processor to enter an implementation-dependent optimized state if either the “interrupt-window
exiting” VM-execution control is 1 or the logical processor has recognized a pending virtual interrupt;
instead, control passes to the instruction following the MWAIT instruction.

RDMSR. Section 25.1.3 identifies when executions of the RDMSR instruction cause VM exits. If such an
execution causes neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for
certain values of ECX:

— If ECX contains 10H (indicating the 1A32_TIME_STAMP_COUNTER MSR), the value returned by the
instruction is determined by the setting of the “use TSC offsetting” VM-execution control:

* If the control is O, RDMSR operates normally, loading EAX:EDX with the value of the
IA32_TIME_STAMP_COUNTER MSR.

* Ifthe controlis 1, the value returned is determined by the setting of the “use TSC scaling” VM-execution
control:

— If the control is 0, RDMSR loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDMSR first computes the product of the value of the
1A32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the
TSC offset.

The 1-setting of the “use TSC-offsetting” VM-execution control does not affect executions of RDMSR if ECX
contains 6EOH (indicating the 1A32_TSC_DEADLINE MSR). Such executions return the APIC-timer deadline
relative to the actual timestamp counter without regard to the TSC offset.

— If ECXis in the range 800H—8FFH (indicating an APIC MSR), instruction behavior may be modified if the
“virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

RDPID. Behavior of the RDPID instruction is determined first by the setting of the “enable RDTSCP”
VM-execution control:

— If the “enable RDTSCP” VM-execution control is O, RDPID causes an invalid-opcode exception (#UD).
— If the “enable RDTSCP” VM-execution control is 1, RDPID operates normally.

RDTSC. Behavior of the RDTSC instruction is determined by the settings of the “RDTSC exiting” and “use TSC
offsetting” VM-execution controls:

A logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
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— If both controls are 0, RDTSC operates normally.

— Ifthe “RDTSC exiting” VM-execution control is 0 and the “use TSC offsetting” VM-execution control is 1, the
value returned is determined by the setting of the “use TSC scaling” VM-execution control:

* |fthe controlis O, RDTSC loads EAX:EDX with the sum of the value of the IA32_TIME_STAMP_COUNTER
MSR and the value of the TSC offset.

* If the control is 1, RDTSC first computes the product of the value of the 1A32_TIME_STAMP_COUNTER
MSR and the value of the TSC multiplier. It then shifts the value of the product right 48 bits and loads
EAX:EDX with the sum of that shifted value and the value of the TSC offset.

— If the “RDTSC exiting” VM-execution control is 1, RDTSC causes a VM exit.

RDTSCP. Behavior of the RDTSCP instruction is determined first by the setting of the “enable RDTSCP”
VM-execution control:

— If the “enable RDTSCP” VM-execution control is O, RDTSCP causes an invalid-opcode exception (#UD). This
exception takes priority over any other exception the instruction may incur.

— If the “enable RDTSCP” VM-execution control is 1, treatment is based on the settings of the “RDTSC exiting”
and “use TSC offsetting” VM-execution controls:

* If both controls are 0, RDTSCP operates normally.

* If the “RDTSC exiting” VM-execution control is O and the “use TSC offsetting” VM-execution control is 1,
the value returned is determined by the setting of the “use TSC scaling” VM-execution control:

— If the control is 0, RDTSCP loads EAX:EDX with the sum of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC offset.

— If the control is 1, RDTSCP first computes the product of the value of the
IA32_TIME_STAMP_COUNTER MSR and the value of the TSC multiplier. It then shifts the value of
the product right 48 bits and loads EAX:EDX with the sum of that shifted value and the value of the

TSC offset.
In either case, RDTSCP also loads ECX with the value of bits 31:0 of the 1A32_TSC_AUX MSR.
¢ |If the “RDTSC exiting” VM-execution control is 1, RDTSCP causes a VM exit.

SMSW. The behavior of SMSW is determined by the CRO guest/host mask and the CRO read shadow. For each
position corresponding to a bit clear in the CRO guest/host mask, the destination operand is loaded with the
value of the corresponding bit in CRO. For each position corresponding to a bit set in the CRO guest/host mask,
the destination operand is loaded with the value of the corresponding bit in the CRO read shadow. Thus, if every
bit is cleared in the CRO guest/host mask, MOV from CRO reads normally from CRO; if every bit is set in the CRO
guest/host mask, MOV from CRO returns the value of the CRO read shadow.

Note the following: (1) for any memory destination or for a 16-bit register destination, only the low 16 bits of
the CRO guest/host mask and the CRO read shadow are used (bits 63:16 of a register destination are left
unchanged); (2) for a 32-bit register destination, only the low 32 bits of the CRO guest/host mask and the CRO
read shadow are used (bits 63:32 of the destination are cleared); and (3) depending on the contents of the
CRO guest/host mask and the CRO read shadow, bits may be set in the destination that would never be set

when reading directly from CRO.

WRMSR. Section 25.1.3 identifies when executions of the WRMSR instruction cause VM exits. If such an

execution neither a fault due to CPL > 0 nor a VM exit, the instruction’s behavior may be modified for certain

values of ECX:

— If ECX contains 79H (indicating 1A32_BIOS_UPDT_TRIG MSR), no microcode update is loaded, and control
passes to the next instruction. This implies that microcode updates cannot be loaded in VMX non-root
operation.

— On processors that support Intel PT but which do not allow it to be used in VMX operation, if ECX contains
570H (indicating the IA32_RTIT_CTL MSR), the instruction causes a general-protection exception if it
attempts 1A32_RTIT_CTL.TraceEn.t

Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in
VMX operation (see Appendix A.6).
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— If ECX contains 808H (indicating the TPR MSR), 80BH (the EOI MSR), or 83FH (self-IPI MSR), instruction
behavior may modified if the “virtualize x2APIC mode” VM-execution control is 1; see Section 29.5.

® XRSTORS. Behavior of the XRSTORS instruction is determined first by the setting of the “enable
XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XRSTORS causes an invalid-opcode exception
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.19):

* XRSTORS causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX,
the 1A32_XSS MSR, and the XSS-exiting bitmap.

® Otherwise, XRSTORS operates normally.

® XSAVES. Behavior of the XSAVES instruction is determined first by the setting of the “enable
XSAVES/XRSTORS” VM-execution control:

— If the “enable XSAVES/XRSTORS” VM-execution control is 0, XSAVES causes an invalid-opcode exception
(#UD).

— If the “enable XSAVES/XRSTORS” VM-execution control is 1, treatment is based on the value of the XSS-
exiting bitmap (see Section 24.6.19):

® XSAVES causes a VM exit if any bit is set in the logical-AND of the following three values: EDX:EAX, the
IA32_XSS MSR, and the XSS-exiting bitmap.

®* Otherwise, XSAVES operates normally.

25.4 OTHER CHANGES IN VMX NON-ROOT OPERATION

Treatments of event blocking and of task switches differ in VMX non-root operation as described in the following
sections.

25.4.1 Event Blocking

Event blocking is modified in VMX non-root operation as follows:

® If the “external-interrupt exiting” VM-execution control is 1, RFLAGS.IF does not control the blocking of
external interrupts. In this case, an external interrupt that is not blocked for other reasons causes a VM exit
(even if RFLAGS.IF = 0).

® If the “external-interrupt exiting” VM-execution control is 1, external interrupts may or may not be blocked by
STI or by MOV SS (behavior is implementation-specific).

® If the “NMI exiting” VM-execution control is 1, non-maskable interrupts (NMIs) may or may not be blocked by
STI or by MOV SS (behavior is implementation-specific).

25.4.2 Treatment of Task Switches

Task switches are not allowed in VMX non-root operation. Any attempt to effect a task switch in VMX non-root oper-
ation causes a VM exit. However, the following checks are performed (in the order indicated), possibly resulting in
a fault, before there is any possibility of a VM exit due to task switch:

1. If a task gate is being used, appropriate checks are made on its P bit and on the proper values of the relevant
privilege fields. The following cases detail the privilege checks performed:

a. If CALL, INT n, or JMP accesses a task gate in 1A-32e mode, a general-protection exception occurs.

b. If CALL, INT n, INT3, INTO, or JMP accesses a task gate outside 1A-32e mode, privilege-levels checks are
performed on the task gate but, if they pass, privilege levels are not checked on the referenced task-state
segment (TSS) descriptor.
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If CALL or JMP accesses a TSS descriptor directly in 1A-32e mode, a general-protection exception occurs.

d. If CALL or JMP accesses a TSS descriptor directly outside 1A-32e mode, privilege levels are checked on the
TSS descriptor.

e. If anon-maskable interrupt (NMI), an exception, or an external interrupt accesses a task gate in the IDT in
IA-32e mode, a general-protection exception occurs.

f. If a non-maskable interrupt (NMI), an exception other than breakpoint exceptions (#BP) and overflow
exceptions (#OF), or an external interrupt accesses a task gate in the IDT outside 1A-32e mode, no
privilege checks are performed.

g. If IRET is executed with RFLAGS.NT = 1 in 1A-32e mode, a general-protection exception occurs.

h. If IRET is executed with RFLAGS.NT = 1 outside 1A-32e mode, a TSS descriptor is accessed directly and no
privilege checks are made.

2. Checks are made on the new TSS selector (for example, that is within GDT limits).
3. The new TSS descriptor is read. (A page fault results if a relevant GDT page is not present).
4. The TSS descriptor is checked for proper values of type (depends on type of task switch), P bit, S bit, and limit.

Only if checks 1—4 all pass (do not generate faults) might a VM exit occur. However, the ordering between a VM exit
due to a task switch and a page fault resulting from accessing the old TSS or the new TSS is implementation-
specific. Some processors may generate a page fault (instead of a VM exit due to a task switch) if accessing either
TSS would cause a page fault. Other processors may generate a VM exit due to a task switch even if accessing
either TSS would cause a page fault.

If an attempt at a task switch through a task gate in the IDT causes an exception (before generating a VM exit due
to the task switch) and that exception causes a VM exit, information about the event whose delivery that accessed
the task gate is recorded in the IDT-vectoring information fields and information about the exception that caused
the VM exit is recorded in the VM-exit interruption-information fields. See Section 27.2. The fact that a task gate
was being accessed is not recorded in the VMCS.

If an attempt at a task switch through a task gate in the IDT causes VM exit due to the task switch, information
about the event whose delivery accessed the task gate is recorded in the IDT-vectoring fields of the VMCS. Since
the cause of such a VM exit is a task switch and not an interruption, the valid bit for the VM-exit interruption infor-
mation field is 0. See Section 27.2.

25.5 FEATURES SPECIFIC TO VMX NON-ROOT OPERATION

Some VM-execution controls support features that are specific to VMX non-root operation. These are the VMX-
preemption timer (Section 25.5.1) and the monitor trap flag (Section 25.5.2), translation of guest-physical
addresses (Section 25.5.3), VM functions (Section 25.5.5), and virtualization exceptions (Section 25.5.6).

25.5.1 VMX-Preemption Timer

If the last VM entry was performed with the 1-setting of “activate VMX-preemption timer” VM-execution control,
the VMX-preemption timer counts down (from the value loaded by VM entry; see Section 26.6.4) in VMX non-
root operation. When the timer counts down to zero, it stops counting down and a VM exit occurs (see Section
25.2).

The VMX-preemption timer counts down at rate proportional to that of the timestamp counter (TSC). Specifically,
the timer counts down by 1 every time bit X in the TSC changes due to a TSC increment. The value of X is in the
range 0—31 and can be determined by consulting the VMX capability MSR 1A32_VMX_MISC (see Appendix A.6).

The VMX-preemption timer operates in the C-states CO, C1, and C2; it also operates in the shutdown and wait-for-
SIPI states. If the timer counts down to zero in any state other than the wait-for SIPI state, the logical processor

transitions to the CO C-state and causes a VM exit; the timer does not cause a VM exit if it counts down to zero in
the wait-for-SIPI state. The timer is not decremented in C-states deeper than C2.

Treatment of the timer in the case of system management interrupts (SMIs) and system-management mode
(SMM) depends on whether the treatment of SMIs and SMM:
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® If the default treatment of SMIs and SMM (see Section 34.14) is active, the VMX-preemption timer counts
across an SMI to VMX non-root operation, subsequent execution in SMM, and the return from SMM via the RSM
instruction. However, the timer can cause a VM exit only from VMX non-root operation. If the timer expires
during SMI, in SMM, or during RSM, a timer-induced VM exit occurs immediately after RSM with its normal
priority unless it is blocked based on activity state (Section 25.2).

® If the dual-monitor treatment of SMIs and SMM (see Section 34.15) is active, transitions into and out of SMM
are VM exits and VM entries, respectively. The treatment of the VMX-preemption timer by those transitions is
mostly the same as for ordinary VM exits and VM entries; Section 34.15.2 and Section 34.15.4 detail some
differences.

25.5.2 Monitor Trap Flag

The monitor trap flag is a debugging feature that causes VM exits to occur on certain instruction boundaries in
VMX non-root operation. Such VM exits are called MTF VM exits. An MTF VM exit may occur on an instruction
boundary in VMX non-root operation as follows:

® If the “monitor trap flag” VM-execution control is 1 and VM entry is injecting a vectored event (see Section
26.5.1), an MTF VM exit is pending on the instruction boundary before the first instruction following the
VM entry.

® If VM entry is injecting a pending MTF VM exit (see Section 26.5.2), an MTF VM exit is pending on the
instruction boundary before the first instruction following the VM entry. This is the case even if the “monitor
trap flag” VM-execution control is O.

® If the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and a pending event
(e.g., debug exception or interrupt) is delivered before an instruction can execute, an MTF VM exit is pending
on the instruction boundary following delivery of the event (or any nested exception).

® Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first
instruction following VM entry is a REP-prefixed string instruction:

— If the first iteration of the instruction causes a fault, an MTF VM exit is pending on the instruction boundary
following delivery of the fault (or any nested exception).

— If the first iteration of the instruction does not cause a fault, an MTF VM exit is pending on the instruction
boundary after that iteration.

® Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first
instruction following VM entry is the XBEGIN instruction. In this case, an MTF VM exit is pending at the fallback
instruction address of the XBEGIN instruction. This behavior applies regardless of whether advanced debugging
of RTM transactional regions has been enabled (see Section 16.3.7, “RTM-Enabled Debugger Support,” of
Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 1).

® Suppose that the “monitor trap flag” VM-execution control is 1, VM entry is not injecting an event, and the first
instruction following VM entry is neither a REP-prefixed string instruction or the XBEGIN instruction:

— If the instruction causes a fault, an MTF VM exit is pending on the instruction boundary following delivery of
the fault (or any nested exception).!

— If the instruction does not cause a fault, an MTF VM exit is pending on the instruction boundary following
execution of that instruction. If the instruction is INT3 or INTO, this boundary follows delivery of any
software exception. If the instruction is INT n, this boundary follows delivery of a software interrupt. If the
instruction is HLT, the MTF VM exit will be from the HLT activity state.

No MTF VM exit occurs if another VM exit occurs before reaching the instruction boundary on which an MTF VM exit
would be pending (e.g., due to an exception or triple fault).

An MTF VM exit occurs on the instruction boundary on which it is pending unless a higher priority event takes
precedence or the MTF VM exit is blocked due to the activity state:

® System-management interrupts (SMIs), INIT signals, and higher priority events take priority over MTF
VM exits. MTF VM exits take priority over debug-trap exceptions and lower priority events.

1. This item includes the cases of an invalid opcode exception—#UD— generated by the UDZ2 instruction and a BOUND-range exceeded
exception—#BR—generated by the BOUND instruction.
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® No MTF VM exit occurs if the processor is in either the shutdown activity state or wait-for-SIPI activity state. If
a non-maskable interrupt subsequently takes the logical processor out of the shutdown activity state without
causing a VM exit, an MTF VM exit is pending after delivery of that interrupt.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section
43.2 for details.

25.5.3 Translation of Guest-Physical Addresses Using EPT

The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical
memory. When EPT is in use, certain physical addresses are treated as guest-physical addresses and are not used
to access memory directly. Instead, guest-physical addresses are translated by traversing a set of EPT paging
structures to produce physical addresses that are used to access memory.

Details of the EPT mechanism are given in Section 28.2.

25.5.4 APIC Virtualization

APIC virtualization is a collection of features that can be used to support the virtualization of interrupts and the
Advanced Programmable Interrupt Controller (APIC). When APIC virtualization is enabled, the processor emulates
many accesses to the APIC, tracks the state of the virtual APIC, and delivers virtual interrupts — all in VMX non-
root operation without a VM exit.

Details of the APIC virtualization are given in Chapter 29.

25.5.5 VM Functions

A VM function is an operation provided by the processor that can be invoked from VMX non-root operation
without a VM exit. VM functions are enabled and configured by the settings of different fields in the VMCS. Soft-
ware in VMX non-root operation invokes a VM function with the VMFUNC instruction; the value of EAX selects the
specific VM function being invoked.

Section 25.5.5.1 explains how VM functions are enabled. Section 25.5.5.2 specifies the behavior of the VMFUNC
instruction. Section 25.5.5.3 describes a specific VM function called EPTP switching.

25.5.5.1 Enabling VM Functions

Software enables VM functions generally by setting the “enable VM functions” VM-execution control. A specific
VM function is enabled by setting the corresponding VM-function control.

Suppose, for example, that software wants to enable EPTP switching (VM function O; see Section 24.6.14).To do
so, it must set the “activate secondary controls” VM-execution control (bit 31 of the primary processor-based VM-
execution controls), the “enable VM functions” VM-execution control (bit 13 of the secondary processor-based VM-
execution controls) and the “EPTP switching” VM-function control (bit O of the VM-function controls).

25.5.5.2 General Operation of the VMFUNC Instruction

The VMFUNC instruction causes an invalid-opcode exception (#UD) if the “enable VM functions” VM-execution
controls is 0! or the value of EAX is greater than 63 (only VM functions 0—63 can be enable). Otherwise, the
instruction causes a VM exit if the bit at position EAX is O in the VM-function controls (the selected VM function is
not enabled). If such a VM exit occurs, the basic exit reason used is 59 (3BH), indicating “VMFUNC”, and the length
of the VMFUNC instruction is saved into the VM-exit instruction-length field. If the instruction causes neither an
invalid-opcode exception nor a VM exit due to a disabled VM function, it performs the functionality of the

VM function specified by the value in EAX.

1. “Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.
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Individual VM functions may perform additional fault checking (e.g., one might cause a general-protection excep-
tion if CPL > 0). In addition, specific VM functions may include checks that might result in a VM exit. If such a

VM exit occurs, VM-exit information is saved as described in the previous paragraph. The specification of a

VM function may indicate that additional VM-exit information is provided.

The specific behavior of the EPTP-switching VM function (including checks that result in VM exits) is given in
Section 25.5.5.3.

25.5.5.3 EPTP Switching

EPTP switching is VM function 0. This VM function allows software in VMX non-root operation to load a new value
for the EPT pointer (EPTP), thereby establishing a different EPT paging-structure hierarchy (see Section 28.2 for
details of the operation of EPT). Software is limited to selecting from a list of potential EPTP values configured in
advance by software in VMX root operation.

Specifically, the value of ECX is used to select an entry from the EPTP list, the 4-KByte structure referenced by the
EPTP-list address (see Section 24.6.14; because this structure contains 512 8-Byte entries, VMFUNC causes a

VM exit if ECX > 512). If the selected entry is a valid EPTP value (it would not cause VM entry to fail; see Section
26.2.1.1), it is stored in the EPTP field of the current VMCS and is used for subsequent accesses using guest-phys-
ical addresses. The following pseudocode provides details:

IFECX>512
THEN VM exit;
ELSE
tent_EPTP « 8 bytes from EPTP-list address + 8 * ECX;
IF tent_EPTP is not a valid EPTP value (would cause VM entry to fail if in EPTP)
THEN VMexit;
ELSE
write tent_EPTP to the EPTP field in the current VMCS;
use tent_EPTP as the new EPTP value for address translation;
IF processor supports the 1-setting of the “EPT-violation #VE" VM-execution control
THEN
write ECX[15:0] to EPTP-index field in current VMCS;
use ECX[15:0] as EPTP index for subsequent EPT-violation virtualization exceptions (see Section 25.5.6.2);
Fl;
Fl;
Fl;

Execution of the EPTP-switching VM function does not modify the state of any registers; no flags are modified.

As noted in Section 25.5.5.2, an execution of the EPTP-switching VM function that causes a VM exit (as specified
above), uses the basic exit reason 59, indicating “VMFUNC?”. The length of the VMFUNC instruction is saved into the
VM-exit instruction-length field. No additional VM-exit information is provided.

An execution of VMFUNC loads EPTP from the EPTP list (and thus does not cause a fault or VM exit) is called an
EPTP-switching VMFUNC. After an EPTP-switching VMFUNC, control passes to the next instruction. The logical
processor starts creating and using guest-physical and combined mappings associated with the new value of bits
51:12 of EPTP; the combined mappings created and used are associated with the current VPID and PCID (these are
not changed by VMFUNC).1 If the “enable VPID” VM-execution control is O, an EPTP-switching VMFUNC invalidates
combined mappings associated with VPID O000H (for all PCIDs and for all EP4TA values, where EP4TA is the value
of bits 51:12 of EPTP).

Because an EPTP-switching VMFUNC may change the translation of guest-physical addresses, it may affect use of
the guest-physical address in CR3. The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT viola-
tion or an EPT misconfiguration due to the translation of that guest-physical address through the new EPT paging

structures. The following items provide details that apply if CRO.PG = 1:

® If 32-bit paging or 1A-32e paging is in use (either CR4.PAE = 0 or IA32_EFER.LMA = 1), the next memory
access with a linear address uses the translation of the guest-physical address in CR3 through the new EPT

1. If the “enable VPID" VM-execution control is O, the current VVPID is 0000H; if CR4.PCIDE = 0, the current PCID is OO0H.
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paging structures. As a result, this access may cause a VM exit due to an EPT violation or an EPT misconfigu-
ration encountered during that translation.

® If PAE paging is in use (CR4.PAE = 1 and 1A32_EFER.LMA = 0), an EPTP-switching VMFUNC does not load the
four page-directory-pointer-table entries (PDPTEs) from the guest-physical address in CR3. The logical
processor continues to use the four guest-physical addresses already present in the PDPTEs. The guest-
physical address in CR3 is not translated through the new EPT paging structures (until some operation that
would load the PDPTES).

The EPTP-switching VMFUNC cannot itself cause a VM exit due to an EPT violation or an EPT misconfiguration
encountered during the translation of a guest-physical address in any of the PDPTEs. A subsequent memory
access with a linear address uses the translation of the guest-physical address in the appropriate PDPTE
through the new EPT paging structures. As a result, such an access may cause a VM exit due to an EPT
violation or an EPT misconfiguration encountered during that translation.

If an EPTP-switching VMFUNC establishes an EPTP value that enables accessed and dirty flags for EPT (by setting
bit 6), subsequent memory accesses may fail to set those flags as specified if there has been no appropriate execu-
tion of INVEPT since the last use of an EPTP value that does not enable accessed and dirty flags for EPT (because
bit 6 is clear) and that is identical to the new value on bits 51:12.

IF the processor supports the 1-setting of the “EPT-violation #VE” VM-execution control, an EPTP-switching
VMFUNC loads the value in ECX[15:0] into to EPTP-index field in current VMCS. Subsequent EPT-violation virtual-
ization exceptions will save this value into the virtualization-exception information area (see Section 25.5.6.2);

25.5.6 Virtualization Exceptions
A virtualization exception is a new processor exception. It uses vector 20 and is abbreviated #VE.

A virtualization exception can occur only in VMX non-root operation. Virtualization exceptions occur only with
certain settings of certain VM-execution controls. Generally, these settings imply that certain conditions that would
normally cause VM exits instead cause virtualization exceptions

In particular, the 1-setting of the “EPT-violation #VE” VM-execution control causes some EPT violations to generate
virtualization exceptions instead of VM exits. Section 25.5.6.1 provides the details of how the processor deter-
mines whether an EPT violation causes a virtualization exception or a VM exit.

When the processor encounters a virtualization exception, it saves information about the exception to the virtual-
ization-exception information area; see Section 25.5.6.2.

After saving virtualization-exception information, the processor delivers a virtualization exception as it would any
other exception; see Section 25.5.6.3 for details.

25.5.6.1 Convertible EPT Violations

If the “EPT-violation #VE” VM-execution control is O (e.g., on processors that do not support this feature), EPT
violations always cause VM exits. If instead the control is 1, certain EPT violations may be converted to cause virtu-
alization exceptions instead; such EPT violations are convertible.

The values of certain EPT paging-structure entries determine which EPT violations are convertible. Specifically,
bit 63 of certain EPT paging-structure entries may be defined to mean suppress #VE:

® If bits 2:0 of an EPT paging-structure entry are all O, the entry is not present. If the processor encounters
such an entry while translating a guest-physical address, it causes an EPT violation. The EPT violation is
convertible if and only if bit 63 of the entry is O.

® If bits 2:0 of an EPT paging-structure entry are not all 0, the following cases apply:

— If the value of the EPT paging-structure entry is not supported, the entry is misconfigured. If the
processor encounters such an entry while translating a guest-physical address, it causes an EPT misconfig-
uration (not an EPT violation). EPT misconfigurations always cause VM exits.

— If the value of the EPT paging-structure entry is supported, the following cases apply:
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* Ifbit 7 of the entry is 1, or if the entry is an EPT PTE, the entry maps a page. If the processor uses such
an entry to translate a guest-physical address, and if an access to that address causes an EPT violation,
the EPT violation is convertible if and only if bit 63 of the entry is O.

* If bit 7 of the entry is O and the entry is not an EPT PTE, the entry references another EPT paging
structure. The processor does not use the value of bit 63 of the entry to determine whether any
subsequent EPT violation is convertible.

If an access to a guest-physical address causes an EPT violation, bit 63 of exactly one of the EPT paging-structure
entries used to translate that address is used to determine whether the EPT violation is convertible: either a entry
that is not present (if the guest-physical address does not translate to a physical address) or an entry that maps a
page (if it does).

A convertible EPT violation instead causes a virtualization exception if the following all hold:
® CRO.PE=1;

® the logical processor is not in the process of delivering an event through the IDT; and

® the 32 bits at offset 4 in the virtualization-exception information area are all O.

Delivery of virtualization exceptions writes the value FFFFFFFFH to offset 4 in the virtualization-exception informa-
tion area (see Section 25.5.6.2). Thus, once a virtualization exception occurs, another can occur only if software
clears this field.

25.5.6.2 Virtualization-Exception Information

Virtualization exceptions save data into the virtualization-exception information area (see Section 24.6.18).
Table 25-1 enumerates the data saved and the format of the area.

Table 25-1. Format of the Virtualization-Exception Information Area

Byte Offset Contents

0 The 32-bit value that would have been saved into the VMCS as an exit reason had a VM exit occurred
instead of the virtualization exception. For EPT violations, this value is 48 (00000030H)

4 FFFFFFFFH

8 The 64-bit value that would have been saved into the VMCS as an exit qualification had a VM exit
occurred instead of the virtualization exception

16 The 64-bit value that would have been saved into the VMCS as a guest-linear address had a VM exit
occurred instead of the virtualization exception

24 The 64-bit value that would have been saved into the VMCS as a guest-physical address had a VM
exit occurred instead of the virtualization exception

32 The current 16-bit value of the EPTP index VM-execution control (see Section 24.6.18 and Section
25.5.5.3)

25.5.6.3 Delivery of Virtualization Exceptions
After saving virtualization-exception information, the processor treats a virtualization exception as it does other
exceptions:

® If bit 20 (#VE) is 1 in the exception bitmap in the VMCS, a virtualization exception causes a VM exit (see
below). If the bit is 0, the virtualization exception is delivered using gate descriptor 20 in the IDT.

® Virtualization exceptions produce no error code. Delivery of a virtualization exception pushes no error code on
the stack.

® With respect to double faults, virtualization exceptions have the same severity as page faults. If delivery of a
virtualization exception encounters a nested fault that is either contributory or a page fault, a double fault
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(#DF) is generated. See Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and 1A-32 Archi-
tectures Software Developer’s Manual, Volume 3A.

It is not possible for a virtualization exception to be encountered while delivering another exception (see
Section 25.5.6.1).

If a virtualization exception causes a VM exit directly (because bit 20 is 1 in the exception bitmap), information
about the exception is saved normally in the VM-exit interruption information field in the VMCS (see Section
27.2.2). Specifically, the event is reported as a hardware exception with vector 20 and no error code. Bit 12 of the
field (NMI unblocking due to IRET) is set normally.

If a virtualization exception causes a VM exit indirectly (because bit 20 is O in the exception bitmap and delivery of
the exception generates an event that causes a VM exit), information about the exception is saved normally in the
IDT-vectoring information field in the VMCS (see Section 27.2.3). Specifically, the event is reported as a hardware
exception with vector 20 and no error code.

25.6  UNRESTRICTED GUESTS

The first processors to support VMX operation require CRO.PE and CRO.PG to be 1 in VMX operation (see Section
23.8). This restriction implies that guest software cannot be run in unpaged protected mode or in real-address
mode. Later processors support a VM-execution control called “unrestricted guest”.1 If this control is 1, CRO.PE and
CRO.PG may be 0 in VMX non-root operation. Such processors allow guest software to run in unpaged protected
mode or in real-address mode. The following items describe the behavior of such software:

® The MOV CRO instructions does not cause a general-protection exception simply because it would set either
CRO.PE and CRO.PG to 0. See Section 25.3 for details.

® Alogical processor treats the values of CRO.PE and CRO.PG in VMX non-root operation just as it does outside
VMX operation. Thus, if CRO.PE = 0, the processor operates as it does normally in real-address mode (for
example, it uses the 16-bit interrupt table to deliver interrupts and exceptions). If CRO.PG = 0, the processor
operates as it does normally when paging is disabled.

® Processor operation is modified by the fact that the processor is in VMX non-root operation and by the settings
of the VM-execution controls just as it is in protected mode or when paging is enabled. Instructions, interrupts,
and exceptions that cause VM exits in protected mode or when paging is enabled also do so in real-address
mode or when paging is disabled. The following examples should be noted:

— If CRO.PG = 0, page faults do not occur and thus cannot cause VM exits.
— If CRO.PE = 0, invalid-TSS exceptions do not occur and thus cannot cause VM exits.

— If CRO.PE = 0, the following instructions cause invalid-opcode exceptions and do not cause VM exits:
INVEPT, INVVPID, LLDT, LTR, SLDT, STR, VMCLEAR, VMLAUNCH, VMPTRLD, VMPTRST, VMREAD,
VMRESUME, VMWRITE, VMXOFF, and VMXON.

® If CRO.PG = 0, each linear address is passed directly to the EPT mechanism for translation to a physical
address.? The guest memory type passed on to the EPT mechanism is WB (writeback).

1. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VMX non-root operation functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. Asnoted in Section 26.2.1.1, the “enable EPT" VM-execution control must be 1 if the “unrestricted guest” VM-execution control is 1.
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CHAPTER 26
VM ENTRIES

Software can enter VMX non-root operation using either of the VM-entry instructions VMLAUNCH and VMRESUME.
VMLAUNCH can be used only with a VMCS whose launch state is clear and VMRESUME can be used only with a
VMCS whose the launch state is launched. VMLAUNCH should be used for the first VM entry after VMCLEAR; VMRE-
SUME should be used for subsequent VM entries with the same VMCS.

Each VM entry performs the following steps in the order indicated:

1. Basic checks are performed to ensure that VM entry can commence
(Section 26.1).

2. The control and host-state areas of the VMCS are checked to ensure that they are proper for supporting VMX
non-root operation and that the VMCS is correctly configured to support the next VM exit (Section 26.2).

3. The following may be performed in parallel or in any order (Section 26.3):

® The guest-state area of the VMCS is checked to ensure that, after the VM entry completes, the state of the
logical processor is consistent with 1A-32 and Intel 64 architectures.

® Processor state is loaded from the guest-state area and based on controls in the VMCS.
® Address-range monitoring is cleared.

4. MSRs are loaded from the VM-entry MSR-load area (Section 26.4).

5. If VMLAUNCH is being executed, the launch state of the VMCS is set to “launched.”

6. An event may be injected in the guest context (Section 26.5).

Steps 1-4 above perform checks that may cause VM entry to fail. Such failures occur in one of the following three
ways:

® Some of the checks in Section 26.1 may generate ordinary faults (for example, an invalid-opcode exception).
Such faults are delivered normally.

® Some of the checks in Section 26.1 and all the checks in Section 26.2 cause control to pass to the instruction
following the VM-entry instruction. The failure is indicated by setting RFLAGS.ZF! (if there is a current VMCS)
or RFLAGS.CF (if there is no current VMCS). If there is a current VMCS, an error number indicating the cause of
the failure is stored in the VM-instruction error field. See Chapter 30 for the error numbers.

® The checks in Section 26.3 and Section 26.4 cause processor state to be loaded from the host-state area of the
VMCS (as would be done on a VM exit). Information about the failure is stored in the VM-exit information fields.
See Section 26.7 for details.

EFLAGS.TF = 1 causes a VM-entry instruction to generate a single-step debug exception only if failure of one of the
checks in Section 26.1 and Section 26.2 causes control to pass to the following instruction. A VM-entry does not
generate a single-step debug exception in any of the following cases: (1) the instruction generates a fault; (2)
failure of one of the checks in Section 26.3 or in loading MSRs causes processor state to be loaded from the host-
state area of the VMCS; or (3) the instruction passes all checks in Section 26.1, Section 26.2, and Section 26.3 and
there is no failure in loading MSRs.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, code running in SMM returns using VM entries instead of the
RSM instruction. A VM entry returns from SMM if it is executed in SMM and the “entry to SMM” VM-entry control
is 0. VM entries that return from SMM differ from ordinary VM entries in ways that are detailed in Section 34.15.4.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For |A-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP,
ESP, EFLACS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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26.1  BASIC VM-ENTRY CHECKS

Before a VM entry commences, the current state of the logical processor is checked in the following order:

1. If the logical processor is in virtual-8086 mode or compatibility mode, an invalid-opcode exception is
generated.

If the current privilege level (CPL) is not zero, a general-protection exception is generated.
If there is no current VMCS, RFLAGS.CF is set to 1 and control passes to the next instruction.

If there is a current VMCS but the current VMCS is a shadow VMCS (see Section 24.10), RFLAGS.CFissetto 1
and control passes to the next instruction.

5. If there is a current VMCS that is not a shadow VMCS, the following conditions are evaluated in order; any of
these cause VM entry to fail:

a. if there is MOV-SS blocking (see Table 24-3)
b. if the VM entry is invoked by VMLAUNCH and the VMCS launch state is not clear
c. if the VM entry is invoked by VMRESUME and the VMCS launch state is not launched

If any of these checks fail, RFLAGS.ZF is set to 1 and control passes to the next instruction. An error number
indicating the cause of the failure is stored in the VM-instruction error field. See Chapter 30 for the error
numbers.

26.2  CHECKS ON VMX CONTROLS AND HOST-STATE AREA

If the checks in Section 26.1 do not cause VM entry to fail, the control and host-state areas of the VMCS are
checked to ensure that they are proper for supporting VMX non-root operation, that the VMCS is correctly config-
ured to support the next VM exit, and that, after the next VM exit, the processor’s state is consistent with the Intel
64 and IA-32 architectures.

VM entry fails if any of these checks fail. When such failures occur, control is passed to the next instruction,
RFLAGS.ZF is set to 1 to indicate the failure, and the VM-instruction error field is loaded with an error number that
indicates whether the failure was due to the controls or the host-state area (see Chapter 30).

These checks may be performed in any order. Thus, an indication by error number of one cause (for example, host
state) does not imply that there are not also other errors. Different processors may thus give different error
numbers for the same VMCS. Some checks prevent establishment of settings (or combinations of settings) that are
currently reserved. Future processors may allow such settings (or combinations) and may not perform the corre-
sponding checks. The correctness of software should not rely on VM-entry failures resulting from the checks docu-
mented in this section.

The checks on the controls and the host-state area are presented in Section 26.2.1 through Section 26.2.4. These
sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references are
to fields in the host-state area.

26.2.1 Checks on VMX Controls

This section identifies VM-entry checks on the VMX control fields.

26.2.1.1 VM-Execution Control Fields

VM entries perform the following checks on the VM-execution control fields:1

® Reserved bits in the pin-based VM-execution controls must be set properly. Software may consult the VMX
capability MSRs to determine the proper settings (see Appendix A.3.1).

1. If the “activate secondary controls” primary processor-based VM-execution control is O, VM entry operates as if each secondary pro-
cessor-based VM-execution control were O.
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Reserved bits in the primary processor-based VM-execution controls must be set properly. Software may
consult the VMX capability MSRs to determine the proper settings (see Appendix A.3.2).

If the “activate secondary controls” primary processor-based VM-execution control is 1, reserved bits in the
secondary processor-based VM-execution controls must be cleared. Software may consult the VMX capability
MSRs to determine which bits are reserved (see Appendix A.3.3).

If the “activate secondary controls” primary processor-based VM-execution control is O (or if the processor
does not support the 1-setting of that control), no checks are performed on the secondary processor-based
VM-execution controls. The logical processor operates as if all the secondary processor-based VM-execution
controls were 0.

The CR3-target count must not be greater than 4. Future processors may support a different number of CR3-
target values. Software should read the VMX capability MSR 1A32_VMX_MISC to determine the number of
values supported (see Appendix A.6).

If the “use 1/0 bitmaps” VM-execution control is 1, bits 11:0 of each 1/0-bitmap address must be 0. Neither
address should set any bits beyond the processor’s physical-address width.1:2

If the “use MSR bitmaps” VM-execution control is 1, bits 11:0 of the MSR-bitmap address must be 0. The
address should not set any bits beyond the processor’s physical-address width.3

If the “use TPR shadow” VM-execution control is 1, the virtual-APIC address must satisfy the following checks:
— Bits 11:0 of the address must be O.
— The address should not set any bits beyond the processor’s physical-address width.*

If all of the above checks are satisfied and the “use TPR shadow” VM-execution control is 1, bytes 3:1 of VTPR
(see Section 29.1.1) may be cleared (behavior may be implementation-specific).

The clearing of these bytes may occur even if the VM entry fails. This is true either if the failure causes control
to pass to the instruction following the VM-entry instruction or if it causes processor state to be loaded from
the host-state area of the VMCS.

If the “use TPR shadow” VM-execution control is 1 and the “virtual-interrupt delivery” VM-execution control is
0, bits 31:4 of the TPR threshold VM-execution control field must be 0.°

The following check is performed if the “use TPR shadow” VM-execution control is 1 and the “virtualize APIC
accesses” and “virtual-interrupt delivery” VM-execution controls are both 0: the value of bits 3:0 of the TPR
threshold VM-execution control field should not be greater than the value of bits 7:4 of VTPR (see Section
29.1.1).

If the “NMI exiting” VM-execution control is 0, the “virtual NMIs” VM-execution control must be 0.
If the “virtual NMIs” VM-execution control is O, the “NMI-window exiting” VM-execution control must be O.

If the “virtualize APIC-accesses” VM-execution control is 1, the APIC-access address must satisfy the following
checks:

— Bits 11:0 of the address must be 0.
— The address should not set any bits beyond the processor’s physical-address width.®

If the “use TPR shadow” VM-execution control is 0, the following VM-execution controls must also be O:

“virtualize x2APIC mode”, “APIC-register virtualization”, and “virtual-interrupt delivery”.”

s W

IS

Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

If IA32_VMX_BASIC[48] is read as 1, these addresses must not set any bits in the range 63:32; see Appendix A.1.
If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.
If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

“Vlirtual-interrupt delivery” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “virtual-interrupt delivery” VM-execution control were 0. See Section 24.6.2.

If IA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

“Virtualize x2APIC mode” and “APIC-register virtualization” are secondary processor-based VM-execution controls. If bit 31 of the
primary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.
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® |If the “virtualize x2APIC mode” VM-execution control is 1, the “virtualize APIC accesses” VM-execution control
must be 0.

® If the “virtual-interrupt delivery” VM-execution control is 1, the “external-interrupt exiting” VM-execution
control must be 1.

® |f the “process posted interrupts” VM-execution control is 1, the following must be true:®
— The “virtual-interrupt delivery” VM-execution control is 1.
— The *acknowledge interrupt on exit” VM-exit control is 1.
— The posted-interrupt notification vector has a value in the range 0-255 (bits 15:8 are all 0).
— Bits 5:0 of the posted-interrupt descriptor address are all O.

— The posted-interrupt descriptor address does not set any bits beyond the processor's physical-address
width.?

® |f the “enable VPID” VM-execution control is 1, the value of the VPID VM-execution control field must not be
0000H.3

® If the “enable EPT” VM-execution control is 1, the EPTP VM-execution control field (see Table 24-8 in Section
24.6.11) must satisfy the following checks:#

— The EPT memory type (bits 2:0) must be a value supported by the processor as indicated in the
IA32_VMX_EPT_VPID_CAP MSR (see Appendix A.10).

— Bits 5:3 (1 less than the EPT page-walk length) must be 3, indicating an EPT page-walk length of 4; see
Section 28.2.2.

— Bit 6 (enable bit for accessed and dirty flags for EPT) must be O if bit 21 of the 1A32_VMX_EPT_VPID_CAP
MSR (see Appendix A.10) is read as 0, indicating that the processor does not support accessed and dirty
flags for EPT.

— Reserved bits 11:7 and 63:N (where N is the processor’s physical-address width) must all be 0.

® |If the “enable PML” VM-execution control is 1, the “enable EPT” VM-execution control must also be 1.51In
addition, the PML address must satisfy the following checks:

— Bits 11:0 of the address must be 0.

— The address should not set any bits beyond the processor’s physical-address width.®

® If either the “unrestricted guest” VM-execution control or the “mode-based execute control for EPT” VM-
execution control is 1, the “enable EPT” VM-execution control must also be 1.7

® If the “enable VM functions” processor-based VM-execution control is 1, reserved bits in the VM-function
controls must be clear.? Software may consult the VMX capability MSRs to determine which bits are reserved
(see Appendix A.11). In addition, the following check is performed based on the setting of bits in the VM-
function controls (see Section 24.6.14):

1. "Process posted interrupts” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-exe-
cution controls is 0, VM entry functions as if the “process posted interrupts” VM-execution control were 0. See Section 24.6.2.

2. IfIA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

“Enable VPID" is a secondary processor-based VVM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable VPID" VM-execution control were 0. See Section 24.6.2.

4, "enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT" VM-execution control were 0. See Section 24.6.2.

5. "Enable PML" and “enable EPT" are both secondary processor-based VM-execution controls. If bit 31 of the primary processor-based
VM-execution controls is 0, VM entry functions as if both these controls were 0. See Section 24.6.2.

6. IfIA32_VMX_BASIC[48] is read as 1, this address must not set any bits in the range 63:32; see Appendix A.1.

7. All these controls are secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution con-
trols is 0, VM entry functions as if all these controls were 0. See Section 24.6.2.

8. "Enable VM functions” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “enable VM functions” VM-execution control were 0. See Section 24.6.2.

26-4 Vol.3C



VM ENTRIES

— If “EPTP switching” VM-function control is 1, the “enable EPT” VM-execution control must also be 1. In
addition, the EPTP-Ilist address must satisfy the following checks:

® Bits 11:0 of the address must be O.
®* The address must not set any bits beyond the processor’s physical-address width.

If the “enable VM functions” processor-based VM-execution control is 0, no checks are performed on the VM-
function controls.

If the “VYMCS shadowing” VM-execution control is 1, the VMREAD-bitmap and VMWRITE-bitmap addresses
must each satisfy the following checks:®

— Bits 11:0 of the address must be 0.
— The address must not set any bits beyond the processor’s physical-address width.

If the “EPT-violation #VE” VM-execution control is 1, the virtualization-exception information address must
satisfy the following checks:?

— Bits 11:0 of the address must be 0.

— The address must not set any bits beyond the processor’s physical-address width.

26.2.1.2 VM-Exit Control Fields

VM entries perform the following checks on the VM-exit control fields.

Reserved bits in the VM-exit controls must be set properly. Software may consult the VMX capability MSRs to

determine the proper settings (see Appendix A.4).

If the “activate VMX-preemption timer” VM-execution control is 0, the “save VMX-preemption timer value” VM

exit control must also be 0.

The following checks are performed for the VM-exit MSR-store address if the VM-exit MSR-store count field is

non-zero:

— The lower 4 bits of the VM-exit MSR-store address must be 0. The address should not set any bits beyond
the processor’s physical-address width.3

— The address of the last byte in the VM-exit MSR-store area should not set any bits beyond the processor’s
physical-address width. The address of this last byte is VM-exit MSR-store address + (MSR count * 16) —
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix

A.l.

The following checks are performed for the VM-exit MSR-load address if the VM-exit MSR-load count field is

non-zero:

— The lower 4 bits of the VM-exit MSR-load address must be 0. The address should not set any bits beyond
the processor’s physical-address width.

— The address of the last byte in the VM-exit MSR-load area should not set any bits beyond the processor’s
physical-address width. The address of this last byte is VM-exit MSR-load address + (MSR count * 16) — 1.
(The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix

A.l.

“VMCS shadowing" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “"VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

“EPT-violation #VE" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is O, VM entry functions as if the “EPT-violation #VE" VM-execution control were 0. See Section 24.6.2.

Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.
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26.2.1.3 VM-Entry Control Fields

VM entries perform the following checks on the VM-entry control fields.

Reserved bits in the VM-entry controls must be set properly. Software may consult the VMX capability MSRs to
determine the proper settings (see Appendix A.5).

Fields relevant to VM-entry event injection must be set properly. These fields are the VM-entry interruption-
information field (see Table 24-13 in Section 24.8.3), the VM-entry exception error code, and the VM-entry
instruction length. If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the following must
hold:

— The field’s interruption type (bits 10:8) is not set to a reserved value. Value 1 is reserved on all logical
processors; value 7 (other event) is reserved on logical processors that do not support the 1-setting of the
“monitor trap flag” VM-execution control.

— The field’s vector (bits 7:0) is consistent with the interruption type:
* If the interruption type is non-maskable interrupt (NMI), the vector is 2.
* If the interruption type is hardware exception, the vector is at most 31.
* If the interruption type is other event, the vector is O (pending MTF VM exit).

— The field's deliver-error-code bit (bit 11) is 1 if and only if (1) either (a) the "unrestricted guest” VM-
execution control is 0; or (b) bit O (corresponding to CRO.PE) is set in the CRO field in the guest-state area;
(2) the interruption type is hardware exception; and (3) the vector indicates an exception that would
normally deliver an error code (8 = #DF; 10 = TS; 11 = #NP; 12 = #SS; 13 = #GP; 14 = #PF; or 17 =
#AC).

— Reserved bits in the field (30:12) are O.
— If the deliver-error-code bit (bit 11) is 1, bits 31:15 of the VM-entry exception error-code field are 0.

— If the interruption type is software interrupt, software exception, or privileged software exception, the
VM-entry instruction-length field is in the range 0—15. A VM-entry instruction length of O is allowed only if
1IA32_VMX_MISC[30] is read as 1; see Appendix A.6.

The following checks are performed for the VM-entry MSR-load address if the VM-entry MSR-load count field is
non-zero:

— The lower 4 bits of the VM-entry MSR-load address must be 0. The address should not set any bits beyond
the processor’s physical-address width.t

— The address of the last byte in the VM-entry MSR-load area should not set any bits beyond the processor’s
physical-address width. The address of this last byte is VM-entry MSR-load address + (MSR count * 16) —
1. (The arithmetic used for the computation uses more bits than the processor’s physical-address width.)

If IA32_VMX_BASIC[48] is read as 1, neither address should set any bits in the range 63:32; see Appendix
A.l.

If the processor is not in SMM, the “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls
must be 0.

The “entry to SMM” and “deactivate dual-monitor treatment” VM-entry controls cannot both be 1.

26.2.2 Checks on Host Control Registers and MSRs

The following checks are performed on fields in the host-state area that correspond to control registers and MSRs:

The CRO field must not set any bit to a value not supported in VMX operation (see Section 23.8).2
The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).

Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

The bits corresponding to CRO.NW (bit 29) and CRO.CD (bit 30) are never checked because the values of these bits are not changed
by VM exit; see Section 27.5.1.
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® On processors that support Intel 64 architecture, the CR3 field must be such that bits 63:52 and bits in the
range 51:32 beyond the processor’s physical-address width must be 0.1:2

® On processors that support Intel 64 architecture, the 1A32_SYSENTER_ESP field and the 1A32_SYSENTER_EIP
field must each contain a canonical address.

® If the “load 1A32_PERF_GLOBAL_CTRL” VM-exit control is 1, bits reserved in the 1A32_PERF_GLOBAL_CTRL
MSR must be 0 in the field for that register (see Figure 18-3).

® If the “load 1A32_PAT” VM-exit control is 1, the value of the field for the IA32_PAT MSR must be one that could
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

® If the “load IA32_EFER” VM-exit control is 1, bits reserved in the IA32_EFER MSR must be O in the field for that
register. In addition, the values of the LMA and LME bits in the field must each be that of the “host address-
space size” VM-exit control.

26.2.3 Checks on Host Segment and Descriptor-Table Registers

The following checks are performed on fields in the host-state area that correspond to segment and descriptor-
table registers:

® In the selector field for each of CS, SS, DS, ES, FS, GS and TR, the RPL (bits 1:0) and the TI flag (bit 2) must
be 0.

® The selector fields for CS and TR cannot be OO00H.
® The selector field for SS cannot be OO00H if the “host address-space size” VM-exit control is O.

® On processors that support Intel 64 architecture, the base-address fields for FS, GS, GDTR, IDTR, and TR must
contain canonical addresses.

26.2.4 Checks Related to Address-Space Size

On processors that support Intel 64 architecture, the following checks related to address-space size are performed
on VMX controls and fields in the host-state area:

® If the logical processor is outside 1A-32e mode (if IA32_EFER.LMA = 0) at the time of VM entry, the following
must hold:

— The “IA-32e mode guest” VM-entry control is 0.

— The “host address-space size” VM-exit control is 0.

® If the logical processor is in 1A-32e mode (if IA32_EFER.LMA = 1) at the time of VM entry, the “host address-
space size” VM-exit control must be 1.

® If the “host address-space size” VM-exit control is O, the following must hold:
— The “l1A-32e mode guest” VM-entry control is 0.
— Bit 17 of the CR4 field (corresponding to CR4.PCIDE) is O.
— Bits 63:32 in the RIP field is O.

® If the “host address-space size” VM-exit control is 1, the following must hold:
— Bit 5 of the CR4 field (corresponding to CR4.PAE) is 1.
— The RIP field contains a canonical address.

On processors that do not support Intel 64 architecture, checks are performed to ensure that the “I1A-32e mode
guest” VM-entry control and the “host address-space size” VM-exit control are both O.

1. Software can determine a processor's physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. Bit 63 of the CR3 field in the host-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to
MOV to CR3 is used to determine whether cached translation information is invalidated.

Vol.3C 26-7



VM ENTRIES

26.3 CHECKING AND LOADING GUEST STATE

If all checks on the VMX controls and the host-state area pass (see Section 26.2), the following operations take
place concurrently: (1) the guest-state area of the VMCS is checked to ensure that, after the VM entry completes,
the state of the logical processor is consistent with 1A-32 and Intel 64 architectures; (2) processor state is loaded
from the guest-state area or as specified by the VM-entry control fields; and (3) address-range monitoring is
cleared.

Because the checking and the loading occur concurrently, a failure may be discovered only after some state has
been loaded. For this reason, the logical processor responds to such failures by loading state from the host-state
area, as it would for a VM exit. See Section 26.7.

26.3.1 Checks on the Guest State Area

This section describes checks performed on fields in the guest-state area. These checks may be performed in any
order. Some checks prevent establishment of settings (or combinations of settings) that are currently reserved.

Future processors may allow such settings (or combinations) and may not perform the corresponding checks. The
correctness of software should not rely on VM-entry failures resulting from the checks documented in this section.

The following subsections reference fields that correspond to processor state. Unless otherwise stated, these refer-
ences are to fields in the guest-state area.

26.3.1.1 Checks on Guest Control Registers, Debug Registers, and MSRs

The following checks are performed on fields in the guest-state area corresponding to control registers, debug
registers, and MSRs:

® The CRO field must not set any bit to a value not supported in VMX operation (see Section 23.8). The following
are exceptions:

— Bit 0 (corresponding to CRO.PE) and bit 31 (PG) are not checked if the “unrestricted guest” VM-execution
control is 1.1

— Bit 29 (corresponding to CRO.NW) and bit 30 (CD) are never checked because the values of these bits are
not changed by VM entry; see Section 26.3.2.1.

® If bit 31 in the CRO field (corresponding to PG) is 1, bit O in that field (PE) must also be 1.2
® The CR4 field must not set any bit to a value not supported in VMX operation (see Section 23.8).

® If the “load debug controls” VM-entry control is 1, bits reserved in the 1A32_DEBUGCTL MSR must be O in the
field for that register. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus performed this check unconditionally.

® The following checks are performed on processors that support Intel 64 architecture:

— If the “lA-32e mode guest” VM-entry control is 1, bit 31 in the CRO field (corresponding to CRO.PG) and
bit 5 in the CR4 field (corresponding to CR4.PAE) must each be 1.3

— If the “l1A-32e mode guest” VM-entry control is 0, bit 17 in the CR4 field (corresponding to CR4.PCIDE)
must be 0.

— The CR3 field must be such that bits 63:52 and bits in the range 51:32 beyond the processor’s physical-
address width are 0.4

1. “Unrestricted guest” is a secondary processor-based VVM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in VMX operation, bit O in the CRO field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

3. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, bit 31 in the CRO field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

4, Software can determine a processor's physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.
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— If the “load debug controls” VM-entry control is 1, bits 63:32 in the DR7 field must be 0. The first
processors to support the virtual-machine extensions supported only the 1-setting of this control and thus
performed this check unconditionally (if they supported Intel 64 architecture).

— The IA32_SYSENTER_ESP field and the 1A32_SYSENTER_EIP field must each contain a canonical address.

If the “load 1A32_PERF_GLOBAL_CTRL” VM-entry control is 1, bits reserved in the I1A32_PERF_GLOBAL_CTRL
MSR must be 0 in the field for that register (see Figure 18-3).

If the “load IA32_PAT” VM-entry control is 1, the value of the field for the IA32_PAT MSR must be one that could
be written by WRMSR without fault at CPL 0. Specifically, each of the 8 bytes in the field must have one of the
values 0 (UC), 1 (WC), 4 (WT), 5 (WP), 6 (WB), or 7 (UC-).

If the “load 1A32_EFER” VM-entry control is 1, the following checks are performed on the field for the
IA32_EFER MSR :

— Bits reserved in the 1A32_EFER MSR must be 0.

— Bit 10 (corresponding to 1A32_EFER.LMA) must equal the value of the “IA-32e mode guest” VM-entry
control. It must also be identical to bit 8 (LME) if bit 31 in the CRO field (corresponding to CRO.PG) is 1.1

If the “load 1A32_BNDCFGS” VM-entry control is 1, the following checks are performed on the field for the
IA32_BNDCFGS MSR :

— Bits reserved in the 1A32_BNDCFGS MSR must be 0.

— The linear address in bits 63:12 must be canonical.

26.3.1.2 Checks on Guest Segment Registers

This section specifies the checks on the fields for CS, SS, DS, ES, FS, GS, TR, and LDTR. The following terms are
used in defining these checks:

The guest will be virtual-8086 if the VM flag (bit 17) is 1 in the RFLAGS field in the guest-state area.

The guest will be 1A-32e mode if the “IA-32e mode guest” VM-entry control is 1. (This is possible only on
processors that support Intel 64 architecture.)

Any one of these registers is said to be usable if the unusable bit (bit 16) is O in the access-rights field for that
register.

The following are the checks on these fields:

Selector fields.
— TR. The Tl flag (bit 2) must be 0.
— LDTR. If LDTR is usable, the Tl flag (bit 2) must be 0.

— SS. If the guest will not be virtual-8086 and the “unrestricted guest” VM-execution control is O, the RPL
(bits 1:0) must equal the RPL of the selector field for cs.?

Base-address fields.

— CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the address must be the selector field shifted left
4 bits (multiplied by 16).

— The following checks are performed on processors that support Intel 64 architecture:
* TR, FS, GS. The address must be canonical.
* |DTR. If LDTR is usable, the address must be canonical.

® CS. Bits 63:32 of the address must be zero.

Bit 63 of the CR3 field in the guest-state area must be 0. This is true even though, If CR4.PCIDE = 1, bit 63 of the source operand to
MOV to CR3 is used to determine whether cached translation information is invalidated.

If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, bit 31 in the CRO field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

“Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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® SS, DS, ES. If the register is usable, bits 63:32 of the address must be zero.
® Limit fields for CS, SS, DS, ES, FS, GS. If the guest will be virtual-8086, the field must be O000FFFFH.

® Access-rights fields.
— CS, SS, DS, ES, FS, GS.
* If the guest will be virtual-8086, the field must be 000000F3H. This implies the following:

Bits 3:0 (Type) must be 3, indicating an expand-up read/write accessed data segment.
Bit 4 (S) must be 1.

Bits 6:5 (DPL) must be 3.

Bit 7 (P) must be 1.

Bits 11:8 (reserved), bit 12 (software available), bit 13 (reserved/L), bit 14 (D/B), bit 15 (G),
bit 16 (unusable), and bits 31:17 (reserved) must all be 0.

* If the guest will not be virtual-8086, the different sub-fields are considered separately:

Bits 3:0 (Type).

CS. The values allowed depend on the setting of the “unrestricted guest” VM-execution
control:

— If the control is O, the Type must be 9, 11, 13, or 15 (accessed code segment).

— If the control is 1, the Type must be either 3 (read/write accessed expand-up data
segment) or one of 9, 11, 13, and 15 (accessed code segment).

SS. If SS is usable, the Type must be 3 or 7 (read/write, accessed data segment).

DS, ES, FS, GS. The following checks apply if the register is usable:

— Bit 0 of the Type must be 1 (accessed).

— If bit 3 of the Type is 1 (code segment), then bit 1 of the Type must be 1 (readable).

Bit 4 (S). If the register is CS or if the register is usable, S must be 1.
Bits 6:5 (DPL).

Cs.

— If the Type is 3 (read/write accessed expand-up data segment), the DPL must be 0. The
Type can be 3 only if the “unrestricted guest” VM-execution control is 1.

— If the Type is 9 or 11 (non-conforming code segment), the DPL must equal the DPL in the
access-rights field for SS.

— If the Type is 13 or 15 (conforming code segment), the DPL cannot be greater than the
DPL in the access-rights field for SS.

SS.

— If the “unrestricted guest” VM-execution control is O, the DPL must equal the RPL from the
selector field.

— The DPL must be O either if the Type in the access-rights field for CS is 3 (read/write
accessed expand-up data segment) or if bit O in the CRO field (corresponding to CRO.PE) is
0.1

DS, ES, FS, GS. The DPL cannot be less than the RPL in the selector field if (1) the

“unrestricted guest” VM-execution control is 0; (2) the register is usable; and (3) the Type in
the access-rights field is in the range 0 — 11 (data segment or non-conforming code segment).

Bit 7 (P). If the register is CS or if the register is usable, P must be 1.

1. The following apply if either the “unrestricted guest” VM-execution control or bit 31 of the primary processor-based VM-execution
controls is O: (1) bit 0 in the CRO field must be 1 if the capability MSR 1A32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in
VMX operation; and (2) the Type in the access-rights field for CS cannot be 3.
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— Bits 11:8 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

— Bit 14 (D/B). For CS, D/B must be O if the guest will be 1A-32e mode and the L bit (bit 13) in the
access-rights field is 1.

— Bit 15 (G). The following checks apply if the register is CS or if the register is usable:
* If any bit in the limit field in the range 11:0 is 0, G must be O.
® If any bit in the limit field in the range 31:20 is 1, G must be 1.

— Bits 31:17 (reserved). If the register is CS or if the register is usable, these bits must all be 0.

. The different sub-fields are considered separately:

Bits 3:0 (Type).

— If the guest will not be 1A-32e mode, the Type must be 3 (16-bit busy TSS) or 11 (32-bit busy
TSS).

— If the guest will be 1A-32e mode, the Type must be 11 (64-bit busy TSS).
Bit 4 (S). S must be 0.

Bit 7 (P). P must be 1.

Bits 11:8 (reserved). These bits must all be 0.

Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be O.

— If any bit in the limit field in the range 31:20 is 1, G must be 1.

Bit 16 (Unusable). The unusable bit must be 0.

Bits 31:17 (reserved). These bits must all be O.

— LDTR. The following checks on the different sub-fields apply only if LDTR is usable:

26.3.1.3

Bits 3:0 (Type). The Type must be 2 (LDT).

Bit 4 (S). S must be 0.

Bit 7 (P). P must be 1.

Bits 11:8 (reserved). These bits must all be O.

Bit 15 (G).

— If any bit in the limit field in the range 11:0 is 0, G must be 0.
— If any bit in the limit field in the range 31:20 is 1, G must be 1.
Bits 31:17 (reserved). These bits must all be O.

Checks on Guest Descriptor-Table Registers

The following checks are performed on the fields for GDTR and IDTR:

® On processors that support Intel 64 architecture, the base-address fields must contain canonical addresses.
® Bits 31:16 of each limit field must be 0.

26.3.1.4

Checks on Guest RIP and RFLAGS

The following checks are performed on fields in the guest-state area corresponding to RIP and RFLAGS:

® RIP. The following checks are performed on processors that support Intel 64 architecture:

— Bits 63:32 must be 0 if the “IA-32e mode guest” VM-entry control is O or if the L bit (bit 13) in the access-
rights field for CS is O.

— If the processor supports N < 64 linear-address bits, bits 63:N must be identical if the “IA-32e mode guest”
VM-entry control is 1 and the L bit in the access-rights field for CS is 1.1 (No check applies if the processor
supports 64 linear-address bits.)
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RFLAGS.

— Reserved bits 63:22 (bits 31:22 on processors that do not support Intel 64 architecture), bit 15, bit 5 and
bit 3 must be O in the field, and reserved bit 1 must be 1.

— The VM flag (bit 17) must be O either if the “IA-32e mode guest” VM-entry control is 1 or if bit O in the CRO
field (corresponding to CRO.PE) is 0.1

— The IF flag (RFLAGS[bit 9]) must be 1 if the valid bit (bit 31) in the VM-entry interruption-information field
is 1 and the interruption type (bits 10:8) is external interrupt.

26.3.1.5 Checks on Guest Non-Register State

The following checks are performed on fields in the guest-state area corresponding to non-register state:

Activity state.

— The activity-state field must contain a value in the range 0 — 3, indicating an activity state supported by the
implementation (see Section 24.4.2). Future processors may include support for other activity states.
Software should read the VMX capability MSR 1A32_VMX_MISC (see Appendix A.6) to determine what
activity states are supported.

— The activity-state field must not indicate the HLT state if the DPL (bits 6:5) in the access-rights field for SS
is not 0.2

— The activity-state field must indicate the active state if the interruptibility-state field indicates blocking by
either MOV-SS or by STI (if either bit O or bit 1 in that field is 1).

— If the valid bit (bit 31) in the VM-entry interruption-information field is 1, the interruption to be delivered
(as defined by interruption type and vector) must not be one that would normally be blocked while a logical
processor is in the activity state corresponding to the contents of the activity-state field. The following
items enumerate the interruptions (as specified in the VM-entry interruption-information field) whose
injection is allowed for the different activity states:

® Active. Any interruption is allowed.
®* HLT. The only events allowed are the following:
— Those with interruption type external interrupt or non-maskable interrupt (NMI).

— Those with interruption type hardware exception and vector 1 (debug exception) or vector 18
(machine-check exception).

— Those with interruption type other event and vector 0 (pending MTF VM exit).

See Table 24-13 in Section 24.8.3 for details regarding the format of the VM-entry interruption-
information field.

¢ Shutdown. Only NMIs and machine-check exceptions are allowed.
* Wait-for-SIPl. No interruptions are allowed.
— The activity-state field must not indicate the wait-for-SIPI state if the “entry to SMM” VM-entry control is 1.
Interruptibility state.
— The reserved bits (bits 31:5) must be 0.
— The field cannot indicate blocking by both STI and MOV SS (bits O and 1 cannot both be 1).
— Bit 0 (blocking by STI) must be O if the IF flag (bit 9) is O in the RFLAGS field.

Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.

If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in VMX operation, bit O in the CRO field must be 1
unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.

As noted in Section 24.4.1, SS.DPL corresponds to the logical processor’s current privilege level (CPL).
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Bit O (blocking by STI) and bit 1 (blocking by MOV-SS) must both be O if the valid bit (bit 31) in the
VM-entry interruption-information field is 1 and the interruption type (bits 10:8) in that field has value O,
indicating external interrupt.

Bit 1 (blocking by MOV-SS) must be O if the valid bit (bit 31) in the VM-entry interruption-information field
is 1 and the interruption type (bits 10:8) in that field has value 2, indicating non-maskable interrupt (NMI).

Bit 2 (blocking by SMI) must be 0 if the processor is not in SMM.
Bit 2 (blocking by SMI) must be 1 if the “entry to SMM” VM-entry control is 1.

A processor may require bit O (blocking by STI) to be 0 if the valid bit (bit 31) in the VM-entry interruption-
information field is 1 and the interruption type (bits 10:8) in that field has value 2, indicating NMI. Other
processors may not make this requirement.

Bit 3 (blocking by NMI) must be 0 if the “virtual NMIs” VM-execution control is 1, the valid bit (bit 31) in the
VM-entry interruption-information field is 1, and the interruption type (bits 10:8) in that field has value 2
(indicating NMI).

If bit 4 (enclave interruption) is 1, bit 1 (blocking by MOV-SS) must be 0 and the processor must support
for SGX by enumerating CPUID.(EAX=07H,ECX=0):EBX.SGX[bit 2] as 1.

NOTE

If the “virtual NMIs” VM-execution control is O, there is no requirement that bit 3 be O if the valid
bit in the VM-entry interruption-information field is 1 and the interruption type in that field has
value 2.

Pending debug exceptions.

Bits 11:4, bit 13, bit 15, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0.

The following checks are performed if any of the following holds: (1) the interruptibility-state field indicates
blocking by STI (bit O in that field is 1); (2) the interruptibility-state field indicates blocking by MOV SS
(bit 1 in that field is 1); or (3) the activity-state field indicates HLT:

* Bit 14 (BS) must be 1 if the TF flag (bit 8) in the RFLAGS field is 1 and the BTF flag (bit 1) in the
IA32_DEBUGCTL field is O.

* Bit 14 (BS) must be 0 if the TF flag (bit 8) in the RFLAGS field is O or the BTF flag (bit 1) in the
IA32_DEBUGCTL field is 1.

The following checks are performed if bit 16 (RTM) is 1:

® Bits 11:0, bits 15:13, and bits 63:17 (bits 31:17 on processors that do not support Intel 64 archi-
tecture) must be 0; bit 12 must be 1.

®* The processor must support for RTM by enumerating CPUID.(EAX=07H,ECX=0):EBX[bit 11] as 1.
* The interruptibility-state field must not indicate blocking by MOV SS (bit 1 in that field must be 0).

VMCS link pointer. The following checks apply if the field contains a value other than FFFFFFFF_FFFFFFFFH:

Bits 11:0 must be 0.
Bits beyond the processor’s physical-address width must be 0.12

The 4 bytes located in memory referenced by the value of the field (as a physical address) must satisfy the
following:

* Bits 30:0 must contain the processor’s VMCS revision identifier (see Section 24.2).3

. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

If IA32_VMX_BASIC[48] is read as 1, this field must not set any bits in the range 63:32; see Appendix A.1.

. Earlier versions of this manual specified that the VMCS revision identifier was a 32-bit field. For all processors produced prior to this
change, bit 31 of the VMCS revision identifier was 0.
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® Bit 31 must contain the setting of the “VMCS shadowing” VM-execution control.® This implies that the
referenced VMCS is a shadow VMCS (see Section 24.10) if and only if the “VMCS shadowing” VM-
execution control is 1.

— If the processor is not in SMM or the “entry to SMM” VM-entry control is 1, the field must not contain the
current VMCS pointer.

— If the processor is in SMM and the “entry to SMM” VM-entry control is O, the field must differ from the
executive-VMCS pointer.

26.3.1.6 Checks on Guest Page-Directory-Pointer-Table Entries

If CRO.PG =1, CR4.PAE = 1, and IA32_EFER.LME = 0, the logical processor uses PAE paging (see Section 4.4 in
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A).2 When PAE paging is in use, the
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3
when PAE paging is in use checks the validity of the PDPTEs.

A VM entry is to a guest that uses PAE paging if (1) bit 31 (corresponding to CRO.PG) is set in the CRO field in the
guest-state area; (2) bit 5 (corresponding to CR4.PAE) is set in the CR4 field; and (3) the “IA-32e mode guest”
VM-entry control is 0. Such a VM entry checks the validity of the PDPTEs:

® If the “enable EPT” VM-execution control is 0, VM entry checks the validity of the PDPTEs referenced by the CR3
field in the guest-state area if either (1) PAE paging was not in use before the VM entry; or (2) the value of CR3
is changing as a result of the VM entry. VM entry may check their validity even if neither (1) nor (2) hold.2

® If the “enable EPT” VM-execution control is 1, VM entry checks the validity of the PDPTE fields in the guest-state
area (see Section 24.4.2).

A VM entry to a guest that does not use PAE paging does not check the validity of any PDPTEs.

A VM entry that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with
MOV to CR3 when PAE paging is in use.? If MOV to CR3 would cause a general-protection exception due to the
PDPTEs that would be loaded (e.g., because a reserved bit is set), the VM entry fails.

26.3.2 Loading Guest State

Processor state is updated on VM entries in the following ways:

® Some state is loaded from the guest-state area.

® Some state is determined by VM-entry controls.

® The page-directory pointers are loaded based on the values of certain control registers.

This loading may be performed in any order and in parallel with the checking of VMCS contents (see Section
26.3.1).

The loading of guest state is detailed in Section 26.3.2.1 to Section 26.3.2.4. These sections reference VMCS fields
that correspond to processor state. Unless otherwise stated, these references are to fields in the guest-state area.

In addition to the state loading described in this section, VM entries may load MSRs from the VM-entry MSR-load
area (see Section 26.4). This loading occurs only after the state loading described in this section and the checking
of VMCS contents described in Section 26.3.1.

1. "WMCS shadowing” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “VMCS shadowing” VM-execution control were 0. See Section 24.6.2.

2. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits.
Software can determine the number physical-address bits supported by executing CPUID with 80000008H in EAX. The physical-
address width is returned in bits 7:0 of EAX.

3. “Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VM entry functions as if the “enable EPT" VM-execution control were 0. See Section 24.6.2.

4. This implies that (1) bits 11:9 in each PDPTE are ignored; and (2) if bit O (present) is clear in one of the PDPTEs, bits 63:1 of that
PDPTE are ignored.
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26.3.2.1 Loading Guest Control Registers, Debug Registers, and MSRs

The following items describe how guest control registers, debug registers, and MSRs are loaded on VM entry:

CRO is loaded from the CRO field with the exception of the following bits, which are never modified on VM entry:
ET (bit 4); reserved bits 15:6, 17, and 28:19; NW (bit 29) and CD (bit 30).1 The values of these bits in the CRO
field are ignored.

CR3 and CR4 are loaded from the CR3 field and the CR4 field, respectively.

If the “load debug controls” VM-entry control is 1, DR7 is loaded from the DR7 field with the exception that
bit 12 and bits 15:14 are always 0 and bit 10 is always 1. The values of these bits in the DR7 field are ignored.

The first processors to support the virtual-machine extensions supported only the 1-setting of the “load
debug controls” VM-entry control and thus always loaded DR7 from the DR7 field.

The following describes how certain MSRs are loaded using fields in the guest-state area:

— If the “load debug controls” VM-entry control is 1, the 1A32_DEBUGCTL MSR is loaded from the
IA32_DEBUGCTL field. The first processors to support the virtual-machine extensions supported only the 1-
setting of this control and thus always loaded the 1A32_DEBUGCTL MSR from the 1A32_DEBUGCTL field.

— The IA32_SYSENTER_CS MSR is loaded from the 1A32_SYSENTER_CS field. Since this field has only 32
bits, bits 63:32 of the MSR are cleared to O.

— The IA32_SYSENTER_ESP and IA32_SYSENTER_EIP MSRs are loaded from the 1A32_SYSENTER_ESP field
and the 1A32_SYSENTER_EIP field, respectively. On processors that do not support Intel 64 architecture,
these fields have only 32 bits; bits 63:32 of the MSRs are cleared to O.

— The following are performed on processors that support Intel 64 architecture:

* The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively
(see Section 26.3.2.2).

* If the “load 1A32_EFER” VM-entry control is 0, bits in the IA32_EFER MSR are modified as follows:
— 1A32_EFER.LMA is loaded with the setting of the “IA-32e mode guest” VM-entry control.

— If CRO is being loaded so that CRO.PG = 1, IA32_EFER.LME is also loaded with the setting of the
“lIA-32e mode guest” VM-entry control.? Otherwise, 1A32_EFER.LME is unmodified.

See below for the case in which the “load 1A32_EFER” VM-entry control is 1

— Ifthe “load IA32_PERF_GLOBAL_CTRL” VM-entry control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded
from the 1A32_PERF_GLOBAL_CTRL field.

— If the “load IA32_PAT” VM-entry control is 1, the IA32_PAT MSR is loaded from the 1A32_PAT field.
— If the “load 1A32_EFER” VM-entry control is 1, the I1A32_EFER MSR is loaded from the 1A32_EFER field.

— If the “load 1A32_BNDCFGS” VM-entry control is 1, the IA32_BNDCFGS MSR is loaded from the
IA32_BNDCFGS field.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-entry MSR-load area. See Section 26.4.

The SMBASE register is unmodified by all VM entries except those that return from SMM.

Bits 15:6, bit 17, and bit 28:19 of CRO and CRO.ET are unchanged by executions of MOV to CRO. Bits 15:6, bit 17, and bit 28:19 of
CRO are always 0 and CRO.ET is always 1.

If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, VM entry must be loading CRO so
that CRO.PG = 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.
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26.3.2.2 Loading Guest Segment Registers and Descriptor-Table Registers
For each of CS, SS, DS, ES, FS, GS, TR, and LDTR, fields are loaded from the guest-state area as follows:

The unusable bit is loaded from the access-rights field. This bit can never be set for TR (see Section 26.3.1.2).
If it is set for one of the other registers, the following apply:

— For each of CS, SS, DS, ES, FS, and GS, uses of the segment cause faults (general-protection exception or
stack-fault exception) outside 64-bit mode, just as they would had the segment been loaded using a null
selector. This bit does not cause accesses to fault in 64-bit mode.

— If this bit is set for LDTR, uses of LDTR cause general-protection exceptions in all modes, just as they would
had LDTR been loaded using a null selector.

If this bit is clear for any of CS, SS, DS, ES, FS, GS, TR, and LDTR, a null selector value does not cause a fault
(general-protection exception or stack-fault exception).

TR. The selector, base, limit, and access-rights fields are loaded.
Cs.

— The following fields are always loaded: selector, base address, limit, and (from the access-rights field) the
L, D, and G bits.

— For the other fields, the unusable bit of the access-rights field is consulted:
* If the unusable bit is 0, all of the access-rights field is loaded.
* If the unusable bit is 1, the remainder of CS access rights are undefined after VM entry.
SS, DS, ES, FS, GS, and LDTR.
— The selector fields are loaded.
— For the other fields, the unusable bit of the corresponding access-rights field is consulted:

* If the unusable bit is 0, the base-address, limit, and access-rights fields are loaded.

* If the unusable bit is 1, the base address, the segment limit, and the remainder of the access rights are
undefined after VM entry with the following exceptions:

— Bits 3:0 of the base address for SS are cleared to O.

— SS.DPL is always loaded from the SS access-rights field. This will be the current privilege level
(CPL) after the VM entry completes.

— SS.Bis always set to 1.

— The base addresses for FS and GS are loaded from the corresponding fields in the VMCS. On
processors that support Intel 64 architecture, the values loaded for base addresses for FS and GS
are also manifest in the FS.base and GS.base MSRs.

— On processors that support Intel 64 architecture, the base address for LDTR is set to an undefined
but canonical value.

— On processors that support Intel 64 architecture, bits 63:32 of the base addresses for SS, DS, and
ES are cleared to O.

GDTR and IDTR are loaded using the base and limit fields.

26.3.2.3 Loading Guest RIP, RSP, and RFLAGS

RSP, RIP, and RFLAGS are loaded from the RSP field, the RIP field, and the RFLAGS field, respectively. The following
items regard the upper 32 bits of these fields on VM entries that are not to 64-bit mode:

Bits 63:32 of RSP are undefined outside 64-bit mode. Thus, a logical processor may ignore the contents of
bits 63:32 of the RSP field on VM entries that are not to 64-bit mode.

As noted in Section 26.3.1.4, bits 63:32 of the RIP and RFLAGS fields must be 0 on VM entries that are not to
64-bit mode.
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26.3.2.4 Loading Page-Directory-Pointer-Table Entries

As noted in Section 26.3.1.6, the logical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1, and
IA32_EFER.LME = 0. A VM entry to a guest that uses PAE paging loads the PDPTEs into internal, non-architectural
registers based on the setting of the “enable EPT” VM-execution control:

® If the control is O, the PDPTEs are loaded from the page-directory-pointer table referenced by the physical
address in the value of CR3 being loaded by the VM entry (see Section 26.3.2.1). The values loaded are treated
as physical addresses in VMX non-root operation.

® If the control is 1, the PDPTEs are loaded from corresponding fields in the guest-state area (see Section
24.4.2). The values loaded are treated as guest-physical addresses in VMX non-root operation.

26.3.2.5 Updating Non-Register State

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs
and paging-structure caches. The following items detail how VM entries invalidate cached mappings:

® If the “enable VPID” VM-execution control is O, the logical processor invalidates linear mappings and combined
mappings associated with VPID 0O000H (for all PCIDs); combined mappings for VPID O000H are invalidated for
all EPATA values (EP4TA is the value of bits 51:12 of EPTP).

® VM entries are not required to invalidate any guest-physical mappings, nor are they required to invalidate any
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

If the “virtual-interrupt delivery” VM-execution control is 1, VM entry loads the values of RVI and SVI from the
guest interrupt-status field in the VMCS (see Section 24.4.2). After doing so, the logical processor first causes PPR
virtualization (Section 29.1.3) and then evaluates pending virtual interrupts (Section 29.2.1).

If a virtual interrupt is recognized, it may be delivered in VMX non-root operation immediately after VM entry
(including any specified event injection) completes; see Section 26.6.5. See Section 29.2.2 for details regarding
the delivery of virtual interrupts.

26.3.3 C(Clearing Address-Range Monitoring

The Intel 64 and 1A-32 architectures allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual,
Volume 3A. VM entries clear any address-range monitoring that may be in effect.

26.4  LOADING MSRS

VM entries may load MSRs from the VM-entry MSR-load area (see Section 24.8.2). Specifically each entry in that
area (up to the number specified in the VM-entry MSR-load count) is processed in order by loading the MSR
indexed by bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.1

Processing of an entry fails in any of the following cases:

® The value of bits 31:0 is either COOO0100H (the IA32_FS_BASE MSR) or CO000101 (the 1A32_GS_BASE MSR).

® The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register
when the local APIC is in Xx2APIC mode.

® The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the
VM entry did not commence in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

® The value of bits 31:0 indicates an MSR that cannot be loaded on VM entries for model-specific reasons. A
processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 35.

® Bits 63:32 are not all 0.

1. Because attempts to modify the value of IA32_EFER.LMA by WRMSR are ignored, attempts to modify it using the VM-entry MSR-
load area are also ignored.
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® An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection
exception if executed via WRMSR with CPL = 0.1

The VM entry fails if processing fails for any entry. The logical processor responds to such failures by loading state
from the host-state area, as it would for a VM exit. See Section 26.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so
that, after VM entry, the logical processor will not use any translations that were cached before the transition.

26.5 EVENT INJECTION

If the valid bit in the VM-entry interruption-information field (see Section 24.8.3) is 1, VM entry causes an event to
be delivered (or made pending) after all components of guest state have been loaded (including MSRs) and after
the VM-execution control fields have been established.

® If the interruption type in the field is O (external interrupt), 2 (non-maskable interrupt); 3 (hardware
exception), 4 (software interrupt), 5 (privileged software exception), or 6 (software exception), the event is
delivered as described in Section 26.5.1.

® If the interruption type in the field is 7 (other event) and the vector field is 0, an MTF VM exit is pending after
VM entry. See Section 26.5.2.

26.5.1 Vectored-Event Injection

VM entry delivers an injected vectored event within the guest context established by VM entry. This means that
delivery occurs after all components of guest state have been loaded (including MSRs) and after the VM-execution
control fields have been established.? The event is delivered using the vector in that field to select a descriptor in
the IDT. Since event injection occurs after loading IDTR from the guest-state area, this is the guest IDT.

Section 26.5.1.1 provides details of vectored-event injection. In general, the event is delivered exactly as if it had
been generated normally.

If event delivery encounters a nested exception (for example, a general-protection exception because the vector
indicates a descriptor beyond the IDT limit), the exception bitmap is consulted using the vector of that exception:

® If the bit for the nested exception is 0, the nested exception is delivered normally. If the nested exception is
benign, it is delivered through the IDT. If it is contributory or a page fault, a double fault may be generated,
depending on the nature of the event whose delivery encountered the nested exception. See Chapter 6,
“Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and IA-32 Architectures Software Developer’s
Manual, Volume 3A.3

® If the bit for the nested exception is 1, a VM exit occurs. Section 26.5.1.2 details cases in which event injection
causes a VM exit.

26.5.1.1 Details of Vectored-Event Injection

The event-injection process is controlled by the contents of the VM-entry interruption information field (format
given in Table 24-13), the VM-entry exception error-code field, and the VM-entry instruction-length field. The
following items provide details of the process:

1. If CRO.PG = 1, WRMSR to the IA32_EFER MSR causes a general-protection exception if it would modify the LME bit. If VM entry has
established CRO.PG = 1, the IA32_EFER MSR should not be included in the VM-entry MSR-load area for the purpose of modifying the
LME bit.

2. This does not imply that injection of an exception or interrupt will cause a VM exit due to the settings of VM-execution control fields
(such as the exception bitmap) that would cause a VM exit if the event had occurred in VMX non-root operation. In contrast, a nested
exception encountered during event delivery may cause a VM exit; see Section 26.5.1.1.

3. Hardware exceptions with the following unused vectors are considered benign: 15 and 21-31. A hardware exception with vector 20
is considered benign unless the processor supports the 1-setting of the “EPT-violation #VE" VM-execution control; in that case, it
has the same severity as page faults.
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The value pushed on the stack for RFLAGS is generally that which was loaded from the guest-state area. The
value pushed for the RF flag is not modified based on the type of event being delivered. However, the pushed
value of RFLAGS may be modified if a software interrupt is being injected into a guest that will be in virtual-
8086 mode (see below). After RFLAGS is pushed on the stack, the value in the RFLAGS register is modified as
is done normally when delivering an event through the IDT.

The instruction pointer that is pushed on the stack depends on the type of event and whether nested
exceptions occur during its delivery. The term current guest RIP refers to the value to be loaded from the
guest-state area. The value pushed is determined as follows:?!

— If VM entry successfully injects (with no nested exception) an event with interruption type external
interrupt, NMI, or hardware exception, the current guest RIP is pushed on the stack.

— If VM entry successfully injects (with no nested exception) an event with interruption type software
interrupt, privileged software exception, or software exception, the current guest RIP is incremented by the
VM-entry instruction length before being pushed on the stack.

— If VM entry encounters an exception while injecting an event and that exception does not cause a VM exit,
the current guest RIP is pushed on the stack regardless of event type or VM-entry instruction length. If the
encountered exception does cause a VM exit that saves RIP, the saved RIP is current guest RIP.

If the deliver-error-code bit (bit 11) is set in the VM-entry interruption-information field, the contents of the
VM-entry exception error-code field is pushed on the stack as an error code would be pushed during delivery of
an exception.

DR6, DR7, and the IA32_DEBUGCTL MSR are not modified by event injection, even if the event has vector 1
(normal deliveries of debug exceptions, which have vector 1, do update these registers).

If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode (RFLAGS.VM = 1), no
general-protection exception can occur due to RFLAGS.IOPL < 3. A VM monitor should check RFLAGS.IOPL
before injecting such an event and, if desired, inject a general-protection exception instead of a software
interrupt.

If VM entry is injecting a software interrupt and the guest will be in virtual-8086 mode with virtual-8086 mode
extensions (RFLAGS.VM = CR4.VME = 1), event delivery is subject to VME-based interrupt redirection based
on the software interrupt redirection bitmap in the task-state segment (TSS) as follows:

— If bit n in the bitmap is clear (where n is the number of the software interrupt), the interrupt is directed to
an 8086 program interrupt handler: the processor uses a 16-bit interrupt-vector table (IVT) located at
linear address zero. If the value of RFLAGS.IOPL is less than 3, the following modifications are made to the
value of RFLAGS that is pushed on the stack: IOPL is set to 3, and IF is set to the value of VIF.

— If bit n in the bitmap is set (where n is the number of the software interrupt), the interrupt is directed to a
protected-mode interrupt handler. (In other words, the injection is treated as described in the next item.)
In this case, the software interrupt does not invoke such a handler if RFLAGS.IOPL < 3 (a general-
protection exception occurs instead). However, as noted above, RFLAGS.IOPL cannot cause an injected
software interrupt to cause such a exception. Thus, in this case, the injection invokes a protected-mode
interrupt handler independent of the value of RFLAGS.IOPL.

Injection of events of other types are not subject to this redirection.

If VM entry is injecting a software interrupt (not redirected as described above) or software exception, privilege
checking is performed on the IDT descriptor being accessed as would be the case for executions of INT n, INT3,
or INTO (the descriptor’s DPL cannot be less than CPL). There is no checking of RFLAGS.IOPL, even if the guest
will be in virtual-8086 mode. Failure of this check may lead to a nested exception. Injection of an event with
interruption type external interrupt, NMI, hardware exception, and privileged software exception, or with inter-
ruption type software interrupt and being redirected as described above, do not perform these checks.

If VM entry is injecting a non-maskable interrupt (NMI) and the “virtual NMIs” VM-execution control is 1,
virtual-NMI blocking is in effect after VM entry.

The transition causes a last-branch record to be logged if the LBR bit is set in the IA32_DEBUGCTL MSR. This is
true even for events such as debug exceptions, which normally clear the LBR bit before delivery.

While these items refer to RIP, the width of the value pushed (16 bits, 32 bits, or 64 bits) is determined normally.
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® The last-exception record MSRs (LERs) may be updated based on the setting of the LBR bit in the
IA32_DEBUGCTL MSR. Events such as debug exceptions, which normally clear the LBR bit before they are
delivered, and therefore do not normally update the LERs, may do so as part of VM-entry event injection.

® Ifinjection of an event encounters a nested exception that does not itself cause a VM exit, the value of the EXT
bit (bit 0) in any error code pushed on the stack is determined as follows:

— If event being injected has interruption type external interrupt, NMI, hardware exception, or privileged
software exception and encounters a nested exception (but does not produce a double fault), the error code
for the first such exception encountered sets the EXT bit.

— If event being injected is a software interrupt or an software exception and encounters a nested exception
(but does not produce a double fault), the error code for the first such exception encountered clears the EXT
bit.

— If event delivery encounters a nested exception and delivery of that exception encounters another
exception (but does not produce a double fault), the error code for that exception sets the EXT bit. If a
double fault is produced, the error code for the double fault is OO00H (the EXT bit is clear).

26.5.1.2 VM Exits During Event Injection

An event being injected never causes a VM exit directly regardless of the settings of the VM-execution controls. For
example, setting the “NMI exiting” VM-execution control to 1 does not cause a VM exit due to injection of an NMI.

However, the event-delivery process may lead to a VM exit:

® If the vector in the VM-entry interruption-information field identifies a task gate in the IDT, the attempted task
switch may cause a VM exit just as it would had the injected event occurred during normal execution in VMX
non-root operation (see Section 25.4.2).

® If event delivery encounters a nested exception, a VM exit may occur depending on the contents of the
exception bitmap (see Section 25.2).

® If event delivery generates a double-fault exception (due to a nested exception); the logical processor
encounters another nested exception while attempting to call the double-fault handler; and that exception does
not cause a VM exit due to the exception bitmap; then a VM exit occurs due to triple fault (see Section 25.2).

® If event delivery injects a double-fault exception and encounters a nested exception that does not cause a
VM exit due to the exception bitmap, then a VM exit occurs due to triple fault (see Section 25.2).

® If the “virtualize APIC accesses” VM-execution control is 1 and event delivery generates an access to the APIC-
access page, that access is treated as described in Section 29.4 and may cause a VM exit.1

If the event-delivery process does cause a VM exit, the processor state before the VM exit is determined just as it
would be had the injected event occurred during normal execution in VMX non-root operation. If the injected event
directly accesses a task gate that cause a VM exit or if the first nested exception encountered causes a VM exit,
information about the injected event is saved in the IDT-vectoring information field (see Section 27.2.3).

26.5.1.3 Event Injection for VM Entries to Real-Address Mode

If VM entry is loading CRO.PE with O, any injected vectored event is delivered as would normally be done in real-
address mode.? Specifically, VM entry uses the vector provided in the VM-entry interruption-information field to
select a 4-byte entry from an interrupt-vector table at the linear address in IDTR.base. Further details are provided
in Section 15.1.4 in Volume 3A of the 1A-32 Intel® Architecture Software Developer’s Manual.

Because bit 11 (deliver error code) in the VM-entry interruption-information field must be 0 if CRO.PE will be O after
VM entry (see Section 26.2.1.3), vectored events injected with CRO.PE = 0 do not push an error code on the stack.
This is consistent with event delivery in real-address mode.

1. “Virtualize APIC accesses” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execu-
tion controls is 0, VM entry functions as if the "virtualize APIC accesses” VM-execution control were 0. See Section 24.6.2.

2. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in VMX operation, VM entry must be loading CRO.PE
with 1 unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are
both 1.
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If event delivery encounters a fault (due to a violation of IDTR.limit or of SS.limit), the fault is treated as if it had
occurred during event delivery in VMX non-root operation. Such a fault may lead to a VM exit as discussed in
Section 26.5.1.2.

26.5.2 Injection of Pending MTF VM Exits

If the interruption type in the VM-entry interruption-information field is 7 (other event) and the vector field is O,
VM entry causes an MTF VM exit to be pending on the instruction boundary following VM entry. This is the case
even if the “monitor trap flag” VM-execution control is 0. See Section 25.5.2 for the treatment of pending MTF
VM exits.

26.6  SPECIAL FEATURES OF VM ENTRY

This section details a variety of features of VM entry. It uses the following terminology: a VM entry is vectoring if
the valid bit (bit 31) of the VM-entry interruption information field is 1 and the interruption type in the field is O
(external interrupt), 2 (non-maskable interrupt); 3 (hardware exception), 4 (software interrupt), 5 (privileged
software exception), or 6 (software exception).

26.6.1 Interruptibility State

The interruptibility-state field in the guest-state area (see Table 24-3) contains bits that control blocking by STI,
blocking by MOV SS, and blocking by NMI. This field impacts event blocking after VM entry as follows:

¢ If the VM entry is vectoring, there is no blocking by STI or by MOV SS following the VM entry, regardless of the
contents of the interruptibility-state field.

® If the VM entry is not vectoring, the following apply:

— Events are blocked by STI if and only if bit O in the interruptibility-state field is 1. This blocking is cleared
after the guest executes one instruction or incurs an exception (including a debug exception made pending
by VM entry; see Section 26.6.3).

— Events are blocked by MOV SS if and only if bit 1 in the interruptibility-state field is 1. This may affect the
treatment of pending debug exceptions; see Section 26.6.3. This blocking is cleared after the guest
executes one instruction or incurs an exception (including a debug exception made pending by VM entry).

® The blocking of non-maskable interrupts (NMIs) is determined as follows:

— If the “virtual NMIs” VM-execution control is 0, NMIs are blocked if and only if bit 3 (blocking by NMI) in the
interruptibility-state field is 1. If the “NMI exiting” VM-execution control is O, execution of the IRET
instruction removes this blocking (even if the instruction generates a fault). If the “NMI exiting” control is
1, IRET does not affect this blocking.

— The following items describe the use of bit 3 (blocking by NMI) in the interruptibility-state field if the
“virtual NMIs” VM-execution control is 1:

®* The bit’s value does not affect the blocking of NMIs after VM entry. NMls are not blocked in VMX non-
root operation (except for ordinary blocking for other reasons, such as by the MOV SS instruction, the
wait-for-SIPI state, etc.)

* The bit’s value determines whether there is virtual-NMI blocking after VM entry. If the bit is 1, virtual-
NMI blocking is in effect after VM entry. If the bit is O, there is no virtual-NMI blocking after VM entry
unless the VM entry is injecting an NMI (see Section 26.5.1.1). Execution of IRET removes virtual-NMI
blocking (even if the instruction generates a fault).

If the “NMI exiting” VM-execution control is O, the “virtual NMIs” control must be O; see Section 26.2.1.1.
® Blocking of system-management interrupts (SMIs) is determined as follows:

— If the VM entry was not executed in system-management mode (SMM), SMI blocking is unchanged by
VM entry.
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— If the VM entry was executed in SMM, SMIs are blocked after VM entry if and only if the bit 2 in the inter-
ruptibility-state field is 1.

26.6.2  Activity State

The activity-state field in the guest-state area controls whether, after VM entry, the logical processor is active or in
one of the inactive states identified in Section 24.4.2. The use of this field is determined as follows:

If the VM entry is vectoring, the logical processor is in the active state after VM entry. While the consistency
checks described in Section 26.3.1.5 on the activity-state field do apply in this case, the contents of the
activity-state field do not determine the activity state after VM entry.

If the VM entry is not vectoring, the logical processor ends VM entry in the activity state specified in the guest-
state area. If VM entry ends with the logical processor in an inactive activity state, the VM entry generates any
special bus cycle that is normally generated when that activity state is entered from the active state. If

VM entry would end with the logical processor in the shutdown state and the logical processor is in SMX
operation,! an Intel® TXT shutdown condition occurs. The error code used is 0000H, indicating “legacy
shutdown.” See Intel® Trusted Execution Technology Preliminary Architecture Specification.

Some activity states unconditionally block certain events. The following blocking is in effect after any VM entry
that puts the processor in the indicated state:

— The active state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the active state
and in VMX non-root operation are discarded and do not cause VM exits.

— The HLT state blocks start-up IPIs (SIPIs). SIPIs that arrive while a logical processor is in the HLT state and
in VMX non-root operation are discarded and do not cause VM exits.

— The shutdown state blocks external interrupts and SIPIs. External interrupts that arrive while a logical
processor is in the shutdown state and in VMX non-root operation do not cause VM exits even if the
“external-interrupt exiting” VM-execution control is 1. SIPIs that arrive while a logical processor is in the
shutdown state and in VMX non-root operation are discarded and do not cause VM exits.

— The wait-for-SIPI state blocks external interrupts, non-maskable interrupts (NMlIs), INIT signals, and
system-management interrupts (SMIs). Such events do not cause VM exits if they arrive while a logical
processor is in the wait-for-SIPI state and in VMX non-root operation do not cause VM exits regardless of
the settings of the pin-based VM-execution controls.

26.6.3 Delivery of Pending Debug Exceptions after VM Entry

The pending debug exceptions field in the guest-state area indicates whether there are debug exceptions that have
not yet been delivered (see Section 24.4.2). This section describes how these are treated on VM entry.

There are no pending debug exceptions after VM entry if any of the following are true:

The VM entry is vectoring with one of the following interruption types: external interrupt, non-maskable
interrupt (NMI), hardware exception, or privileged software exception.

The interruptibility-state field does not indicate blocking by MOV SS and the VM entry is vectoring with either
of the following interruption type: software interrupt or software exception.

The VM entry is not vectoring and the activity-state field indicates either shutdown or wait-for-SIPI.

If none of the above hold, the pending debug exceptions field specifies the debug exceptions that are pending for
the guest. There are valid pending debug exceptions if either the BS bit (bit 14) or the enable-breakpoint bit
(bit 12) is 1. If there are valid pending debug exceptions, they are handled as follows:

If the VM entry is not vectoring, the pending debug exceptions are treated as they would had they been
encountered normally in guest execution:

— If the logical processor is not blocking such exceptions (the interruptibility-state field indicates no blocking
by MOV SS), a debug exception is delivered after VM entry (see below).

1.

A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. See
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software Developer's Manual, Volume 2B.
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— If the logical processor is blocking such exceptions (due to blocking by MOV SS), the pending debug
exceptions are held pending or lost as would normally be the case.

¢ If the VM entry is vectoring (with interruption type software interrupt or software exception and with blocking
by MOV SS), the following items apply:

— For injection of a software interrupt or of a software exception with vector 3 (#BP) or vector 4 (#0F), the
pending debug exceptions are treated as they would had they been encountered normally in guest
execution if the corresponding instruction (INT3 or INTO) were executed after a MOV SS that encountered
a debug trap.

— For injection of a software exception with a vector other than 3 and 4, the pending debug exceptions may
be lost or they may be delivered after injection (see below).

If there are no valid pending debug exceptions (as defined above), no pending debug exceptions are delivered after
VM entry.

If a pending debug exception is delivered after VM entry, it has the priority of “traps on the previous instruction”
(see Section 6.9 in the Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A). Thus, INIT
signals and system-management interrupts (SMIs) take priority of such an exception, as do VM exits induced by
the TPR threshold (see Section 26.6.7) and pending MTF VM exits (see Section 26.6.8. The exception takes priority
over any pending non-maskable interrupt (NMI) or external interrupt and also over VM exits due to the 1-settings
of the “interrupt-window exiting” and “NMI-window exiting” VM-execution controls.

A pending debug exception delivered after VM entry causes a VM exit if the bit 1 (#DB) is 1 in the exception
bitmap. If it does not cause a VM exit, it updates DR6 normally.

26.6.4 VMX-Preemption Timer

If the “activate VMX-preemption timer” VM-execution control is 1, VM entry starts the VMX-preemption timer with
the unsigned value in the VMX-preemption timer-value field.

It is possible for the VMX-preemption timer to expire during VM entry (e.g., if the value in the VMX-preemption
timer-value field is zero). If this happens (and if the VM entry was not to the wait-for-SIPI state), a VM exit occurs
with its normal priority after any event injection and before execution of any instruction following VM entry. For
example, any pending debug exceptions established by VM entry (see Section 26.6.3) take priority over a timer-
induced VM exit. (The timer-induced VM exit will occur after delivery of the debug exception, unless that exception
or its delivery causes a different VM exit.)

See Section 25.5.1 for details of the operation of the VMX-preemption timer in VMX non-root operation, including
the blocking and priority of the VM exits that it causes.

26.6.5 Interrupt-Window Exiting and Virtual-Interrupt Delivery

If “interrupt-window exiting” VM-execution control is 1, an open interrupt window may cause a VM exit immedi-
ately after VM entry (see Section 25.2 for details). If the “interrupt-window exiting” VM-execution control is O but
the “virtual-interrupt delivery” VM-execution control is 1, a virtual interrupt may be delivered immediately after
VM entry (see Section 26.3.2.5 and Section 29.2.1).

The following items detail the treatment of these events:
® These events occur after any event injection specified for VM entry.

® Non-maskable interrupts (NMIs) and higher priority events take priority over these events. These events take
priority over external interrupts and lower priority events.

® These events wake the logical processor if it just entered the HLT state because of a VM entry (see Section
26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.6 NMI-Window Exiting

The “NMI-window exiting” VM-execution control may cause a VM exit to occur immediately after VM entry (see
Section 25.2 for details).

Vol. 3C 26-23



VM ENTRIES

The following items detail the treatment of these VM exits:
® These VM exits follow event injection if such injection is specified for VM entry.

® Debug-trap exceptions (see Section 26.6.3) and higher priority events take priority over VM exits caused by
this control. VM exits caused by this control take priority over non-maskable interrupts (NMIs) and lower
priority events.

® VM exits caused by this control wake the logical processor if it just entered either the HLT state or the shutdown
state because of a VM entry (see Section 26.6.2). They do not occur if the logical processor just entered the
wait-for-SIPI state.

26.6.7 VM Exits Induced by the TPR Threshold

If the “use TPR shadow” and “virtualize APIC accesses” VM-execution controls are both 1 and the “virtual-interrupt
delivery” VM-execution control is 0, a VM exit occurs immediately after VM entry if the value of bits 3:0 of the TPR
threshold VM-execution control field is greater than the value of bits 7:4 of VTPR (see Section 29.1.1).1

The following items detail the treatment of these VM exits:

® The VM exits are not blocked if RFLAGS.IF = 0 or by the setting of bits in the interruptibility-state field in guest-
state area.

® The VM exits follow event injection if such injection is specified for VM entry.

® VM exits caused by this control take priority over system-management interrupts (SMIs), INIT signals, and
lower priority events. They thus have priority over the VM exits described in Section 26.6.5, Section 26.6.6,
and Section 26.6.8, as well as any interrupts or debug exceptions that may be pending at the time of VM entry.

® These VM exits wake the logical processor if it just entered the HLT state as part of a VM entry (see Section
26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

If such a VM exit is suppressed because the processor just entered the shutdown state, it occurs after the
delivery of any event that cause the logical processor to leave the shutdown state while remaining in VMX
non-root operation (e.g., due to an NMI that occurs while the “NMI-exiting” VM-execution control is 0).

® The basic exit reason is “TPR below threshold.”

26.6.8 Pending MTF VM Exits

As noted in Section 26.5.2, VM entry may cause an MTF VM exit to be pending immediately after VM entry. The
following items detail the treatment of these VM exits:

® System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these
VM exits. These VM exits take priority over debug-trap exceptions and lower priority events.

® These VM exits wake the logical processor if it just entered the HLT state because of a VM entry (see Section
26.6.2). They do not occur if the logical processor just entered the shutdown state or the wait-for-SIPI state.

26.6.9 VM Entries and Advanced Debugging Features

VM entries are not logged with last-branch records, do not produce branch-trace messages, and do not update the
branch-trace store.

1. “Virtualize APIC accesses” and “virtual-interrupt delivery” are secondary processor-based VM-execution controls. If bit 31 of the pri-
mary processor-based VM-execution controls is 0, VM entry functions as if these controls were 0. See Section 24.6.2.
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26.7

VM-entry failures due to the checks identified in Section 26.3.1 and failures during the MSR loading identified in
Section 26.4 are treated differently from those that occur earlier in VM entry. In these cases, the following steps

take place:
1.

3.
4.

VM ENTRIES

VM-ENTRY FAILURES DURING OR AFTER LOADING GUEST STATE

Information about the VM-entry failure is recorded in the VM-exit information fields:

— Exit reason.

Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general
cause of the VM-entry failure. The following numbers are used:

33. VM-entry failure due to invalid guest state. A VM entry failed one of the checks identified in Section
26.3.1.

34. VM-entry failure due to MSR loading. A VM entry failed in an attempt to load MSRs (see Section
26.4).

41. VM-entry failure due to machine-check event. A machine-check event occurred during VM entry
(see Section 26.8).

Bit 31 is set to 1 to indicate a VM-entry failure.
The remainder of the field (bits 30:16) is cleared.

— Exit qualification. This field is set based on the exit reason.

VM-entry failure due to invalid guest state. In most cases, the exit qualification is cleared to 0. The
following non-zero values are used in the cases indicated:

1. Not used.
2. Failure was due to a problem loading the PDPTEs (see Section 26.3.1.6).

3. Failure was due to an attempt to inject a non-maskable interrupt (NMI) into a guest that is blocking
events through the STI blocking bit in the interruptibility-state field. Such failures are implemen-
tation-specific (see Section 26.3.1.5).

4. Failure was due to an invalid VMCS link pointer (see Section 26.3.1.5).

VM-entry checks on guest-state fields may be performed in any order. Thus, an indication by exit
qualification of one cause does not imply that there are not also other errors. Different processors
may give different exit qualifications for the same VMCS.

VM-entry failure due to MSR loading. The exit qualification is loaded to indicate which entry in the
VM-entry MSR-load area caused the problem (1 for the first entry, 2 for the second, etc.).

— All other VM-exit information fields are unmodified.

Processor state is loaded as would be done on a VM exit (see Section 27.5). If this results in
[CR4.PAE & CRO.PG & —IA32_EFER.LMA] = 1, page-directory-pointer-table entries (PDPTEs) may be checked
and loaded (see Section 27.5.4).

The state of blocking by NMI is what it was before VM entry.

MSRs are loaded as specified in the VM-exit MSR-load area (see Section 27.6).

Although this process resembles that of a VM exit, many steps taken during a VM exit do not occur for these
VM-entry failures:

Most VM-exit information fields are not updated (see step 1 above).

The valid bit in the VM-entry interruption-information field is not cleared.

The guest-state area is not modified.

No MSRs are saved into the VM-exit MSR-store area.

26.8

If a machine-check event occurs during a VM entry, one of the following occurs:

MACHINE-CHECK EVENTS DURING VM ENTRY
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The machine-check event is handled as if it occurred before the VM entry:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX
operation:?!

* If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code
used is 000CH, indicating “unrecoverable machine-check condition.”

* If the logical processor is outside SMX operation, it goes to the shutdown state.
— If CR4.MCE = 1, a machine-check exception (#MC) is delivered through the IDT.
The machine-check event is handled after VM entry completes:

— If the VM entry ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical
processor is in SMX operation:

* If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code
000CH (unrecoverable machine-check condition).

* |If the logical processor is outside SMX operation, it goes to the shutdown state.

— If the VM entry ends with CR4.MCE = 1, a machine-check exception (#MC) is generated:
* If bit 18 (#MC) of the exception bitmap is 0, the exception is delivered through the guest IDT.
* If bit 18 of the exception bitmap is 1, the exception causes a VM exit.

A VM-entry failure occurs as described in Section 26.7. The basic exit reason is 41, for “VM-entry failure due to
machine-check event.”

The first option is not used if the machine-check event occurs after any guest state has been loaded. The second
option is used only if VM entry is able to load all guest state.

1.

A logical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

26-26 Vol.3C



CHAPTER 27
VM EXITS

VM exits occur in response to certain instructions and events in VMX non-root operation as detailed in Section 25.1
through Section 25.2. VM exits perform the following operations:

1. Information about the cause of the VM exit is recorded in the VM-exit information fields and VM-entry control
fields are modified as described in Section 27.2.

Processor state is saved in the guest-state area (Section 27.3).

MSRs may be saved in the VM-exit MSR-store area (Section 27.4). This step is not performed for SMM VM exits
that activate the dual-monitor treatment of SMIs and SMM.

4. The following may be performed in parallel and in any order (Section 27.5):

— Processor state is loaded based in part on the host-state area and some VM-exit controls. This step is not
performed for SMM VM exits that activate the dual-monitor treatment of SMIs and SMM. See Section
34.15.6 for information on how processor state is loaded by such VM exits.

— Address-range monitoring is cleared.

5. MSRs may be loaded from the VM-exit MSR-load area (Section 27.6). This step is not performed for SMM
VM exits that activate the dual-monitor treatment of SMIs and SMM.

VM exits are not logged with last-branch records, do not produce branch-trace messages, and do not update the
branch-trace store.

Section 27.1 clarifies the nature of the architectural state before a VM exit begins. The steps described above are
detailed in Section 27.2 through Section 27.6.

Section 34.15 describes the dual-monitor treatment of system-management interrupts (SMIs) and system-
management mode (SMM). Under this treatment, ordinary transitions to SMM are replaced by VM exits to a sepa-
rate SMM monitor. Called SMM VM exits, these are caused by the arrival of an SMI or the execution of VMCALL in
VMX root operation. SMM VM exits differ from other VM exits in ways that are detailed in Section 34.15.2.

27.1 ARCHITECTURAL STATE BEFORE A VM EXIT

This section describes the architectural state that exists before a VM exit, especially for VM exits caused by events
that would normally be delivered through the IDT. Note the following:

® An exception causes a VM exit directly if the bit corresponding to that exception is set in the exception bitmap.
A non-maskable interrupt (NMI) causes a VM exit directly if the “NMI exiting” VM-execution control is 1. An
external interrupt causes a VM exit directly if the “external-interrupt exiting” VM-execution control is 1. A start-
up IPI (SIPI) that arrives while a logical processor is in the wait-for-SIPI activity state causes a VM exit directly.
INIT signals that arrive while the processor is not in the wait-for-SIPI activity state cause VM exits directly.

® An exception, NMI, external interrupt, or software interrupt causes a VM exit indirectly if it does not do so
directly but delivery of the event causes a nested exception, double fault, task switch, APIC access (see Section
27.4), EPT violation, EPT misconfiguration, or page-modification log-full event that causes a VM exit.

® Anevent results in a VM exit if it causes a VM exit (directly or indirectly).
The following bullets detail when architectural state is and is not updated in response to VM exits:

® If an event causes a VM exit directly, it does not update architectural state as it would have if it had it not
caused the VM exit:

— A debug exception does not update DR6, DR7.GD, or IA32_DEBUGCTL.LBR. (Information about the nature
of the debug exception is saved in the exit qualification field.)

— A page fault does not update CR2. (The linear address causing the page fault is saved in the exit-qualifi-
cation field.)

— An NMI causes subsequent NMIs to be blocked, but only after the VM exit completes.
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An external interrupt does not acknowledge the interrupt controller and the interrupt remains pending,
unless the “acknowledge interrupt on exit” VM-exit control is 1. In such a case, the interrupt controller is
acknowledged and the interrupt is no longer pending.

The flags LO — L3 in DR7 (bit O, bit 2, bit 4, and bit 6) are not cleared when a task switch causes a VM exit.

If a task switch causes a VM exit, none of the following are modified by the task switch: old task-state
segment (TSS); new TSS; old TSS descriptor; new TSS descriptor; RFLAGS.NT?; or the TR register.

No last-exception record is made if the event that would do so directly causes a VM exit.

If a machine-check exception causes a VM exit directly, this does not prevent machine-check MSRs from
being updated. These are updated by the machine-check event itself and not the resulting machine-check
exception.

If the logical processor is in an inactive state (see Section 24.4.2) and not executing instructions, some
events may be blocked but others may return the logical processor to the active state. Unblocked events
may cause VM exits.? If an unblocked event causes a VM exit directly, a return to the active state occurs
only after the VM exit completes.3 The VM exit generates any special bus cycle that is normally generated
when the active state is entered from that activity state.

MTF VM exits (see Section 25.5.2 and Section 26.6.8) are not blocked in the HLT activity state. If an MTF
VM exit occurs in the HLT activity state, the logical processor returns to the active state only after the
VM exit completes. MTF VM exits are blocked the shutdown state and the wait-for-SIPI state.

® If an event causes a VM exit indirectly, the event does update architectural state:

A debug exception updates DR6, DR7, and the 1A32_DEBUGCTL MSR. No debug exceptions are considered
pending.

A page fault updates CR2.
An NMI causes subsequent NMIs to be blocked before the VM exit commences.
An external interrupt acknowledges the interrupt controller and the interrupt is no longer pending.

If the logical processor had been in an inactive state, it enters the active state and, before the VM exit
commences, generates any special bus cycle that is normally generated when the active state is entered
from that activity state.

There is no blocking by STI or by MOV SS when the VM exit commences.

Processor state that is normally updated as part of delivery through the IDT (CS, RIP, SS, RSP, RFLAGS) is
not modified. However, the incomplete delivery of the event may write to the stack.

The treatment of last-exception records is implementation dependent:

®* Some processors make a last-exception record when beginning the delivery of an event through the IDT
(before it can encounter a nested exception). Such processors perform this update even if the event
encounters a nested exception that causes a VM exit (including the case where nested exceptions lead
to a triple fault).

®* Other processors delay making a last-exception record until event delivery has reached some event
handler successfully (perhaps after one or more nested exceptions). Such processors do not update the
last-exception record if a VM exit or triple fault occurs before an event handler is reached.

® If the “virtual NMIs” VM-execution control is 1, VM entry injects an NMI, and delivery of the NMI causes a
nested exception, double fault, task switch, or APIC access that causes a VM exit, virtual-NMI blocking is in
effect before the VM exit commences.

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32
bits of the indicated register.

2. If a VM exit takes the processor from an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value
saved for RIP by that VM exit will reference the following instruction.

3. An exception is made if the logical processor had been inactive due to execution of MWAIT; in this case, it is considered to have
become active before the VM exit.
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If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is
encountered during execution of IRET and the “NMI exiting” VM-execution control is 0, any blocking by NMI is
cleared before the VM exit commences. However, the previous state of blocking by NMI may be recorded in the
VM-exit interruption-information field; see Section 27.2.2.

If a VM exit results from a fault, EPT violation, EPT misconfiguration, or page-modification log-full event is
encountered during execution of IRET and the “virtual NMIs” VM-execution control is 1, virtual-NMI blocking is
cleared before the VM exit commences. However, the previous state of virtual-NMI blocking may be recorded
in the VM-exit interruption-information field; see Section 27.2.2.

Suppose that a VM exit is caused directly by an x87 FPU Floating-Point Error (#MF) or by any of the following
events if the event was unblocked due to (and given priority over) an x87 FPU Floating-Point Error: an INIT
signal, an external interrupt, an NMI, an SMI; or a machine-check exception. In these cases, there is no
blocking by STI or by MOV SS when the VM exit commences.

Normally, a last-branch record may be made when an event is delivered through the IDT. However, if such an
event results in a VM exit before delivery is complete, no last-branch record is made.

If machine-check exception results in a VM exit, processor state is suspect and may result in suspect state
being saved to the guest-state area. A VM monitor should consult the RIPV and EIPV bits in the
IA32_MCG_STATUS MSR before resuming a guest that caused a VM exit resulting from a machine-check
exception.

If a VM exit results from a fault, APIC access (see Section 29.4), EPT violation, EPT misconfiguration, or page-
modification log-full event is encountered while executing an instruction, data breakpoints due to that
instruction may have been recognized and information about them may be saved in the pending debug
exceptions field (see Section 27.3.4).

The following VM exits are considered to happen after an instruction is executed:

— VM exits resulting from debug traps (single-step, 1/0 breakpoints, and data breakpoints).

— VM exits resulting from debug exceptions whose recognition was delayed by blocking by MOV SS.
— VM exits resulting from some machine-check exceptions.

— Trap-like VM exits due to execution of MOV to CR8 when the “CR8-load exiting” VM-execution control is O
and the “use TPR shadow” VM-execution control is 1 (see Section 29.3). (Such VM exits can occur only from
64-bit mode and thus only on processors that support Intel 64 architecture.)

— Trap-like VM exits due to execution of WRMSR when the “use MSR bitmaps” VM-execution control is 1; the
value of ECX is in the range 800H—8FFH; and the bit corresponding to the ECX value in write bitmap for low
MSRs is 0; and the “virtualize x2APIC mode” VM-execution control is 1. See Section 29.5.

— VM exits caused by APIC-write emulation (see Section 29.4.3.2) that result from APIC accesses as part of
instruction execution.

For these VM exits, the instruction’s modifications to architectural state complete before the VM exit occurs.
Such modifications include those to the logical processor’s interruptibility state (see Table 24-3). If there had
been blocking by MOV SS, POP SS, or STI before the instruction executed, such blocking is no longer in effect.

A VM exit that occurs in enclave mode sets bit 27 of the exit-reason field and bit 4 of the guest interruptibility-state
field. Before such a VM exit is delivered, an Asynchronous Enclave Exit (AEX) occurs (see Chapter 40, “Enclave
Exiting Events”). An AEX modifies architectural state (Section 40.3). In particular, the processor establishes the
following architectural state as indicated:

The following bits in RFLAGS are cleared: CF, PF, AF, ZF, SF, OF, and RF.

FS and GS are restored to the values they had prior to the most recent enclave entry.
RIP is loaded with the AEP of interrupted enclave thread.

RSP is loaded from the URSP field in the enclave’s state-save area (SSA).
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27.2  RECORDING VM-EXIT INFORMATION AND UPDATING VM-ENTRY CONTROL
FIELDS

VM exits begin by recording information about the nature of and reason for the VM exit in the VM-exit information
fields. Section 27.2.1 to Section 27.2.4 detail the use of these fields.

In addition to updating the VM-exit information fields, the valid bit (bit 31) is cleared in the VM-entry interruption-
information field. If bit 5 of the I1A32_VMX_MISC MSR (index 485H) is read as 1 (see Appendix A.6), the value of
IA32_EFER.LMA is stored into the “IA-32e mode guest” VM-entry control.!

27.2.1 Basic VM-Exit Information

Section 24.9.1 defines the basic VM-exit information fields. The following items detail their use.
¢ Exitreason.

— Bits 15:0 of this field contain the basic exit reason. It is loaded with a number indicating the general cause
of the VM exit. Appendix C lists the numbers used and their meaning.

— Bit 27 of this field is set to 1 if the VM exit occurred while the logical processor was in enclave mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered
during the delivery of such events incident to enclave mode.

A VM exit also sets this bit if it is incident to delivery of an event injected by VM entry and the guest inter-
ruptibility-state field indicates an enclave interrupt (bit 4 of the field is 1).

— The remainder of the field (bits 31:28 and bits 26:16) is cleared to O (certain SMM VM exits may set some
of these bits; see Section 34.15.2.3).2

¢ Exit qualification. This field is saved for VM exits due to the following causes: debug exceptions; page-fault
exceptions; start-up IPIs (SIPIs); system-management interrupts (SMIs) that arrive immediately after the
retirement of 1/0 instructions; task switches; INVEPT; INVLPG; INVPCID; INVVPID; LGDT; LIDT; LLDT; LTR;
SGDT; SIDT; SLDT; STR; VMCLEAR; VMPTRLD; VMPTRST; VMREAD; VMWRITE; VMXON; XRSTORS; XSAVES;
control-register accesses; MOV DR; 1/0 instructions; MWAIT; accesses to the APIC-access page (see Section
29.4); EPT violations; EOI virtualization (see Section 29.1.4); APIC-write emulation (see Section 29.4.3.3);
and page-modification log full (see Section 28.2.5). For all other VM exits, this field is cleared. The following
items provide details:

— For a debug exception, the exit qualification contains information about the debug exception. The
information has the format given in Table 27-1.

Table 27-1. Exit Qualification for Debug Exceptions

Bit Position(s) Contents

3.0 B3 - BO. When set, each of these bits indicates that the corresponding breakpoint condition was met. Any of
these bits may be set even if its corresponding enabling bit in DR7 is not set.

12:4 Reserved (cleared to 0).

13 BD. When set, this bit indicates that the cause of the debug exception is “debug register access detected.”

14 BS. When set, this bit indicates that the cause of the debug exception is either the execution of a single

instruction (if RFLAGS.TF = 1 and IA32_DEBUGCTL.BTF = 0) or a taken branch (if
RFLAGS.TF = DEBUGCTL.BTF = 1).

63:15 Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.

1. Bit 5 of the IA32_VMX_MISC MSR is read as 1 on any logical processor that supports the 1-setting of the “unrestricted guest” VM-
execution control.

2. Bit 31 of this field is set on certain VM-entry failures; see Section 26.7.

27-4 Vol.3C



VM EXITS

For a page-fault exception, the exit qualification contains the linear address that caused the page fault. On
processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not in 64-
bit mode before the VM exit.

If the page-fault exception occurred during execution of an instruction in enclave mode (and not during
delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

For a start-up IPI (SIPI), the exit qualification contains the SIPI vector information in bits 7:0. Bits 63:8 of
the exit qualification are cleared to O.

For a task switch, the exit qualification contains details about the task switch, encoded as shown in
Table 27-2.

For INVLPG, the exit qualification contains the linear-address operand of the instruction.

®* On processors that support Intel 64 architecture, bits 63:32 are cleared if the logical processor was not
in 64-bit mode before the VM exit.

* If the INVLPG source operand specifies an unusable segment, the linear address specified in the exit
qualification will match the linear address that the INVLPG would have used if no VM exit occurred. This
address is not architecturally defined and may be implementation-specific.

Table 27-2. Exit Qualification for Task Switch

Bit Position(s) Contents
15:.0 Selector of task-state segment (TSS) to which the guest attempted to switch
29:16 Reserved (cleared to 0)
31:30 Source of task switch initiation:
0: CALL instruction
1: IRET instruction
2: JMP instruction
3: Task gate in IDT
63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

For INVEPT, INVPCID, INVVPID, LGDT, LIDT, LLDT, LTR, SGDT, SIDT, SLDT, STR, VMCLEAR, VMPTRLD,
VMPTRST, VMREAD, VMWRITE, VMXON, XRSTORS, and XSAVES, the exit qualification receives the value of
the instruction’s displacement field, which is sign-extended to 64 bits if necessary (32 bits on processors
that do not support Intel 64 architecture). If the instruction has no displacement (for example, has a
register operand), zero is stored into the exit qualification.

On processors that support Intel 64 architecture, an exception is made for RIP-relative addressing (used
only in 64-bit mode). Such addressing causes an instruction to use an address that is the sum of the
displacement field and the value of RIP that references the following instruction. In this case, the exit
qualification is loaded with the sum of the displacement field and the appropriate RIP value.

In all cases, bits of this field beyond the instruction’s address size are undefined. For example, suppose
that the address-size field in the VM-exit instruction-information field (see Section 24.9.4 and Section
27.2.4) reports an n-bit address size. Then bits 63:n (bits 31:n on processors that do not support Intel 64
architecture) of the instruction displacement are undefined.

For a control-register access, the exit qualification contains information about the access and has the
format given in Table 27-3.

For MOV DR, the exit qualification contains information about the instruction and has the format given in
Table 27-4.

For an 1/0 instruction, the exit qualification contains information about the instruction and has the format
given in Table 27-5.
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— For MWAIT, the exit qualification contains a value that indicates whether address-range monitoring
hardware was armed. The exit qualification is set either to O (if address-range monitoring hardware is not
armed) or to 1 (if address-range monitoring hardware is armed).

— For an APIC-access VM exit resulting from a linear access or a guest-physical access to the APIC-access
page (see Section 29.4), the exit qualification contains information about the access and has the format
given in Table 27-6.1

If the access to the APIC-access page occurred during execution of an instruction in enclave mode (and not
during delivery of an event incident to enclave mode), bits 11:0 of the exit qualification are cleared.

Such a VM exit that set bits 15:12 of the exit qualification to 0000b (data read during instruction execution)
or 0001b (data write during instruction execution) set bit 12—which distinguishes data read from data
write—to that which would have been stored in bit 1—W/R—of the page-fault error code had the access
caused a page fault instead of an APIC-access VM exit. This implies the following:

®* For an APIC-access VM exit caused by the CLFLUSH and CLFLUSHOPT instructions, the access type is
“data read during instruction execution.”

®* For an APIC-access VM exit caused by the ENTER instruction, the access type is “data write during
instruction execution.”

Table 27-3. Exit Qualification for Control-Register Accesses

Bit Positions Contents

3.0 Number of control register (O for CLTS and LMSW). Bit 3 is always O on processors that do not support Intel 64
architecture as they do not support CR8.

5:4 Access type:

0=MOV to CR

1 =MOV from CR
2 =CLTS

3 = LMSW

6 LMSW operand type:
0 = register
1 = memory

For CLTS and MOV CR, cleared to O

7 Reserved (cleared to 0)
11:8 For MOV CR, the general-purpose register:
0 =RAX
1 =RCX
2 =RDX
3 =RBX
4 = RSP
5 =RBP
6 =RSI
7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)

For CLTS and LMSW, cleared to O

15:12 Reserved (cleared to 0)

1. The exit qualification is undefined if the access was part of the logging of a branch record or a precise-event-based-sampling (PEBS)
record to the DS save area. It is recommended that software configure the paging structures so that no address in the DS save area
translates to an address on the APIC-access page.
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Table 27-3. Exit Qualification for Control-Register Accesses (Contd.)

Bit Positions Contents

31:16 For LMSW, the LMSW source data
For CLTS and MOV CR, cleared to 0
63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

®* For an APIC-access VM exit caused by the MASKMOVQ instruction or the MASKMOVDQU instruction, the
access type is “data write during instruction execution.”

® For an APIC-access VM exit caused by the MONITOR instruction, the access type is “data read during
instruction execution.”

Such a VM exit stores 1 for bit 31 for IDT-vectoring information field (see Section 27.2.3) if and only if it
sets bits 15:12 of the exit qualification to 0011b (linear access during event delivery) or 1010b (guest-
physical access during event delivery).

See Section 29.4.4 for further discussion of these instructions and APIC-access VM exits.

For APIC-access VM exits resulting from physical accesses to the APIC-access page (see Section 29.4.6),
the exit qualification is undefined.

For an EPT violation, the exit qualification contains information about the access causing the EPT violation
and has the format given in Table 27-7.

As noted in that table, the format and meaning of the exit qualification depends on the setting of the
“mode-based execute control for EPT” VM-execution control and whether the processor supports advanced
VM-exit information for EPT violations.t

An EPT violation that occurs during as a result of execution of a read-modify-write operation sets bit 1 (data
write). Whether it also sets bit O (data read) is implementation-specific and, for a given implementation,
may differ for different kinds of read-modify-write operations.

Table 27-4. Exit Qualification for MOV DR

Bit Position(s) | Contents

2.0

Number of debug register

3

Reserved (cleared to 0)

4

Direction of access (0 = MOV to DR; 1 = MOV from DR)

7:5

Reserved (cleared to 0)

118

General-purpose register:

0 =RAX

1 =RCX

2 = RDX

3 =RBX

4 = RSP

5 =RBP

6 =RSI

7 =RDI

8-15 = R8 - R15, respectively

63:12

Reserved (cleared to 0)

1.

Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).
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Table 27-5. Exit Qualification for 1/0 Instructions

Bit Position(s) | Contents
2:0 Size of access:

0 =1-byte

1 = 2-byte

3 = 4-byte

Other values not used

3 Direction of the attempted access (0 = OUT, 1 =IN)
4 String instruction (O = not string; 1 = string)
5 REP prefixed (0 = not REP; 1 = REP)
6 Operand encoding (0 = DX, 1 = immediate)
15:7 Reserved (cleared to 0)
31:16 Port number (as specified in DX or in an immediate operand)
63:32 Reserved (cleared to 0). These bits exist only on processors that support Intel 64 architecture.

Bit 12 is undefined in any of the following cases:

e If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is O.

* If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).

Otherwise, bit 12 is defined as follows:

* If the “virtual NMIs” VM-execution control is 0, the EPT violation was caused by a memory access as
part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was in effect before
execution of IRET, bit 12 is set to 1.

Table 27-6. Exit Qualification for APIC-Access VM Exits from Linear Accesses and Guest-Physical Accesses

Bit Position(s)

Contents

11:.0

= If the APIC-access VM exit is due to a linear access, the offset of access within the APIC page.
= Undefined if the APIC-access VM exit is due a guest-physical access

15:12

Access type:

0 = linear access for a data read during instruction execution

1 = linear access for a data write during instruction execution

2 = linear access for an instruction fetch

3 = linear access (read or write) during event delivery

10 = guest-physical access during event delivery

15 = guest-physical access for an instruction fetch or during instruction execution

Other values not used

63:16

Reserved (cleared to 0). Bits 63:32 exist only on processors that support Intel 64 architecture.
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¢ If the “virtual NMIs” VM-execution control is 1,the EPT violation was caused by a memory access as part
of execution of the IRET instruction, and virtual-NMI blocking was in effect before execution of IRET,
bit 12 issetto 1.

®* For all other relevant VM exits, bit 12 is cleared to O.

For VM exits caused as part of EOI virtualization (Section 29.1.4), bits 7:0 of the exit qualification are set
to vector of the virtual interrupt that was dismissed by the EOI virtualization. Bits above bit 7 are cleared.

For APIC-write VM exits (Section 29.4.3.3), bits 11:0 of the exit qualification are set to the page offset of
the write access that caused the VM exit.! Bits above bit 11 are cleared.

For a VM exit due to a page-modification log-full event (Section 28.2.5), only bit 12 of the exit qualification
is defined, and only in some cases. It is undefined in the following cases:

e If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is O.
* If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).
Otherwise, it is defined as follows:

* If the “virtual NMIs” VM-execution control is 0, the page-maodification log-full event was caused by a
memory access as part of execution of the IRET instruction, and blocking by NMI (see Table 24-3) was
in effect before execution of IRET, bit 12 is set to 1.

* If the “virtual NMIs” VM-execution control is 1,the page-modification log-full event was caused by a
memory access as part of execution of the IRET instruction, and virtual-NMI blocking was in effect
before execution of IRET, bit 12 is set to 1.

®* For all other relevant VM exits, bit 12 is cleared to O.

For these VM exits, all bits other than bit 12 are undefined.

Guest-linear address. For some VM exits, this field receives a linear address that pertains to the VM exit. The
field is set for different VM exits as follows:

VM exits due to attempts to execute LMSW with a memory operand. In these cases, this field receives the
linear address of that operand. Bits 63:32 are cleared if the logical processor was not in 64-bit mode before
the VM exit.

VM exits due to attempts to execute INS or OUTS for which the relevant segment is usable (if the relevant
segment is not usable, the value is undefined). (ES is always the relevant segment for INS; for OUTS, the
relevant segment is DS unless overridden by an instruction prefix.) The linear address is the base address
of relevant segment plus (E)DI (for INS) or (E)SI (for OUTS). Bits 63:32 are cleared if the logical processor
was not in 64-bit mode before the VM exit.

Table 27-7. Exit Qualification for EPT Violations

Bit Position(s) Contents

0 Set if the access causing the EPT violation was a data read.!

1 Set if the access causing the EPT violation was a data write.!

2 Set if the access causing the EPT violation was an instruction fetch.

3 The logical-AND of bit O in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation (indicates whether the guest-physical address was readable).2

4 The logical-AND of bit 1 in the EPT paging-structure entries used to translate the guest-physical address of the

access causing the EPT violation (indicates whether the guest-physical address was writeable).

1.

Execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit; the exit qualification for such an APIC-write
VM exit is 3FOH.
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Table 27-7. Exit Qualification for EPT Violations (Contd.)

Bit Position(s)

Contents

5

The logical-AND of bit 2 in the EPT paging-structure entries used to translate the guest-physical address of the
access causing the EPT violation.

If the “mode-based execute control for EPT” VM-execution control is O, this indicates whether the guest-physical
address was executable. If that control is 1, this indicates whether the guest-physical address was executable
for supervisor-mode linear addresses.

In

If the “mode-based execute control” VM-execution control is O, the value of this bit is undefined. If that control is
1, this bit is the logical-AND of bit 10 in the EPT paging-structures entries used to translate the guest-physical
address of the access causing the EPT violation. In this case, it indicates whether the guest-physical address was
executable for user-mode linear addresses.

Set if the guest linear-address field is valid.

The guest linear-address field is valid for all EPT violations except those resulting from an attempt to load the
guest PDPTEs as part of the execution of the MOV CR instruction.

Ifbit 7 is 1:

= Set if the access causing the EPT violation is to a guest-physical address that is the translation of a linear
address.

= C(lear if the access causing the EPT violation is to a paging-structure entry as part of a page walk or the
update of an accessed or dirty bit.

Reserved if bit 7 is O (cleared to 0).

If bit 7 is 1, bit 8 is 1, and the processor supports advanced \VM-exit information for EPT violations,3 this bit is 0
if the linear address is a supervisor-mode linear address and 1 if it is a user-mode linear address. (If CRO.PG = 0,
the translation of every linear address is a user-mode linear address and thus this bit will be 1.) Otherwise, this
bit is undefined.

10

If bit 7 is 1, bit 8 is 1, and the processor supports advanced VM-exit information for EPT violations,? this bit is O
if paging translates the linear address to a read-only page and 1 if it translates to a read/write page. (If CRO.PG =
0, every linear address is read/write and thus this bit will be 1.) Otherwise, this bit is undefined.

1

If bit 7 is 1, bit 8 is 1, and the processor supports advanced \/M-exit information for EPT violations,3 this bit is 0
if paging translates the linear address to an executable page and 1 if it translates to an execute-disable page. (If
CRO.PG = 0, CR4.PAE = 0, or IA32_EFER.NXE = 0, every linear address is executable and thus this bit will be 0.)
Otherwise, this bit is undefined.

12

NMI unblocking due to IRET

63:13

Reserved (cleared to 0).

NOTES:

1. If accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are treated as writes with
regard to EPT violations (see Section 28.2.3.2). If such an access causes an EPT violation, the processor sets both bit 0 and bit 1 of
the exit qualification.

2. Bits 5:3 are cleared to O if any of EPT paging-structure entries used to translate the guest-physical address of the access causing the
EPT violation is not present (see Section 28.2.2).

3. Software can determine whether advanced VM-exit information for EPT violations is supported by consulting the VMX capability
MSR IA32_VMX_EPT_VPID_CAP (see Appendix A.10).

— VM exits due to EPT violations that set bit 7 of the exit qualification (see Table 27-7; these are all EPT
violations except those resulting from an attempt to load the PDPTEs as of execution of the MOV CR
instruction). The linear address may translate to the guest-physical address whose access caused the EPT
violation. Alternatively, translation of the linear address may reference a paging-structure entry whose
access caused the EPT violation. Bits 63:32 are cleared if the logical processor was not in 64-bit mode
before the VM exit.
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If the EPT violation occurred during execution of an instruction in enclave mode (and not during delivery of
an event incident to enclave mode), bits 11:0 of this field are cleared.

— For all other VM exits, the field is undefined.

Guest-physical address. For a VM exit due to an EPT violation or an EPT misconfiguration, this field receives
the guest-physical address that caused the EPT violation or EPT misconfiguration. For all other VM exits, the
field is undefined.

If the EPT violation or EPT misconfiguration occurred during execution of an instruction in enclave mode (and
not during delivery of an event incident to enclave mode), bits 11:0 of this field are cleared.

27.2.2 Information for VM Exits Due to Vectored Events

Section 24.9.2 defines fields containing information for VM exits due to the following events: exceptions (including
those generated by the instructions INT3, INTO, BOUND, and UD2); external interrupts that occur while the
“acknowledge interrupt on exit” VM-exit control is 1; and non-maskable interrupts (NMls). Such VM exits include
those that occur on an attempt at a task switch that causes an exception before generating the VM exit due to the
task switch that causes the VM exit.

The following items detail the use of these fields:

VM-exit interruption information (format given in Table 24-15). The following items detail how this field is
established for VM exits due to these events:

— For an exception, bits 7:0 receive the exception vector (at most 31). For an NMI, bits 7:0 are set to 2. For
an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to 0 (external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), or 6
(software exception). Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP;
generated by INT3) and overflow exceptions (#0OF; generated by INTO); these are software exceptions. (A
#BP that occurs in enclave mode is considered a hardware exception.) BOUND-range exceeded exceptions
(#BR; generated by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are hardware
exceptions.

— Bit 11 is set to 1 if the VM exit is caused by a hardware exception that would have delivered an error code
on the stack. This bit is always O if the VM exit occurred while the logical processor was in real-address
mode (CRO.PE:O).1 If bit 11 is set to 1, the error code is placed in the VM-exit interruption error code (see
below).

— Bit 12 is undefined in any of the following cases:
¢ If the “NMI exiting” VM-execution control is 1 and the “virtual NMIs” VM-execution control is O.
* If the VM exit sets the valid bit in the IDT-vectoring information field (see Section 27.2.3).
* If the VM exit is due to a double fault (the interruption type is hardware exception and the vector is 8).
Otherwise, bit 12 is defined as follows:

* |If the “virtual NMIs” VM-execution control is O, the VM exit is due to a fault on the IRET instruction
(other than a debug exception for an instruction breakpoint), and blocking by NMI (see Table 24-3) was
in effect before execution of IRET, bit 12 is set to 1.

* |If the “virtual NMIs” VM-execution control is 1, the VM exit is due to a fault on the IRET instruction
(other than a debug exception for an instruction breakpoint), and virtual-NMI blocking was in effect
before execution of IRET, bit 12 is set to 1.

*  For all other relevant VM exits, bit 12 is cleared to 0.2

— Bits 30:13 are always set to 0.

If the capability MSR 1A32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

The conditions imply that, if the “NMI exiting” VM-execution control is O or the “virtual NMIs” VM-execution control is 1, bit 12 is
always cleared to 0 by VM exits due to debug exceptions.
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— Bit 31 is always set to 1.

For other VM exits (including those due to external interrupts when the “acknowledge interrupt on exit” VM-exit
control is 0), the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.

VM-exit interruption error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the VM-exit interruption-information
field, this field receives the error code that would have been pushed on the stack had the event causing the
VM exit been delivered normally through the IDT. The EXT bit is set in this field exactly when it would be set
normally. For exceptions that occur during the delivery of double fault (if the IDT-vectoring information field
indicates a double fault), the EXT bit is set to 1, assuming that (1) that the exception would produce an
error code normally (if not incident to double-fault delivery) and (2) that the error code uses the EXT bit
(not for page faults, which use a different format).

— For other VM exits, the value of this field is undefined.

27.2.3 Information for VM Exits During Event Delivery

Section 24.9.3 defined fields containing information for VM exits that occur while delivering an event through the

IDT and as a result of any of the following cases:

1
A fault occurs during event delivery and causes a VM exit (because the bit associated with the fault is setto 1
in the exception bitmap).

A task switch is invoked through a task gate in the IDT. The VM exit occurs due to the task switch only after the
initial checks of the task switch pass (see Section 25.4.2).

Event delivery causes an APIC-access VM exit (see Section 29.4).
An EPT violation, EPT misconfiguration, or page-modification log-full event that occurs during event delivery.

These fields are used for VM exits that occur during delivery of events injected as part of VM entry (see Section
26.5.1.2).

A VM exit is not considered to occur during event delivery in any of the following circumstances:

The original event causes the VM exit directly (for example, because the original event is a non-maskable
interrupt (NMI) and the “NMI exiting” VM-execution control is 1).

The original event results in a double-fault exception that causes the VM exit directly.
The VM exit occurred as a result of fetching the first instruction of the handler invoked by the event delivery.
The VM exit is caused by a triple fault.

The following items detail the use of these fields:

IDT-vectoring information (format given in Table 24-16). The following items detail how this field is established
for VM exits that occur during event delivery:

— If the VM exit occurred during delivery of an exception, bits 7:0 receive the exception vector (at most 31).
If the VM exit occurred during delivery of an NMI, bits 7:0 are set to 2. If the VM exit occurred during
delivery of an external interrupt, bits 7:0 receive the vector.

— Bits 10:8 are set to indicate the type of event that was being delivered when the VM exit occurred: O
(external interrupt), 2 (non-maskable interrupt), 3 (hardware exception), 4 (software interrupt), 5
(privileged software interrupt), or 6 (software exception).

Hardware exceptions comprise all exceptions except breakpoint exceptions (#BP; generated by INT3) and
overflow exceptions (#OF; generated by INTO); these are software exceptions. (A #BP that occurs in
enclave mode is considered a hardware exception.) BOUND-range exceeded exceptions (#BR; generated
by BOUND) and invalid opcode exceptions (#UD) generated by UD2 are hardware exceptions.

Bits 10:8 may indicate privileged software interrupt if such an event was injected as part of VM entry.

1.

This includes the case in which a VM exit occurs while delivering a software interrupt (INT n) through the 16-bit IVT (interrupt vec-
tor table) that is used in virtual-8086 mode with virtual-machine extensions (if RFLAGS.VM = CR4.VME = 1).
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— Bit 11 is set to 1 if the VM exit occurred during delivery of a hardware exception that would have delivered
an error code on the stack. This bit is always O if the VM exit occurred while the logical processor was in
real-address mode (CRO.PE=0).1 If bit 11 is set to 1, the error code is placed in the IDT-vectoring error
code (see below).

— Bit 12 is undefined.

— Bits 30:13 are always set to 0.

— Bit 31 is always set to 1.

For other VM exits, the field is marked invalid (by clearing bit 31) and the remainder of the field is undefined.
IDT-vectoring error code.

— For VM exits that set both bit 31 (valid) and bit 11 (error code valid) in the IDT-vectoring information field,
this field receives the error code that would have been pushed on the stack by the event that was being
delivered through the IDT at the time of the VM exit. The EXT bit is set in this field when it would be set
normally.

— For other VM exits, the value of this field is undefined.

27.2.4 Information for VM Exits Due to Instruction Execution

Section 24.9.4 defined fields containing information for VM exits that occur due to instruction execution. (The VM-
exit instruction length is also used for VM exits that occur during the delivery of a software interrupt or software
exception.) The following items detail their use.

VM-exit instruction length. This field is used in the following cases:

— For fault-like VM exits due to attempts to execute one of the following instructions that cause VM exits
unconditionally (see Section 25.1.2) or based on the settings of VM-execution controls (see Section
25.1.3): CLTS, CPUID, ENCLS, GETSEC, HLT, IN, INS, INVD, INVEPT, INVLPG, INVPCID, INVVPID, LGDT,
LIDT, LLDT, LMSW, LTR, MONITOR, MOV CR, MOV DR, MWAIT, OUT, OUTS, PAUSE, RDMSR, RDPMC,
RDRAND, RDSEED, RDTSC, RDTSCP, RSM, SGDT, SIDT, SLDT, STR, VMCALL, VMCLEAR, VMLAUNCH,
VMPTRLD, VMPTRST, VMREAD, VMRESUME, VMWRITE, VMXOFF, VMXON, WBINVD, WRMSR, XRSTORS,
XSETBV, and XSAVES.?

— For VM exits due to software exceptions (those generated by executions of INT3 or INTO).

— For VM exits due to faults encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For VM exits due to attempts to effect a task switch via instruction execution. These are VM exits that
produce an exit reason indicating task switch and either of the following:

* An exit qualification indicating execution of CALL, IRET, or JMP instruction.

* An exit qualification indicating a task gate in the IDT and an IDT-vectoring information field indicating
that the task gate was encountered during delivery of a software interrupt, privileged software
exception, or software exception.

— For APIC-access VM exits resulting from accesses (see Section 29.4) during delivery of a software
interrupt, privileged software exception, or software exception.3

— For VM exits due executions of VMFUNC that fail because one of the following is true:

If the capability MSR 1A32_VMX_CRO_FIXEDO reports that CRO.PE must be 1 in VMX operation, a logical processor cannot be in real-
address mode unless the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution con-
trols are both 1.

This item applies only to fault-like VM exits. It does not apply to trap-like VM exits following executions of the MOV to CR8 instruc-
tion when the “use TPR shadow" VM-execution control is 1 or to those following executions of the WRMSR instruction when the
"virtualize x2APIC mode” VM-execution control is 1.

The VM-exit instruction-length field is not defined following APIC-access VM exits resulting from physical accesses (see Section
29.4.6) even if encountered during delivery of a software interrupt, privileged software exception, or software exception.
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¢ EAXindicates a VM function that is not enabled (the bit at position EAX is O in the VM-function controls;
see Section 25.5.5.2).

® EAX =0 and either ECX > 512 or the value of ECX selects an invalid tentative EPTP value (see Section
25.5.5.3).

In all the above cases, this field receives the length in bytes (1-15) of the instruction (including any instruction
prefixes) whose execution led to the VM exit (see the next paragraph for one exception).

The cases of VM exits encountered during delivery of a software interrupt, privileged software exception, or
software exception include those encountered during delivery of events injected as part of VM entry (see
Section 26.5.1.2). If the original event was injected as part of VM entry, this field receives the value of the VM-
entry instruction length.

All VM exits other than those listed in the above items leave this field undefined.
If the VM exit occurred in enclave mode, this field is cleared (none of the previous items apply).

Table 27-8. Format of the VM-Exit Instruction-Information Field as Used for INS and OUTS

Bit Position(s) | Content

6.0

Undefined.

9.7

Address size:

0: 16-bit

1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used.

14:10 Undefined.

1715 Segment register:

0: €S
1:CS
2:SS
3:DS
4: FS
5:GS
Other values not used. Undefined for VM exits due to execution of INS.

31:18 Undefined.

VM-exit instruction information. For VM exits due to attempts to execute INS, INVEPT, INVPCID, INVVPID,
LIDT, LGDT, LLDT, LTR, OUTS, RDRAND, RDSEED, SIDT, SGDT, SLDT, STR, VMCLEAR, VMPTRLD, VMPTRST,
VMREAD, VMWRITE, VMXON, XRSTORS, or XSAVES, this field receives information about the instruction that
caused the VM exit. The format of the field depends on the identity of the instruction causing the VM exit:

— For VM exits due to attempts to execute INS or OUTS, the field has the format is given in Table 27-8.1

— For VM exits due to attempts to execute INVEPT, INVPCID, or INVVPID, the field has the format is given in
Table 27-9.

— For VM exits due to attempts to execute LIDT, LGDT, SIDT, or SGDT, the field has the format is given in
Table 27-10.

— For VM exits due to attempts to execute LLDT, LTR, SLDT, or STR, the field has the format is given in
Table 27-11.

— For VM exits due to attempts to execute RDRAND or RDSEED, the field has the format is given in
Table 27-12.

The format of the field was undefined for these VM exits on the first processors to support the virtual-machine extensions. Soft-
ware can determine whether the format specified in Table 27-8 is used by consulting the VMX capability MSR 1A32_VMX_BASIC
(see Appendix A.1).

27-14 \Vol.3C



VM EXITS

— For VM exits due to attempts to execute VMCLEAR, VMPTRLD, VMPTRST, VMXON, XRSTORS, or XSAVES,
the field has the format is given in Table 27-13.

— For VM exits due to attempts to execute VMREAD or VMWRITE, the field has the format is given in
Table 27-14.

For all other VM exits, the field is undefined, unless the VM exit occurred in enclave mode, in which case the
field is cleared.

170 RCX, I/0 RSI, 1/0 RDI, 170 RIP. These fields are undefined except for SMM VM exits due to system-
management interrupts (SMIs) that arrive immediately after retirement of 1/0 instructions. See Section
34.15.2.3. Note that, if the VM exit occurred in enclave mode, these fields are all cleared.

Table 27-9. Format of the VM-Exit Instruction-Information Field as Used for INVEPT, INVPCID, and INVVPID

Bit Position(s) | Content

1:.0 Scaling:

0: no scaling
1:scale by 2
2:scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9.7 Address size:
0: 16-bit
1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used.

10 Cleared to O.

14:11 Undefined.

17:15 Segment register:
0: ES
1:CS
2:SS
3:DS
4. FS
5:.GS
Other values not used.

21:18 IndexReg:

0 =RAX

1 =RCX

2 = RDX

3 =RBX

4 =RSP

5=RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)
Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)
26:23 BaseReg (encoded as IndexReg above)
Undefined for memory instructions with no base register (bit 27 is set).
27 BaseReg invalid (0 = valid; 1 = invalid)
31:28 Reg?2 (same encoding as IndexReg above)
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Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT

Bit Position(s) | Content

1.0 Scaling:

0: no scaling

1:scale by 2

2:scale by 4

3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9.7 Address size:
0: 16-bit
1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used.

10 Cleared to O.

11 Operand size:
0: 16-bit
1: 32-bit
Undefined for VM exits from 64-bit mode.

14:12 Undefined.

17:15 Segment register:
0: ES
1:CS
2:SS
3:DS
4:FS
5.GS
Other values not used.

21:18 IndexReg:

0 =RAX

1 =RCX

2 =RDX

3 =RBX

4 = RSP

5 =RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)
Undefined for instructions with no index register (bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)

26:23 BaseReg (encoded as IndexReg above)
Undefined for instructions with no base register (bit 27 is set).

27 BaseReg invalid (0 = valid; 1 = invalid)

29:28 Instruction identity:

0: SGDT
1:SIDT
2: LGDT
3:LIDT
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Table 27-10. Format of the VM-Exit Instruction-Information Field as Used for LIDT, LGDT, SIDT, or SGDT (Contd.)

Bit Position(s) | Content

31:30 Undefined.

Table 27-11. Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR

Bit Position(s) | Content

1:.0 Scaling:

0: no scaling

1:scaleby 2

2:scale by 4

3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

Undefined.

6:3 Reg1:

0 =RAX

1 =RCX

2 = RDX

3 =RBX

4 =RSP

5=RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)
Undefined for memory instructions (bit 10 is clear).

9.7 Address size:

0: 16-bit

1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used. Undefined for register instructions (bit 10 is set).

10 Mem/Reg (0 = memory; 1 = register).

14:11 Undefined.

17:15 Segment register:
0: €S
1.CS
2:SS
3:DS
4:FS
5:GS
Other values not used. Undefined for register instructions (bit 10 is set).

21:18 IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

22 IndexReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).

26:23 BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear
and bit 27 is set).
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Table 27-11.

Format of the VM-Exit Instruction-Information Field as Used for LLDT, LTR, SLDT, and STR (Contd.)

Bit Position(s)

Content

27

BaseRegq invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).

29:28

Instruction identity:

0:SLDT
1:STR
2:LLDT
3:LTR

31:30

Undefined.

Table 27-12. Format of the VM-Exit Instruction-Information Field as Used for RDRAND and RDSEED

Bit Position(s)

Content

2.0

Undefined.

6:3

Destination register:

0 =RAX

1 =RCX

2 =RDX

3 =RBX

4 =RSP

5 =RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)

10:7

Undefined.

12:11

Operand size:
0: 16-bit
1: 32-bit
2: 64-bit
The value 3 is not used.

31:13

Undefined.

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,

VMXON, XRSTORS, and XSAVES

Bit Position(s) | Content

1:.0 Scaling:
0: no scaling
1:scale by 2
2:scale by 4

3: scale by 8 (used only on processors that support Intel 64 architecture)
Undefined for instructions with no index register (bit 22 is set).

6:2 Undefined.

9.7 Address size:
0: 16-bit
1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used.

27-18 Vol.3C




VM EXITS

Table 27-13. Format of the VM-Exit Instruction-Information Field as Used for VMCLEAR, VMPTRLD, VMPTRST,

VMXON, XRSTORS, and XSAVES (Contd.)

Bit Position(s)

Content

10

Cleared to 0.

14:11

Undefined.

17:15

Segment register:
0:ES
1:CS
2:SS
3:DS
4. FS
5:GS
Other values not used.

21:18

IndexReg:

0=RAX

1 =RCX

2 = RDX

3 =RBX

4 =RSP

5=RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)
Undefined for instructions with no index register (bit 22 is set).

22

IndexReg invalid (0 = valid; 1 = invalid)

26:23

BaseReg (encoded as IndexReg above)
Undefined for instructions with no base register (bit 27 is set).

27

BaseReg invalid (0 = valid; 1 = invalid)

31:28

Undefined.

Table 27-14. Format of the VM-EXxit Instruction-Information Field as Used for VMREAD and VMWRITE

Bit Position(s)

Content

1.0

Scaling:
0: no scaling
1: scale by 2
2:scale by 4
3: scale by 8 (used only on processors that support Intel 64 architecture)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

Undefined.
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Table 27-14. Format of the VM-Exit Instruction-Information Field as Used for VMREAD and VMWRITE (Contd.)

Bit Position(s)

Content

6:3

Reg1:

0 = RAX

1 =RCX

2 =RDX

3 =RBX

4 =RSP

5 =RBP

6 =RSI

7 =RDI

8-15 represent R8-R15, respectively (used only on processors that support Intel 64 architecture)
Undefined for memory instructions (bit 10 is clear).

9.7

Address size:

0: 16-bit

1: 32-bit

2: 64-bit (used only on processors that support Intel 64 architecture)
Other values not used. Undefined for register instructions (bit 10 is set).

10

Mem/Reg (0 = memory; 1 = register).

14:11

Undefined.

17:15

Segment register:
0: €S
1:CS
2:SS
3:DS
4:FS
5:GS
Other values not used. Undefined for register instructions (bit 10 is set).

21:18

IndexReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no index register (bit 10 is clear
and bit 22 is set).

22

IndexReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).

26:23

BaseReg (encoded as Reg1 above)

Undefined for register instructions (bit 10 is set) and for memory instructions with no base register (bit 10 is clear
and bit 27 is set).

27

BaseReg invalid (0 = valid; 1 = invalid)
Undefined for register instructions (bit 10 is set).

31:28

Reg2 (same encoding as Reg1 above)

27.3  SAVING GUEST STATE

Each field in the guest-state area of the VMCS (see Section 24.4) is written with the corresponding component of
processor state. On processors that support Intel 64 architecture, the full values of each natural-width field (see
Section 24.11.2) is saved regardless of the mode of the logical processor before and after the VM exit.

In general, the state saved is that which was in the logical processor at the time the VM exit commences. See
Section 27.1 for a discussion of which architectural updates occur at that time.

Section 27.3.1 through Section 27.3.4 provide details for how certain components of processor state are saved.
These sections reference VMCS fields that correspond to processor state. Unless otherwise stated, these references
are to fields in the guest-state area.
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27.3.1  Saving Control Registers, Debug Registers, and MSRs

Contents of certain control registers, debug registers, and MSRs is saved as follows:

® The contents of CRO, CR3, CR4, and the IA32_SYSENTER_CS, IA32_SYSENTER_ESP, and IA32_SYSENTER_EIP
MSRs are saved into the corresponding fields. Bits 63:32 of the IA32_SYSENTER_CS MSR are not saved. On
processors that do not support Intel 64 architecture, bits 63:32 of the 1A32_SYSENTER_ESP and
IA32_SYSENTER_EIP MSRs are not saved.

® If the “save debug controls” VM-exit control is 1, the contents of DR7 and the IA32_DEBUGCTL MSR are saved
into the corresponding fields. The first processors to support the virtual-machine extensions supported only the
1-setting of this control and thus always saved data into these fields.

® Ifthe “save IA32_PAT” VM-exit control is 1, the contents of the IA32_PAT MSR are saved into the corresponding
field.

® If the “save IA32_EFER” VM-exit control is 1, the contents of the IA32_EFER MSR are saved into the corre-
sponding field.

® If the processor supports either the 1-setting of the “load 1A32_BNDCFGS” VM-entry control or that of the
“clear 1A32_BNDCFGS” VM-exit control, the contents of the IA32_BNDCFGS MSR are saved into the corre-
sponding field.

® The value of the SMBASE field is undefined after all VM exits except SMM VM exits. See Section 34.15.2.

27.3.2 Saving Segment Registers and Descriptor-Table Registers

For each segment register (CS, SS, DS, ES, FS, GS, LDTR, or TR), the values saved for the base-address, segment-
limit, and access rights are based on whether the register was unusable (see Section 24.4.1) before the VM exit:

® If the register was unusable, the values saved into the following fields are undefined: (1) base address;
(2) segment limit; and (3) bits 7:0 and bits 15:12 in the access-rights field. The following exceptions apply:

— Cs.

®* The base-address and segment-limit fields are saved.

* Thel, D, and G bits are saved in the access-rights field.
— Ss.

* DPL is saved in the access-rights field.

®* On processors that support Intel 64 architecture, bits 63:32 of the value saved for the base address are
always zero.

— DS and ES. On processors that support Intel 64 architecture, bits 63:32 of the values saved for the base
addresses are always zero.

— FS and GS. The base-address field is saved.
— LDTR. The value saved for the base address is always canonical.

® If the register was not unusable, the values saved into the following fields are those which were in the register
before the VM exit: (1) base address; (2) segment limit; and (3) bits 7:0 and bits 15:12 in access rights.

® Bits 31:17 and 11:8 in the access-rights field are always cleared. Bit 16 is set to 1 if and only if the segment is
unusable.

The contents of the GDTR and IDTR registers are saved into the corresponding base-address and limit fields.

27.3.3  Saving RIP, RSP, and RFLAGS

The contents of the RIP, RSP, and RFLAGS registers are saved as follows:
® The value saved in the RIP field is determined by the nature and cause of the VM exit:

— If the VM exit occurred in enclave mode, the value saved is the AEP of interrupted enclave thread (the
remaining items do not apply).
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If the VM exit occurs due to by an attempt to execute an instruction that causes VM exits unconditionally or
that has been configured to cause a VM exit via the VM-execution controls, the value saved references that
instruction.

If the VM exit is caused by an occurrence of an INIT signal, a start-up IPI (SIPI), or system-management
interrupt (SMI), the value saved is that which was in RIP before the event occurred.

If the VM exit occurs due to the 1-setting of either the “interrupt-window exiting” VM-execution control or
the “NMI-window exiting” VM-execution control, the value saved is that which would be in the register had
the VM exit not occurred.

If the VM exit is due to an external interrupt, non-maskable interrupt (NMI), or hardware exception (as
defined in Section 27.2.2), the value saved is the return pointer that would have been saved (either on the
stack had the event been delivered through a trap or interrupt gate, or into the old task-state segment had
the event been delivered through a task gate).

If the VM exit is due to a triple fault, the value saved is the return pointer that would have been saved
(either on the stack had the event been delivered through a trap or interrupt gate, or into the old task-state
segment had the event been delivered through a task gate) had delivery of the double fault not
encountered the nested exception that caused the triple fault.

If the VM exit is due to a software exception (due to an execution of INT3 or INTO), the value saved
references the INT3 or INTO instruction that caused that exception.

Suppose that the VM exit is due to a task switch that was caused by execution of CALL, IRET, or JMP or by
execution of a software interrupt (INT n) or software exception (due to execution of INT3 or INTO) that
encountered a task gate in the IDT. The value saved references the instruction that caused the task switch
(CALL, IRET, JMP, INT n, INT3, or INTO).

Suppose that the VM exit is due to a task switch that was caused by a task gate in the IDT that was
encountered for any reason except the direct access by a software interrupt or software exception. The
value saved is that which would have been saved in the old task-state segment had the task switch
completed normally.

If the VM exit is due to an execution of MOV to CR8 or WRMSR that reduced the value of bits 7:4 of VTPR
(see Section 29.1.1) below that of TPR threshold VM-execution control field (see Section 29.1.2), the value
saved references the instruction following the MOV to CR8 or WRMSR.

If the VM exit was caused by APIC-write emulation (see Section 29.4.3.2) that results from an APIC access
as part of instruction execution, the value saved references the instruction following the one whose
execution caused the APIC-write emulation.

® The contents of the RSP register are saved into the RSP field.

® With the exception of the resume flag (RF; bit 16), the contents of the RFLAGS register is saved into the
RFLAGS field. RFLAGS.RF is saved as follows:

If the VM exit occurred in enclave mode, the value saved is O (the remaining items do not apply).

If the VM exit is caused directly by an event that would normally be delivered through the IDT, the value
saved is that which would appear in the saved RFLAGS image (either that which would be saved on the
stack had the event been delivered through a trap or interrupt gate2 or into the old task-state segment had
the event been delivered through a task gate) had the event been delivered through the IDT. See below for
VM exits due to task switches caused by task gates in the IDT.

If the VM exit is caused by a triple fault, the value saved is that which the logical processor would have in
RF in the RFLAGS register had the triple fault taken the logical processor to the shutdown state.

If the VM exit is caused by a task switch (including one caused by a task gate in the IDT), the value saved
is that which would have been saved in the RFLAGS image in the old task-state segment (TSS) had the task
switch completed normally without exception.

1. The reference here is to the full value of RIP before any truncation that would occur had the stack width been only 32 bits or 16

bits.

2. The reference here is to the full value of RFLAGS before any truncation that would occur had the stack width been only 32 bits or
16 bits.
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— If the VM exit is caused by an attempt to execute an instruction that unconditionally causes VM exits or one
that was configured to do with a VM-execution control, the value saved is 0.1

— For APIC-access VM exits and for VM exits caused by EPT violations EPT misconfigurations, and page-
modification log-full events, the value saved depends on whether the VM exit occurred during delivery of an
event through the IDT:

* If the VM exit stored O for bit 31 for IDT-vectoring information field (because the VM exit did not occur
during delivery of an event through the IDT; see Section 27.2.3), the value saved is 1.

* If the VM exit stored 1 for bit 31 for IDT-vectoring information field (because the VM exit did occur
during delivery of an event through the IDT), the value saved is the value that would have appeared in
the saved RFLAGS image had the event been delivered through the IDT (see above).

— For all other VM exits, the value saved is the value RFLAGS.RF had before the VM exit occurred.

27.3.4 Saving Non-Register State

Information corresponding to guest non-register state is saved as follows:

The activity-state field is saved with the logical processor’s activity state before the VM exit.? See Section 27.1
for details of how events leading to a VM exit may affect the activity state.

The interruptibility-state field is saved to reflect the logical processor’s interruptibility before the VM exit.
— See Section 27.1 for details of how events leading to a VM exit may affect this state.

— VM exits that end outside system-management mode (SMM) save bit 2 (blocking by SMI) as O regardless
of the state of such blocking before the VM exit.

— Bit 3 (blocking by NMI) is treated specially if the “virtual NMIs” VM-execution control is 1. In this case, the
value saved for this field does not indicate the blocking of NMIs but rather the state of virtual-NMI blocking.

— Bit 4 (enclave interruption) is set to 1 if the VM exit occurred while the logical processor was in enclave
mode.

Such VM exits includes those caused by interrupts, non-maskable interrupts, system-management
interrupts, INIT signals, and exceptions occurring in enclave mode as well as exceptions encountered
during the delivery of such events incident to enclave mode.

A VM exit that is incident to delivery of an event injected by VM entry leaves this bit unmodified.
The pending debug exceptions field is saved as clear for all VM exits except the following:
— A VM exit caused by an INIT signal, a machine-check exception, or a system-management interrupt (SMI).

— A VM exit with basic exit reason “TPR below threshold”,2 “virtualized EOI”, “APIC write”, or “monitor trap
flag.”

— VM exits that are not caused by debug exceptions and that occur while there is MOV-SS blocking of debug
exceptions.
For VM exits that do not clear the field, the value saved is determined as follows:

— Each of bits 3:0 may be set if it corresponds to a matched breakpoint. This may be true even if the corre-
sponding breakpoint is not enabled in DR7.

— Suppose that a VM exit is due to an INIT signal, a machine-check exception, or an SMI; or that a VM exit
has basic exit reason “TPR below threshold” or “monitor trap flag.” In this case, the value saved sets bits
corresponding to the causes of any debug exceptions that were pending at the time of the VM exit.

This is true even if RFLAGS.RF was 1 before the instruction was executed. If, in response to such a VM exit, a VM monitor re-enters
the guest to re-execute the instruction that caused the VM exit (for example, after clearing the VM-execution control that caused
the VM exit), the instruction may encounter a code breakpoint that has already been processed. A VM monitor can avoid this by set-
ting the guest value of RFLAGS.RF to 1 before resuming guest software.

If this activity state was an inactive state resulting from execution of a specific instruction (HLT or MWAIT), the value saved for RIP
by that VM exit will reference the following instruction.

This item includes VM exits that occur as a result of certain VM entries (Section 26.6.7).
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If the VM exit occurs immediately after VM entry, the value saved may match that which was loaded on
VM entry (see Section 26.6.3). Otherwise, the following items apply:

* Bit 12 (enabled breakpoint) is set to 1 in any of the following cases:
— If there was at least one matched data or 1/0 breakpoint that was enabled in DR7.

— If it had been set on VM entry, causing there to be valid pending debug exceptions (see Section
26.6.3) and the VM exit occurred before those exceptions were either delivered or lost.

— If the XBEGIN instruction was executed immediately before the VM exit and advanced debugging of

RTM transactional regions had been enabled (see Section 16.3.7, “RTM-Enabled Debugger

Support,” of Intel® 64 and I1A-32 Architectures Software Developer’s Manual, Volume 1). (This does

not apply to VM exits with basic exit reason “monitor trap flag.”)
In other cases, bit 12 is cleared to O.
®* Bit 14 (BS) is set if RFLAGS.TF = 1 in either of the following cases:

— 1A32_DEBUGCTL.BTF = 0 and the cause of a pending debug exception was the execution of a single

instruction.

— |1A32_DEBUGCTL.BTF = 1 and the cause of a pending debug exception was a taken branch.

* Bit 16 (RTM) is set if a debug exception (#DB) or a breakpoint exception (#BP) occurred inside an RTM
region while advanced debugging of RTM transactional regions had been enabled. (This does not apply

to VM exits with basic exit reason “monitor trap flag.”)

— Suppose that a VM exit is due to another reason (but not a debug exception) and occurs while there is MOV-
SS blocking of debug exceptions. In this case, the value saved sets bits corresponding to the causes of any

debug exceptions that were pending at the time of the VM exit. If the VM exit occurs immediately after
VM entry (no instructions were executed in VMX non-root operation), the value saved may match that
which was loaded on VM entry (see Section 26.6.3). Otherwise, the following items apply:

* Bit 12 (enabled breakpoint) is set to 1 if there was at least one matched data or 1/0 breakpoint that was
enabled in DR7. Bit 12 is also set if it had been set on VM entry, causing there to be valid pending debug
exceptions (see Section 26.6.3) and the VM exit occurred before those exceptions were either delivered

or lost. In other cases, bit 12 is cleared to O.

®* The setting of bit 14 (BS) is implementation-specific. However, it is not set if RFLAGS.TF = 0 or
IA32_DEBUGCTL.BTF = 1.

— The reserved bits in the field are cleared.
® If the “save VMX-preemption timer value” VM-exit control is 1, the value of timer is saved into the VMX-

preemption timer-value field. This is the value loaded from this field on VM entry as subsequently decremented
(see Section 25.5.1). VM exits due to timer expiration save the value 0. Other VM exits may also save the value
0 if the timer expired during VM exit. (If the “save VMX-preemption timer value” VM-exit control is 0, VM exit

does not modify the value of the VMX-preemption timer-value field.)

® If the logical processor supports the 1-setting of the “enable EPT” VM-execution control, values are saved into

the four (4) PDPTE fields as follows:

— If the “enable EPT” VM-execution control is 1 and the logical processor was using PAE paging at the time of

the VM exit, the PDPTE values currently in use are saved:1

®* The values saved into bits 11:9 of each of the fields is undefined.

* If the value saved into one of the fields has bit O (present) clear, the value saved into bits 63:1 of that
field is undefined. That value need not correspond to the value that was loaded by VM entry or to any

value that might have been loaded in VMX non-root operation.

* If the value saved into one of the fields has bit O (present) set, the value saved into bits 63:12 of the
field is a guest-physical address.

1. Alogical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31

of the primary processor-based VM-execution controls is 0, VM exit functions as if the “enable EPT" VM-execution control were 0.
See Section 24.6.2.
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— If the “enable EPT” VM-execution control is O or the logical processor was not using PAE paging at the time
of the VM exit, the values saved are undefined.

274  SAVING MSRS

After processor state is saved to the guest-state area, values of MSRs may be stored into the VM-exit MSR-store
area (see Section 24.7.2). Specifically each entry in that area (up to the number specified in the VM-exit MSR-store
count) is processed in order by storing the value of the MSR indexed by bits 31:0 (as they would be read by
RDMSR) into bits 127:64. Processing of an entry fails in either of the following cases:

® The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register
when the local APIC is in X2APIC mode.

® The value of bits 31:0 indicates an MSR that can be read only in system-management mode (SMM) and the
VM exit will not end in SMM. (IA32_SMBASE is an MSR that can be read only in SMM.)

® The value of bits 31:0 indicates an MSR that cannot be saved on VM exits for model-specific reasons. A
processor may prevent certain MSRs (based on the value of bits 31:0) from being stored on VM exits, even if
they can normally be read by RDMSR. Such model-specific behavior is documented in Chapter 35.

® Bits 63:32 of the entry are not all 0.

® An attempt to read the MSR indexed by bits 31:0 would cause a general-protection exception if executed via
RDMSR with CPL = 0.

A VMX abort occurs if processing fails for any entry. See Section 27.7.

27.5 LOADING HOST STATE

Processor state is updated on VM exits in the following ways:

® Some state is loaded from or otherwise determined by the contents of the host-state area.
® Some state is determined by VM-exit controls.

® Some state is established in the same way on every VM exit.

® The page-directory pointers are loaded based on the values of certain control registers.
This loading may be performed in any order.

On processors that support Intel 64 architecture, the full values of each 64-bit field loaded (for example, the base
address for GDTR) is loaded regardless of the mode of the logical processor before and after the VM exit.

The loading of host state is detailed in Section 27.5.1 to Section 27.5.5. These sections reference VMCS fields that
correspond to processor state. Unless otherwise stated, these references are to fields in the host-state area.

A logical processor is in 1A-32e mode after a VM exit only if the “host address-space size” VM-exit control is 1. If
the logical processor was in 1A-32e mode before the VM exit and this control is 0, a VMX abort occurs. See Section
27.7.

In addition to loading host state, VM exits clear address-range monitoring (Section 27.5.6).

After the state loading described in this section, VM exits may load MSRs from the VM-exit MSR-load area (see
Section 27.6). This loading occurs only after the state loading described in this section.

27.5.1 Loading Host Control Registers, Debug Registers, MSRs

VM exits load new values for controls registers, debug registers, and some MSRs:

® CRO, CR3, and CR4 are loaded from the CRO field, the CR3 field, and the CR4 field, respectively, with the
following exceptions:

— The following bits are not modified:
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®* For CRO, ET, CD, NW; bits 63:32 (on processors that support Intel 64 architecture), 28:19, 17, and
15:6; and any bits that are fixed in VMX operation (see Section 23.8).1

®* For CR3, bits 63:52 and bits in the range 51:32 beyond the processor’s physical-address width (they
are cleared to 0).2 (This item applies only to processors that support Intel 64 architecture.)

®* For CR4, any bits that are fixed in VMX operation (see Section 23.8).
CR4.PAE is set to 1 if the “host address-space size” VM-exit control is 1.
CR4.PCIDE is set to O if the “host address-space size” VM-exit control is O.

® DR?7 is set to 400H.

® The following MSRs are established as follows:

The 1A32_DEBUGCTL MSR is cleared to 00000000_00000000H.

The IA32_SYSENTER_CS MSR is loaded from the 1A32_SYSENTER_CS field. Since that field has only 32
bits, bits 63:32 of the MSR are cleared to O.

IA32_SYSENTER_ESP MSR and IA32_SYSENTER_EIP MSR are loaded from the IA32_SYSENTER_ESP field
and the 1A32_SYSENTER_EIP field, respectively.

If the processor does not support the Intel 64 architecture, these fields have only 32 bits; bits 63:32 of the
MSRs are cleared to O.

If the processor does support the Intel 64 architecture and the processor supports N < 64 linear-address
bits, each of bits 63:N is set to the value of bit N—1.3

The following steps are performed on processors that support Intel 64 architecture:

® The MSRs FS.base and GS.base are loaded from the base-address fields for FS and GS, respectively
(see Section 27.5.2).

®* The LMA and LME bits in the IA32_EFER MSR are each loaded with the setting of the “host address-
space size” VM-exit control.

If the “load 1A32_PERF_GLOBAL_CTRL” VM-exit control is 1, the IA32_PERF_GLOBAL_CTRL MSR is loaded
from the 1A32_PERF_GLOBAL_CTRL field. Bits that are reserved in that MSR are maintained with their
reserved values.

If the “load 1A32_PAT” VM-exit control is 1, the IA32_PAT MSR is loaded from the 1A32_PAT field. Bits that
are reserved in that MSR are maintained with their reserved values.

If the “load IA32_EFER” VM-exit control is 1, the IA32_EFER MSR is loaded from the IA32_EFER field. Bits
that are reserved in that MSR are maintained with their reserved values.

If the “clear 1A32_BNDCFGS” VM-exit control is 1, the IA32_BNDCFGS MSR is cleared to
00000000_00000000H; otherwise, it is not modified.

With the exception of FS.base and GS.base, any of these MSRs is subsequently overwritten if it appears in the
VM-exit MSR-load area. See Section 27.6.

27.5.2

Loading Host Segment and Descriptor-Table Registers

Each of the registers CS, SS, DS, ES, FS, GS, and TR is loaded as follows (see below for the treatment of LDTR):

® The selector is loaded from the selector field. The segment is unusable if its selector is loaded with zero. The
checks specified Section 26.3.1.2 limit the selector values that may be loaded. In particular, CS and TR are
never loaded with zero and are thus never unusable. SS can be loaded with zero only on processors that

1. Bits 28:19, 17, and 15:6 of CRO and CRO.ET are unchanged by executions of MOV to CRO. CRO.ET is always 1 and the other bits are
always 0.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

3. Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is
returned in bits 15:8 of EAX.
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support Intel 64 architecture and only if the VM exit is to 64-bit mode (64-bit mode allows use of segments
marked unusable).

The

The

The

The

The

base address is set as follows:
CS. Cleared to zero.
SS, DS, and ES. Undefined if the segment is unusable; otherwise, cleared to zero.

FS and GS. Undefined (but, on processors that support Intel 64 architecture, canonical) if the segment is
unusable and the VM exit is not to 64-bit mode; otherwise, loaded from the base-address field.

If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-address bits,
each of bits 63:N is set to the value of bit N—1.1 The values loaded for base addresses for FS and GS are
also manifest in the FS.base and GS.base MSRs.

TR. Loaded from the host-state area. If the processor supports the Intel 64 architecture and the processor
supports N < 64 linear-address bits, each of bits 63:N is set to the value of bit N-1.

segment limit is set as follows:

CS. Set to FFFFFFFFH (corresponding to a descriptor limit of FFFFFH and a G-bit setting of 1).
SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to FFFFFFFFH.
TR. Set to 00000067H.

type field and S bit are set as follows:

CS. Type set to 11 and S set to 1 (execute/read, accessed, non-conforming code segment).

SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, type setto 3 and Ssetto 1
(read/write, accessed, expand-up data segment).

TR. Type set to 11 and S set to O (busy 32-bit task-state segment).

DPL is set as follows:

CS, SS, and TR. Set to 0. The current privilege level (CPL) will be O after the VM exit completes.
DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to O.

P bit is set as follows:

CS, TR. Set to 1.

SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.

On processors that support Intel 64 architecture, CS.L is loaded with the setting of the “host address-space

size

” VM-exit control. Because the value of this control is also loaded into 1A32_EFER.LMA (see Section 27.5.1),

no VM exit is ever to compatibility mode (which requires IA32_EFER.LMA = 1 and CS.L = 0).
D/B.

CS. Loaded with the inverse of the setting of the “host address-space size” VM-exit control. For example, if
that control is 0, indicating a 32-bit guest, CS.D/B is set to 1.

SS. Set to 1.
DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
TR. Set to O.

CS. Set to 1.
SS, DS, ES, FS, and GS. Undefined if the segment is unusable; otherwise, set to 1.
TR. Set to O.

Software can determine the number N by executing CPUID with 80000008H in EAX. The number of linear-address bits supported is

retur

ned in bits 15:8 of EAX.
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The host-state area does not contain a selector field for LDTR. LDTR is established as follows on all VM exits: the
selector is cleared to O000H, the segment is marked unusable and is otherwise undefined (although the base
address is always canonical).

The base addresses for GDTR and IDTR are loaded from the GDTR base-address field and the IDTR base-address
field, respectively. If the processor supports the Intel 64 architecture and the processor supports N < 64 linear-
address bits, each of bits 63:N of each base address is set to the value of bit N—1 of that base address. The GDTR
and IDTR limits are each set to FFFFH.

27.5.3 Loading Host RIP, RSP, and RFLAGS

RIP and RSP are loaded from the RIP field and the RSP field, respectively. RFLAGS is cleared, except bit 1, which is
always set.

27.5.4 Checking and Loading Host Page-Directory-Pointer-Table Entries

If CRO.PG =1, CR4.PAE = 1, and IA32_EFER.LMA = 0, the logical processor uses PAE paging. See Section 4.4 of
the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.1 When in PAE paging is in use, the
physical address in CR3 references a table of page-directory-pointer-table entries (PDPTEs). A MOV to CR3
when PAE paging is in use checks the validity of the PDPTEs and, if they are valid, loads them into the processor
(into internal, non-architectural registers).

A VM exitis to a VMM that uses PAE paging if (1) bit 5 (corresponding to CR4.PAE) is set in the CR4 field in the host-
state area of the VMCS; and (2) the “host address-space size” VM-exit control is 0. Such a VM exit may check the
validity of the PDPTEs referenced by the CR3 field in the host-state area of the VMCS. Such a VM exit must check
their validity if either (1) PAE paging was not in use before the VM exit; or (2) the value of CR3 is changing as a
result of the VM exit. A VM exit to a VMM that does not use PAE paging must not check the validity of the PDPTEs.

A VM exit that checks the validity of the PDPTEs uses the same checks that are used when CR3 is loaded with
MOV to CR3 when PAE paging is in use. If MOV to CR3 would cause a general-protection exception due to the
PDPTEs that would be loaded (e.g., because a reserved bit is set), a VMX abort occurs (see Section 27.7). If a
VM exit to a VMM that uses PAE does not cause a VMX abort, the PDPTEs are loaded into the processor as would
MOV to CR3, using the value of CR3 being load by the VM exit.

27.5.5 Updating Non-Register State

VM exits affect the non-register state of a logical processor as follows:
® Alogical processor is always in the active state after a VM exit.
® Event blocking is affected as follows:

— There is no blocking by STI or by MOV SS after a VM exit.

— VM exits caused directly by non-maskable interrupts (NMIs) cause blocking by NMI (see Table 24-3). Other
VM exits do not affect blocking by NMI. (See Section 27.1 for the case in which an NMI causes a VM exit
indirectly.)

® There are no pending debug exceptions after a VM exit.

Section 28.3 describes how the VMX architecture controls how a logical processor manages information in the TLBs
and paging-structure caches. The following items detail how VM exits invalidate cached mappings:

® If the “enable VPID” VM-execution control is O, the logical processor invalidates linear mappings and combined
mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID O000H are invalidated for
all EP4TA values (EP4TA is the value of bits 51:12 of EPTP).

1. On processors that support Intel 64 architecture, the physical-address extension may support more than 36 physical-address bits.
Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.
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® VM exits are not required to invalidate any guest-physical mappings, nor are they required to invalidate any
linear mappings or combined mappings if the “enable VPID” VM-execution control is 1.

27.5.6 C(Clearing Address-Range Monitoring

The Intel 64 and 1A-32 architectures allow software to monitor a specified address range using the MONITOR and
MWAIT instructions. See Section 8.10.4 in the Intel® 64 and I1A-32 Architectures Software Developer’s Manual,
Volume 3A. VM exits clear any address-range monitoring that may be in effect.

27.6  LOADING MSRS

VM exits may load MSRs from the VM-exit MSR-load area (see Section 24.7.2). Specifically each entry in that area
(up to the number specified in the VM-exit MSR-load count) is processed in order by loading the MSR indexed by
bits 31:0 with the contents of bits 127:64 as they would be written by WRMSR.

Processing of an entry fails in any of the following cases:

® The value of bits 31:0 is either COO00100H (the 1A32_FS_BASE MSR) or CO000101H (the 1A32_GS_BASE
MSR).

® The value of bits 31:8 is 000008H, meaning that the indexed MSR is one that allows access to an APIC register
when the local APIC is in x2APIC mode.

® The value of bits 31:0 indicates an MSR that can be written only in system-management mode (SMM) and the
VM exit will not end in SMM. (IA32_SMM_MONITOR_CTL is an MSR that can be written only in SMM.)

® The value of bits 31:0 indicates an MSR that cannot be loaded on VM exits for model-specific reasons. A
processor may prevent loading of certain MSRs even if they can normally be written by WRMSR. Such model-
specific behavior is documented in Chapter 35.

® Bits 63:32 are not all 0.

® An attempt to write bits 127:64 to the MSR indexed by bits 31:0 of the entry would cause a general-protection
exception if executed via WRMSR with CPL = 0.1

If processing fails for any entry, a VMX abort occurs. See Section 27.7.

If any MSR is being loaded in such a way that would architecturally require a TLB flush, the TLBs are updated so
that, after VM exit, the logical processor does not use any translations that were cached before the transition.

27.7 VMXABORTS

A problem encountered during a VM exit leads to a VMX abort. A VMX abort takes a logical processor into a shut-
down state as described below.

A VMX abort does not modify the VMCS data in the VMCS region of any active VMCS. The contents of these data
are thus suspect after the VMX abort.

On a VMX abort, a logical processor saves a nonzero 32-bit VMX-abort indicator field at byte offset 4 in the VMCS
region of the VMCS whose misconfiguration caused the failure (see Section 24.2). The following values are used:

1. There was a failure in saving guest MSRs (see Section 27.4).
2. Host checking of the page-directory-pointer-table entries (PDPTESs) failed (see Section 27.5.4).

3. The current VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that
the logical processor cannot complete the VM exit properly.

4. There was a failure on loading host MSRs (see Section 27.6).

1. Note the following about processors that support Intel 64 architecture. If CRO.PG = 1, WRMSR to the IA32_EFER MSR causes a gen-
eral-protection exception if it would modify the LME bit. Since CRO.PG is always 1 in VMX operation, the IA32_EFER MSR should not
be included in the VM-exit MSR-load area for the purpose of modifying the LME bit.
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5. There was a machine-check event during VM exit (see Section 27.8).

6. The logical processor was in 1A-32e mode before the VM exit and the “host address-space size” VM-entry
control was O (see Section 27.5).

Some of these causes correspond to failures during the loading of state from the host-state area. Because the
loading of such state may be done in any order (see Section 27.5) a VM exit that might lead to a VMX abort for
multiple reasons (for example, the current VMCS may be corrupt and the host PDPTEs might not be properly
configured). In such cases, the VMX-abort indicator could correspond to any one of those reasons.

A logical processor never reads the VMX-abort indicator in a VMCS region and writes it only with one of the non-
zero values mentioned above. The VMX-abort indicator allows software on one logical processor to diagnose the
VMX-abort on another. For this reason, it is recommended that software running in VMX root operation zero the
VMX-abort indicator in the VMCS region of any VMCS that it uses.

After saving the VMX-abort indicator, operation of a logical processor experiencing a VMX abort depends on
whether the logical processor is in SMX operation:

® |f the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code used is
000DH, indicating “VMX abort.” See Intel® Trusted Execution Technology Measured Launched Environment
Programming Guide.

® If the logical processor is outside SMX operation, it issues a special bus cycle (to notify the chipset) and enters
the VMX-abort shutdown state. RESET is the only event that wakes a logical processor from the VMX-abort
shutdown state. The following events do not affect a logical processor in this state: machine-check events; INIT
signals; external interrupts; non-maskable interrupts (NMIs); start-up IPIs (SIPIs); and system-management
interrupts (SMIs).

27.8  MACHINE-CHECK EVENTS DURING VM EXIT

If a machine-check event occurs during VM exit, one of the following occurs:
® The machine-check event is handled as if it occurred before the VM exit:

— If CR4.MCE = 0, operation of the logical processor depends on whether the logical processor is in SMX
-2
operation:

* If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs. The error code
used is O00CH, indicating “unrecoverable machine-check condition.”

* If the logical processor is outside SMX operation, it goes to the shutdown state.
— If CR4.MCE = 1, a machine-check exception (#MC) is generated:
* If bit 18 (#MC) of the exception bitmap is O, the exception is delivered through the guest IDT.
* If bit 18 of the exception bitmap is 1, the exception causes a VM exit.
® The machine-check event is handled after VM exit completes:

— If the VM exit ends with CR4.MCE = 0, operation of the logical processor depends on whether the logical
processor is in SMX operation:

* If the logical processor is in SMX operation, an Intel® TXT shutdown condition occurs with error code
000CH (unrecoverable machine-check condition).

* If the logical processor is outside SMX operation, it goes to the shutdown state.

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.

2. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.
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— If the VM exit ends with CR4.MCE = 1, a machine-check exception (#MC) is delivered through the host IDT.

® A VMX abort is generated (see Section 27.7). The logical processor blocks events as done normally in
VMX abort. The VMX abort indicator is 5, for “machine-check event during VM exit.”

The first option is not used if the machine-check event occurs after any host state has been loaded. The second
option is used only if VM entry is able to load all host state.
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CHAPTER 28
VMX SUPPORT FOR ADDRESS TRANSLATION

The architecture for VMX operation includes two features that support address translation: virtual-processor iden-
tifiers (VPIDs) and the extended page-table mechanism (EPT). VPIDs are a mechanism for managing translations
of linear addresses. EPT defines a layer of address translation that augments the translation of linear addresses.

Section 28.1 details the architecture of VPIDs. Section 28.2 provides the details of EPT. Section 28.3 explains how
a logical processor may cache information from the paging structures, how it may use that cached information, and
how software can managed the cached information.

28.1  VIRTUAL PROCESSOR IDENTIFIERS (VPIDS)

The original architecture for VMX operation required VMX transitions to flush the TLBs and paging-structure caches.
This ensured that translations cached for the old linear-address space would not be used after the transition.

Virtual-processor identifiers (VPIDs) introduce to VMX operation a facility by which a logical processor may cache
information for multiple linear-address spaces. When VPIDs are used, VMX transitions may retain cached informa-
tion and the logical processor switches to a different linear-address space.

Section 28.3 details the mechanisms by which a logical processor manages information cached for multiple address
spaces. A logical processor may tag some cached information with a 16-bit VPID. This section specifies how the
current VPID is determined at any point in time:

® The current VPID is O000H in the following situations:

— Outside VMX operation. (This includes operation in system-management mode under the default treatment
of SMIs and SMM with VMX operation; see Section 34.14.)

— In VMX root operation.
— In VMX non-root operation when the “enable VPID” VM-execution control is O.

® If the logical processor is in VMX non-root operation and the “enable VPID” VM-execution control is 1, the
current VPID is the value of the VPID VM-execution control field in the VMCS. (VM entry ensures that this value
is never OO00H; see Section 26.2.1.1.)

VPIDs and PCIDs (see Section 4.10.1) can be used concurrently. When this is done, the processor associates
cached information with both a VPID and a PCID. Such information is used only if the current VPID and PCID both
match those associated with the cached information.

28.2 THE EXTENDED PAGE TABLE MECHANISM (EPT)

The extended page-table mechanism (EPT) is a feature that can be used to support the virtualization of physical
memory. When EPT is in use, certain addresses that would normally be treated as physical addresses (and used to
access memory) are instead treated as guest-physical addresses. Guest-physical addresses are translated by
traversing a set of EPT paging structures to produce physical addresses that are used to access memory.

® Section 28.2.1 gives an overview of EPT.

® Section 28.2.2 describes operation of EPT-based address translation.

® Section 28.2.3 discusses VM exits that may be caused by EPT.

® Section 28.2.6 describes interactions between EPT and memory typing.

28.2.1 EPT Overview

EPT is used when the “enable EPT” VM-execution control is 1.1 It translates the guest-physical addresses used in
VMX non-root operation and those used by VM entry for event injection.
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The translation from guest-physical addresses to physical addresses is determined by a set of EPT paging struc-
tures. The EPT paging structures are similar to those used to translate linear addresses while the processor is in
IA-32e mode. Section 28.2.2 gives the details of the EPT paging structures.

If CRO.PG = 1, linear addresses are translated through paging structures referenced through control register CR3.
While the “enable EPT” VM-execution control is 1, these are called guest paging structures. There are no guest
paging structures if CRO.PG = 0.1

When the “enable EPT” VM-execution control is 1, the identity of guest-physical addresses depends on the value
of CRO.PG:

® If CRO.PG = 0, each linear address is treated as a guest-physical address.

® If CRO.PG = 1, guest-physical addresses are those derived from the contents of control register CR3 and the
guest paging structures. (This includes the values of the PDPTEs, which logical processors store in internal,
non-architectural registers.) The latter includes (in page-table entries and in other paging-structure entries for
which bit 7—PS—is 1) the addresses to which linear addresses are translated by the guest paging structures.

If CRO.PG = 1, the translation of a linear address to a physical address requires multiple translations of guest-phys-
ical addresses using EPT. Assume, for example, that CR4.PAE = CR4.PSE = 0. The translation of a 32-bit linear
address then operates as follows:

® Bits 31:22 of the linear address select an entry in the guest page directory located at the guest-physical
address in CR3. The guest-physical address of the guest page-directory entry (PDE) is translated through EPT
to determine the guest PDE’s physical address.

® Bits 21:12 of the linear address select an entry in the guest page table located at the guest-physical address in
the guest PDE. The guest-physical address of the guest page-table entry (PTE) is translated through EPT to
determine the guest PTE’s physical address.

® Bits 11:0 of the linear address is the offset in the page frame located at the guest-physical address in the guest
PTE. The guest-physical address determined by this offset is translated through EPT to determine the physical
address to which the original linear address translates.

In addition to translating a guest-physical address to a physical address, EPT specifies the privileges that software
is allowed when accessing the address. Attempts at disallowed accesses are called EPT violations and cause
VM exits. See Section 28.2.3.

A processor uses EPT to translate guest-physical addresses only when those addresses are used to access memory.
This principle implies the following:

® The MOV to CR3 instruction loads CR3 with a guest-physical address. Whether that address is translated
through EPT depends on whether PAE paging is being used.?

— If PAE paging is not being used, the instruction does not use that address to access memory and does not
cause it to be translated through EPT. (If CRO.PG = 1, the address will be translated through EPT on the
next memory accessing using a linear address.)

— If PAE paging is being used, the instruction loads the four (4) page-directory-pointer-table entries (PDPTESs)
from that address and it does cause the address to be translated through EPT.

® Section 4.4.1 identifies executions of MOV to CRO and MOV to CR4 that load the PDPTEs from the guest-
physical address in CR3. Such executions cause that address to be translated through EPT.

® The PDPTEs contain guest-physical addresses. The instructions that load the PDPTEs (see above) do not use
those addresses to access memory and do not cause them to be translated through EPT. The address in a
PDPTE will be translated through EPT on the next memory accessing using a linear address that uses that
PDPTE.

1. “Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is O, the logical processor operates as if the “enable EPT” VM-execution control were 0. See Section 24.6.2.

1. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, CRO.PG can be 0 in VMX non-root
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are
both 1.

2. Alogical processor uses PAE paging if CRO.PG = 1, CR4.PAE = 1 and IA32_EFER.LMA = 0. See Section 4.4 in the Intel® 64 and IA-32
Architectures Software Developer’s Manual, Volume 3A.
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28.2.2 EPT Translation Mechanism

The EPT translation mechanism uses only bits 47:0 of each guest-physical address.t It uses a page-walk length of

4, meaning that at most 4 EPT paging-structure entries are accessed to translate a guest-physical address.

2

These 48 bits are partitioned by the logical processor to traverse the EPT paging structures:

A 4-KByte naturally aligned EPT PML4 table is located at the physical address specified in bits 51:12 of the
extended-page-table pointer (EPTP), a VM-execution control field (see Table 24-8 in Section 24.6.11). An EPT
PML4 table comprises 512 64-bit entries (EPT PML4Es). An EPT PMLA4E is selected using the physical address
defined as follows:

— Bits 63:52 are all 0.
— Bits 51:12 are from the EPTP.
— Bits 11:3 are bits 47:39 of the guest-physical address.

— Bits 2:0 are all O.

Because an EPT PML4E is identified using bits 47:39 of the guest-physical address, it controls access to a 512-
GByte region of the guest-physical-address space. The format of an EPT PMLA4E is given in Table 28-1.

Table 28-1. Format of an EPT PML4 Entry (PML4E) that References an EPT Page-Directory-Pointer Table

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 512-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed from the 512-GByte region controlled by this entry

2 If the “mode-based execute control for EPT" VM-execution control is O, execute access; indicates whether instruction

fetches are allowed from the 512-GByte region controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 512-GByte region controlled by this entry

7:3 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 512-GByte region
controlled by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 Ignored

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT" VM-execution control is

1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 512-GByte region
controlled by this entry. If that control is O, this bit is ignored.

11 Ignored

(N-1)12 Physical address of 4-KByte aligned EPT page-directory-pointer table referenced by this entry’

51N Reserved (must be 0)

63:52 Ignored

1.

No processors supporting the Intel 64 architecture support more than 48 physical-address bits. Thus, no such processor can pro-
duce a guest-physical address with more than 48 bits. An attempt to use such an address causes a page fault. An attempt to load
CR3 with such an address causes a general-protection fault. If PAE paging is being used, an attempt to load CR3 that would load a
PDPTE with such an address causes a general-protection fault.

Future processors may include support for other EPT page-walk lengths. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine what EPT page-walk lengths are supported.
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NOTES:
1. N is the physical-address width supported by the processor. Software can determine a processor's physical-address width by execut-

ing CPUID with B0000008H in EAX. The physical-address width is returned in bits 7:0 of EAX.

A 4-KByte naturally aligned EPT page-directory-pointer table is located at the physical address specified in
bits 51:12 of the EPT PML4E. An EPT page-directory-pointer table comprises 512 64-bit entries (EPT PDPTES).
An EPT PDPTE is selected using the physical address defined as follows:

— Bits 63:52 are all 0.

— Bits 51:12 are from the EPT PML4E.

— Bits 11:3 are bits 38:30 of the guest-physical address.
— Bits 2:0 are all O.

Because an EPT PDPTE is identified using bits 47:30 of the guest-physical address, it controls access to a 1-GByte
region of the guest-physical-address space. Use of the EPT PDPTE depends on the value of bit 7 in that entry:®

If bit 7 of the EPT PDPTE is 1, the EPT PDPTE maps a 1-GByte page. The final physical address is computed as
follows:

— Bits 63:52 are all O.

— Bits 51:30 are from the EPT PDPTE.

— Bits 29:0 are from the original guest-physical address.

The format of an EPT PDPTE that maps a 1-GByte page is given in Table 28-2.

If bit 7 of the EPT PDPTE is 0, a 4-KByte naturally aligned EPT page directory is located at the physical address
specified in bits 51:12 of the EPT PDPTE. The format of an EPT PDPTE that references an EPT page directory is
given in Table 28-3.

1.

Not all processors allow bit 7 of an EPT PDPTE to be set to 1. Software should read the VMX capability MSR
IA32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether this is allowed.
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Table 28-2. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that Maps a 1-GByte Page

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 1-GByte page referenced by this entry

1 Write access; indicates whether writes are allowed from the 1-GByte page referenced by this entry

2 If the “mode-based execute control for EPT" VM-execution control is O, execute access; indicates whether
instruction fetches are allowed from the 1-GByte page controlled by this entry
If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 1-GByte page controlled by this entry

5:3 EPT memory type for this 1-GByte page (see Section 28.2.6)

6 Ignore PAT memory type for this 1-GByte page (see Section 28.2.6)

7 Must be 1 (otherwise, this entry references an EPT page directory)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte page referenced
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is O

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 1-GByte page referenced by
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is O

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT" VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 1-GByte page controlled
by this entry. If that control is O, this bit is ignored.

11 Ignored

29:12 Reserved (must be 0)

(N-1):30 Physical address of the 1-GByte page referenced by this entry’

51N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the "EPT-violation #VE" VM-execution control is 1, EPT violations caused by accesses to this page
are convertible to virtualization exceptions only if this bit is O (see Section 25.5.6.1). If “EPT-violation #VE" VM-
execution control is O, this bit is ignored.

NOTES:

1. N is the physical-address width supported by the logical processor.
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Table 28-3. Format of an EPT Page-Directory-Pointer-Table Entry (PDPTE) that References an EPT Page Directory

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 1-GByte region controlled by this entry

1 Write access; indicates whether writes are allowed from the 1-GByte region controlled by this entry

2 If the “mode-based execute control for EPT" VM-execution control is O, execute access; indicates whether instruction
fetches are allowed from the 1-GByte region controlled by this entry
If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 1-GByte region controlled by this entry

73 Reserved (must be 0)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 1-GByte region controlled
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 Ignored

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 1-GByte region
controlled by this entry. If that control is O, this bit is ignored.

11 Ignored

(N-1)12 Physical address of 4-KByte aligned EPT page directory referenced by this en'[ry1

51N Reserved (must be 0)

63:52 Ignored

NOTES:

1. N is the physical-address width supported by the logical processor.

An EPT page-directory comprises 512 64-bit entries (PDEs). An EPT PDE is selected using the physical address
defined as follows:

— Bits 63:52 are all 0.
— Bits 51:12 are from the EPT PDPTE.

— Bits 11:3 are bits 29:21 of the guest-physical address.
— Bits 2:0 are all 0.

Because an EPT PDE is identified using bits 47:21 of the guest-physical address, it controls access to a 2-MByte
region of the guest-physical-address space. Use of the EPT PDE depends on the value of bit 7 in that entry:

® If bit 7 of the EPT PDE is 1, the EPT PDE maps a 2-MByte page. The final physical address is computed as

follows:

— Bits 63:52 are all O.
— Bits 51:21 are from the EPT PDE.

— Bits 20:0 are from the original guest-physical address.

The format of an EPT PDE that maps a 2-MByte page is given in Table 28-4.
® If bit 7 of the EPT PDE is O, a 4-KByte naturally aligned EPT page table is located at the physical address

specified in bits 51:12 of the EPT PDE. The format of an EPT PDE that references an EPT page table is given in
Table 28-5.

An EPT page table comprises 512 64-bit entries (PTEs). An EPT PTE is selected using a physical address defined
as follows:

— Bits 63:52 are all O.
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Table 28-4. Format of an EPT Page-Directory Entry (PDE) that Maps a 2-MByte Page

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 2-MByte page referenced by this entry

1 Write access; indicates whether writes are allowed from the 2-MByte page referenced by this entry

2 If the “mode-based execute control for EPT" VM-execution control is O, execute access; indicates whether instruction

fetches are allowed from the 2-MByte page controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 2-MByte page controlled by this entry

5:3 EPT memory type for this 2-MByte page (see Section 28.2.6)

6 Ignore PAT memory type for this 2-MByte page (see Section 28.2.6)

7 Must be 1 (otherwise, this entry references an EPT page table)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte page referenced

by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is 0

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 2-MByte page referenced by
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is O

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 2-MByte page controlled
by this entry. If that control is O, this bit is ignored.

11 Ignored

20:12 Reserved (must be 0)

(N-1):21 Physical address of the 2-MByte page referenced by this entry’

51N Reserved (must be 0)

62:52 Ignored

63 Suppress #VE. If the “EPT-violation #VE" VM-execution control is 1, EPT violations caused by accesses to this page

are convertible to virtualization exceptions only if this bit is O (see Section 25.5.6.1). If “EPT-violation #VE" VM-
execution control is O, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.

— Bits 51:12 are from the EPT PDE.
— Bits 11:3 are bits 20:12 of the guest-physical address.
— Bits 2:0 are all 0.

® Because an EPT PTE is identified using bits 47:12 of the guest-physical address, every EPT PTE maps a 4-KByte
page. The final physical address is computed as follows:

— Bits 63:52 are all O.

— Bits 51:12 are from the EPT PTE.

— Bits 11:0 are from the original guest-physical address.
The format of an EPT PTE is given in Table 28-6.

An EPT paging-structure entry is present if any of bits 2:0 is 1; otherwise, the entry is not present. The processor
ignores bits 62:3 and uses the entry neither to reference another EPT paging-structure entry nor to produce a
physical address. A reference using a guest-physical address whose translation encounters an EPT paging-struc-
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ture that is not present causes an EPT violation (see Section 28.2.3.2). (If the “EPT-violation #VE” VM-execution
control is 1, the EPT violation is convertible to a virtualization exception only if bit 63 is O; see Section 25.5.6.1. If
the “EPT-violation #VE” VM-execution control is O, this bit is ignored.)

Table 28-5. Format of an EPT Page-Directory Entry (PDE) that References an EPT Page Table

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 2-MByte region controlled by this entry

1 Write access; indicates whether writes are allowed from the 2-MByte region controlled by this entry

2 If the “mode-based execute control for EPT" VM-execution control is 0, execute access; indicates whether instruction

fetches are allowed from the 2-MByte region controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 2-MByte region controlled by this entry

6:3 Reserved (must be 0)

7 Must be O (otherwise, this entry maps a 2-MByte page)

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 2-MByte region controlled
by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is O

9 Ignored

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT" VM-execution control is

1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 2-MByte region
controlled by this entry. If that control is O, this bit is ignored.

11 Ignored

(N-1)12 Physical address of 4-KByte aligned EPT page table referenced by this entry’

51N Reserved (must be 0)
63:52 Ignored
NOTES:

1. N is the physical-address width supported by the logical processor.

NOTE

If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure
entry is present if any of bits 2:0 or bit 10 is 1. If bits 2:0 are all O but bit 10 is 1, the entry is used
normally to reference another EPT paging-structure entry or to produce a physical address.

The discussion above describes how the EPT paging structures reference each other and how the logical processor
traverses those structures when translating a guest-physical address. It does not cover all details of the translation
process. Additional details are provided as follows:

® Situations in which the translation process may lead to VM exits (sometimes before the process completes) are
described in Section 28.2.3.

® Interactions between the EPT translation mechanism and memory typing are described in Section 28.2.6.

Figure 28-1 gives a summary of the formats of the EPTP and the EPT paging-structure entries. For the EPT paging
structure entries, it identifies separately the format of entries that map pages, those that reference other EPT
paging structures, and those that do neither because they are not present; bits 2:0 and bit 7 are highlighted
because they determine how a paging-structure entry is used. (Figure 28-1 does not comprehend the fact that, if
the “mode-based execute control for EPT” VM-execution control is 1, an entry is present if any of bits 2:0 or bit 10
isl.)
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28.2.3 EPT-Induced VM Exits

Accesses using guest-physical addresses may cause VM exits due to EPT misconfigurations, EPT violations, and
page-modification log-full events. An EPT misconfiguration occurs when, in the course of translating a guest-
physical address, the logical processor encounters an EPT paging-structure entry that contains an unsupported
value (see Section 28.2.3.1). An EPT violation occurs when there is no EPT misconfiguration but the EPT paging-
structure entries disallow an access using the guest-physical address (see Section 28.2.3.2). A page-modifica-

Table 28-6. Format of an EPT Page-Table Entry that Maps a 4-KByte Page

Bit Contents

Position(s)

0 Read access; indicates whether reads are allowed from the 4-KByte page referenced by this entry

1 Write access; indicates whether writes are allowed from the 4-KByte page referenced by this entry

2 If the “mode-based execute control for EPT" VM-execution control is O, execute access; indicates whether

instruction fetches are allowed from the 4-KByte page controlled by this entry

If that control is 1, execute access for supervisor-mode linear addresses; indicates whether instruction fetches are
allowed from supervisor-mode linear addresses in the 4-KByte page controlled by this entry

5:3 EPT memory type for this 4-KByte page (see Section 28.2.6)

6 Ignore PAT memory type for this 4-KByte page (see Section 28.2.6)

7 Ignored

8 If bit 6 of EPTP is 1, accessed flag for EPT; indicates whether software has accessed the 4-KByte page referenced

by this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is O

9 If bit 6 of EPTP is 1, dirty flag for EPT; indicates whether software has written to the 4-KByte page referenced by
this entry (see Section 28.2.4). Ignored if bit 6 of EPTP is O

10 Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is
1, indicates whether instruction fetches are allowed from user-mode linear addresses in the 4-KByte page controlled
by this entry. If that control is O, this bit is ignored.

11 Ignored

(N-1)12 Physical address of the 4-KByte page referenced by this entry’

51N Reserved (must be 0)
62:52 Ignored
63 Suppress #VE. If the “"EPT-violation #VE" VM-execution control is 1, EPT violations caused by accesses to this page

are convertible to virtualization exceptions only if this bit is O (see Section 25.5.6.1). If “EPT-violation #VE" VM-
execution control is O, this bit is ignored.

NOTES:
1. N is the physical-address width supported by the logical processor.

tion log-full event occurs when the logical processor determines a need to create a page-modification log entry
and the current log is full (see Section 28.2.5).

These events occur only due to an attempt to access memory with a guest-physical address. Loading CR3 with a
guest-physical address with the MOV to CR3 instruction can cause neither an EPT configuration nor an EPT violation
until that address is used to access a paging structure.t

If the “EPT-violation #VE” VM-execution control is 1, certain EPT violations may cause virtualization exceptions
instead of VM exits. See Section 25.5.6.1.
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28.2.3.1 EPT Misconfigurations

An EPT misconfiguration occurs if translation of a guest-physical address encounters an EPT paging-structure that
meets any of the following conditions:

® Bit O of the entry is clear (indicating that data reads are not allowed) and bit 1 is set (indicating that data writes
are allowed).

® Either of the following if the processor does not support execute-only translations:

— Bit 0 of the entry is clear (indicating that data reads are not allowed) and bit 2 is set (indicating that
instruction fetches are allowed).1

— The “mode-based execute control for EPT” VM-execution control is 1, bit O of the entry is clear (indicating
that data reads are not allowed), and bit 10 is set (indicating that instruction fetches are allowed from user-
mode linear addresses).

Software should read the VMX capability MSR 1A32_VMX_EPT_VPID_CAP to determine whether execute-only
translations are supported (see Appendix A.10).

® The entry is present (see Section 28.2.2) and one of the following holds:

— Avreserved bit is set. This includes the setting of a bit in the range 51:12 that is beyond the logical
processor’s physical-address width.2 See Section 28.2.2 for details of which bits are reserved in which EPT
paging-structure entries.

— The entry is the last one used to translate a guest physical address (either an EPT PDE with bit 7 setto 1 or
an EPT PTE) and the value of bits 5:3 (EPT memory type) is 2, 3, or 7 (these values are reserved).

EPT misconfigurations result when an EPT paging-structure entry is configured with settings reserved for future
functionality. Software developers should be aware that such settings may be used in the future and that an EPT
paging-structure entry that causes an EPT misconfiguration on one processor might not do so in the future.

28.2.3.2 EPT Violations

An EPT violation may occur during an access using a guest-physical address whose translation does not cause an
EPT misconfiguration. An EPT violation occurs in any of the following situations:

® Translation of the guest-physical address encounters an EPT paging-structure entry that is not present (see
Section 28.2.2).

® The access is a data read and, for any byte to be read, bit O (read access) was clear in any of the EPT paging-
structure entries used to translate the guest-physical address of the byte. Reads by the logical processor of
guest paging structures to translate a linear address are considered to be data reads.

1. If the logical processor is using PAE paging—because CRO.PG = CR4.PAE = 1 and IA32_EFER.LMA = 0—the MOV to CR3 instruction
loads the PDPTEs from memory using the guest-physical address being loaded into CR3. In this case, therefore, the MOV to CR3
instruction may cause an EPT misconfiguration, an EPT violation, or a page-modification log-full event.

1. If the "mode-based execute control for EPT” VM-execution control is 1, setting bit 2 indicates that instruction fetches are allowed
from supervisor-mode linear addresses.

2. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.
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Figure 28-1. Formats of EPTP and EPT Paging-Structure Entries
NOTES:

1. Mis an abbreviation for MAXPHYADDR.
2. See Section 24.6.11 for details of the EPTP.
3. Execute access for user-mode linear addresses. If the “mode-based execute control for EPT” VM-execution control is O, this bit is

ignored.

4., Execute access. If the “mode-based execute control for EPT” VM-execution control is 1, this bit controls execute access for supervi-

sor-mode linear addresses.

5. If the “mode-based execute control for EPT” VM-execution control is 1, an EPT paging-structure entry is present if any of bits 2:0 or
bit 10 is 1. This table does not comprehend that fact.

6. Suppress #VE. If the “EPT-violation #VE" VM-execution control is O, this bit is ignored.

® The access is a data write, for any byte to be written, bit 1 (write access) was clear in any of the EPT paging-
structure entries used to translate the guest-physical address of the byte. Writes by the logical processor to
guest paging structures to update accessed and dirty flags are considered to be data writes.

If bit 6 of the EPT pointer (EPTP) is 1 (enabling accessed and dirty flags for EPT), processor accesses to guest
paging-structure entries are treated as writes with regard to EPT violations. Thus, if bit 1 is clear in any of the
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EPT paging-structure entries used to translate the guest-physical address of a guest paging-structure entry, an
attempt to use that entry to translate a linear address causes an EPT violation.

(This does not apply to loads of the PDPTE registers by the MOV to CR instruction for PAE paging; see Section
4.4.1. Those loads of guest PDPTEs are treated as reads and do not cause EPT violations due to a guest-physical
address not being writable.)

The access is an instruction fetch and the EPT paging structures prevent execute access to any of the bytes
being fetched. Whether this occurs depends upon the setting of the “mode-based execute control for EPT” VM-
execution control:

— If the control is 0, an instruction fetch from a byte is prevented if bit 2 (execute access) was clear in any of
the EPT paging-structure entries used to translate the guest-physical address of the byte.

— If the control is 1, an instruction fetch from a byte is prevented in either of the following cases:

* Paging maps the linear address of the byte as a supervisor-mode address and bit 2 (execute access for
supervisor-mode linear addresses) was clear in any of the EPT paging-structure entries used to
translate the guest-physical address of the byte.

Paging maps a linear address as a supervisor-mode address if the U/S flag (bit 2) is O in at least one of
the paging-structure entries controlling the translation of the linear address.

®* Paging maps the linear address of the byte as a user-mode address and bit 10 (execute access for user-
mode linear addresses) was clear in any of the EPT paging-structure entries used to translate the guest-
physical address of the byte.

Paging maps a linear address as a user-mode address if the U/S flag is 1 in all of the paging-structure
entries controlling the translation of the linear address. If paging is disabled (CRO.PG = 0), every linear
address is a user-mode address.

28.2.3.3 Prioritization of EPT Misconfigurations and EPT Violations

The translation of a linear address to a physical address requires one or more translations of guest-physical
addresses using EPT (see Section 28.2.1). This section specifies the relative priority of EPT-induced VM exits with
respect to each other and to other events that may be encountered when accessing memory using a linear address.

For an access to a guest-physical address, determination of whether an EPT misconfiguration or an EPT violation
occurs is based on an iterative process:1

1.

An EPT paging-structure entry is read (initially, this is an EPT PML4 entry):
a. If the entry is not present (see Section 28.2.2), an EPT violation occurs.

b. If the entry is present but its contents are not configured properly (see Section 28.2.3.1), an EPT miscon-
figuration occurs.

c. If the entry is present and its contents are configured properly, operation depends on whether the entry
references another EPT paging structure (whether it is an EPT PDE with bit 7 set to 1 or an EPT PTE):

i) If the entry does reference another EPT paging structure, an entry from that structure is accessed;
step 1 is executed for that other entry.

ii) Otherwise, the entry is used to produce the ultimate physical address (the translation of the original
guest-physical address); step 2 is executed.

Once the ultimate physical address is determined, the privileges determined by the EPT paging-structure
entries are evaluated:

a. Ifthe access to the guest-physical address is not allowed by these privileges (see Section 28.2.3.2), an EPT
violation occurs.

b. If the access to the guest-physical address is allowed by these privileges, memory is accessed using the
ultimate physical address.

If CRO.PG = 1, the translation of a linear address is also an iterative process, with the processor first accessing an
entry in the guest paging structure referenced by the guest-physical address in CR3 (or, if PAE paging is in use, the

1.

This is a simplification of the more detailed description given in Section 28.2.2.
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guest-physical address in the appropriate PDPTE register), then accessing an entry in another guest paging struc-
ture referenced by the guest-physical address in the first guest paging-structure entry, etc. Each guest-physical
address is itself translated using EPT and may cause an EPT-induced VM exit. The following items detail how page
faults and EPT-induced VM exits are recognized during this iterative process:

1. An attempt is made to access a guest paging-structure entry with a guest-physical address (initially, the
address in CR3 or PDPTE register).

a. If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced
VM exit occurs.

b. If the access does not cause an EPT-induced VM exit, bit O (the present flag) of the entry is consulted:
i) If the present flag is O or any reserved bit is set, a page fault occurs.

ii) If the present flag is 1, no reserved bit is set, operation depends on whether the entry references
another guest paging structure (whether it is a guest PDE with PS = 1 or a guest PTE):

* If the entry does reference another guest paging structure, an entry from that structure is
accessed; step 1 is executed for that other entry.

®* Otherwise, the entry is used to produce the ultimate guest-physical address (the translation of the
original linear address); step 2 is executed.

2. Once the ultimate guest-physical address is determined, the privileges determined by the guest paging-
structure entries are evaluated:

a. If the access to the linear address is not allowed by these privileges (e.g., it was a write to a read-only
page), a page fault occurs.

b. If the access to the linear address is allowed by these privileges, an attempt is made to access memory at
the ultimate guest-physical address:

i) If the access fails because of an EPT misconfiguration or an EPT violation (see above), an EPT-induced
VM exit occurs.

ii) If the access does not cause an EPT-induced VM exit, memory is accessed using the ultimate physical
address (the translation, using EPT, of the ultimate guest-physical address).

If CRO.PG = 0, a linear address is treated as a guest-physical address and is translated using EPT (see above). This
process, if it completes without an EPT violation or EPT misconfiguration, produces a physical address and deter-
mines the privileges allowed by the EPT paging-structure entries. If these privileges do not allow the access to the
physical address (see Section 28.2.3.2), an EPT violation occurs. Otherwise, memory is accessed using the phys-
ical address.

28.2.4 Accessed and Dirty Flags for EPT

The Intel 64 architecture supports accessed and dirty flags in ordinary paging-structure entries (see Section
4.8). Some processors also support corresponding flags in EPT paging-structure entries. Software should read the
VMX capability MSR 1A32_VMX_EPT_VPID_CAP (see Appendix A.10) to determine whether the processor supports
this feature.

Software can enable accessed and dirty flags for EPT using bit 6 of the extended-page-table pointer (EPTP), a VM-
execution control field (see Table 24-8 in Section 24.6.11). If this bit is 1, the processor will set the accessed and
dirty flags for EPT as described below. In addition, setting this flag causes processor accesses to guest paging-
structure entries to be treated as writes (see below and Section 28.2.3.2).

For any EPT paging-structure entry that is used during guest-physical-address translation, bit 8 is the accessed
flag. For a EPT paging-structure entry that maps a page (as opposed to referencing another EPT paging structure),
bit 9 is the dirty flag.

Whenever the processor uses an EPT paging-structure entry as part of guest-physical-address translation, it sets
the accessed flag in that entry (if it is not already set).

Whenever there is a write to a guest-physical address, the processor sets the dirty flag (if it is not already set) in
the EPT paging-structure entry that identifies the final physical address for the guest-physical address (either an
EPT PTE or an EPT paging-structure entry in which bit 7 is 1).
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When accessed and dirty flags for EPT are enabled, processor accesses to guest paging-structure entries are
treated as writes (see Section 28.2.3.2). Thus, such an access will cause the processor to set the dirty flag in the
EPT paging-structure entry that identifies the final physical address of the guest paging-structure entry.

(This does not apply to loads of the PDPTE registers for PAE paging by the MOV to CR instruction; see Section 4.4.1.
Those loads of guest PDPTEs are treated as reads and do not cause the processor to set the dirty flag in any EPT
paging-structure entry.)

These flags are “sticky,” meaning that, once set, the processor does not clear them; only software can clear them.

A processor may cache information from the EPT paging-structure entries in TLBs and paging-structure caches (see
Section 28.3). This fact implies that, if software changes an accessed flag or a dirty flag from 1 to O, the processor
might not set the corresponding bit in memory on a subsequent access using an affected guest-physical address.

28.2.5 Page-Modification Logging

When accessed and dirty flags for EPT are enabled, software can track writes to guest-physical addresses using a
feature called page-modification logging.

Software can enable page-modification logging by setting the “enable PML” VM-execution control (see Table 24-7
in Section 24.6.2). When this control is 1, the processor adds entries to the page-modification log as described
below. The page-modification log is a 4-KByte region of memory located at the physical address in the PML address
VM-execution control field. The page-modification log consists of 512 64-bit entries; the PML index VM-execution
control field indicates the next entry to use.

Before allowing a guest-physical access, the processor may determine that it first needs to set an accessed or dirty
flag for EPT (see Section 28.2.4). When this happens, the processor examines the PML index. If the PML index is
not in the range 0-511, there is a page-modification log-full event and a VM exit occurs. In this case, the
accessed or dirty flag is not set, and the guest-physical access that triggered the event does not occur.

If instead the PML index is in the range 0-511, the processor proceeds to update accessed or dirty flags for EPT as
described in Section 28.2.4. If the processor updated a dirty flag for EPT (changing it from O to 1), it then operates
as follows:

1. The guest-physical address of the access is written to the page-modification log. Specifically, the guest-physical
address is written to physical address determined by adding 8 times the PML index to the PML address.
Bits 11:0 of the value written are always 0 (the guest-physical address written is thus 4-KByte aligned).

2. The PML index is decremented by 1 (this may cause the value to transition from O to FFFFH).

Because the processor decrements the PML index with each log entry, the value may transition from O to FFFFH. At
that point, no further logging will occur, as the processor will determine that the PML index is not in the range O—
511 and will generate a page-modification log-full event (see above).

28.2.6 EPT and Memory Typing

This section specifies how a logical processor determines the memory type use for a memory access while EPT is in
use. (See Chapter 11, “Memory Cache Control” of Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3A for details of memory typing in the Intel 64 architecture.) Section 28.2.6.1 explains how the memory
type is determined for accesses to the EPT paging structures. Section 28.2.6.2 explains how the memory type is
determined for an access using a guest-physical address that is translated using EPT.

28.2.6.1 Memory Type Used for Accessing EPT Paging Structures

This section explains how the memory type is determined for accesses to the EPT paging structures. The determi-
nation is based first on the value of bit 30 (cache disable—CD) in control register CRO:

® If CRO.CD = 0, the memory type used for any such reference is the EPT paging-structure memory type, which
is specified in bits 2:0 of the extended-page-table pointer (EPTP), a VM-execution control field (see Section
24.6.11). A value of O indicates the uncacheable type (UC), while a value of 6 indicates the write-back type
(WB). Other values are reserved.

¢ If CRO.CD =1, the memory type used for any such reference is uncacheable (UC).
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The MTRRs have no effect on the memory type used for an access to an EPT paging structure.

28.2.6.2 Memory Type Used for Translated Guest-Physical Addresses

The effective memory type of a memory access using a guest-physical address (an access that is translated
using EPT) is the memory type that is used to access memory. The effective memory type is based on the value of
bit 30 (cache disable—CD) in control register CRO; the last EPT paging-structure entry used to translate the guest-
physical address (either an EPT PDE with bit 7 set to 1 or an EPT PTE); and the PAT memory type (see below):

® The PAT memory type depends on the value of CRO.PG:
— If CRO.PG = 0, the PAT memory type is WB (writeback).!

— If CRO.PG = 1, the PAT memory type is the memory type selected from the 1A32_PAT MSR as specified in
Section 11.12.3, “Selecting a Memory Type from the PAT”.2

® The EPT memory type is specified in bits 5:3 of the last EPT paging-structure entry: 0 = UC; 1 =WC; 4 =
WT; 5 = WP; and 6 = WB. Other values are reserved and cause EPT misconfigurations (see Section 28.2.3).

® If CRO.CD = 0, the effective memory type depends upon the value of bit 6 of the last EPT paging-structure
entry:

— If the value is 0O, the effective memory type is the combination of the EPT memory type and the PAT
memory type specified in Table 11-7 in Section 11.5.2.2, using the EPT memory type in place of the MTRR
memory type.

— If the value is 1, the memory type used for the access is the EPT memory type. The PAT memory type is
ignored.

® If CRO.CD = 1, the effective memory type is UC.

The MTRRs have no effect on the memory type used for an access to a guest-physical address.

28.3  CACHING TRANSLATION INFORMATION

Processors supporting Intel® 64 and 1A-32 architectures may accelerate the address-translation process by
caching on the processor data from the structures in memory that control that process. Such caching is discussed
in Section 4.10, “Caching Translation Information” in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A. The current section describes how this caching interacts with the VMX architecture.

The VPID and EPT features of the architecture for VMX operation augment this caching architecture. EPT defines
the guest-physical address space and defines translations to that address space (from the linear-address space)
and from that address space (to the physical-address space). Both features control the ways in which a logical
processor may create and use information cached from the paging structures.

Section 28.3.1 describes the different kinds of information that may be cached. Section 28.3.2 specifies when such
information may be cached and how it may be used. Section 28.3.3 details how software can invalidate cached
information.

28.3.1 Information That May Be Cached

Section 4.10, “Caching Translation Information” in Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 3A identifies two kinds of translation-related information that may be cached by a logical

1. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, CRO.PG can be 0 in VMX non-root
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls
are both 1.

2. Table 11-11 in Section 11.12.3, “Selecting a Memory Type from the PAT" illustrates how the PAT memory type is selected based on
the values of the PAT, PCD, and PWT bits in a page-table entry (or page-directory entry with PS = 1). For accesses to a guest paging-
structure entry X, the PAT memory type is selected from the table by using a value of O for the PAT bit with the values of PCD and
PWT from the paging-structure entry Y that references X (or from CR3 if X is in the root paging structure). With PAE paging, the PAT
memory type for accesses to the PDPTEs is WB.
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processor: translations, which are mappings from linear page numbers to physical page frames, and paging-
structure caches, which map the upper bits of a linear page number to information from the paging-structure
entries used to translate linear addresses matching those upper bits.

The same kinds of information may be cached when VPIDs and EPT are in use. A logical processor may cache and
use such information based on its function. Information with different functionality is identified as follows:

® Linear mappings.! There are two kinds:

— Linear translations. Each of these is a mapping from a linear page number to the physical page frame to
which it translates, along with information about access privileges and memory typing.

— Linear paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear
address to the physical address of the paging structure used to translate the corresponding region of the
linear-address space, along with information about access privileges. For example, bits 47:39 of a linear
address would map to the address of the relevant page-directory-pointer table.

Linear mappings do not contain information from any EPT paging structure.
® Guest-physical mappings.2 There are two kinds:

— Guest-physical translations. Each of these is a mapping from a guest-physical page number to the physical
page frame to which it translates, along with information about access privileges and memory typing.

— Guest-physical paging-structure-cache entries. Each of these is a mapping from the upper portion of a
guest-physical address to the physical address of the EPT paging structure used to translate the corre-
sponding region of the guest-physical address space, along with information about access privileges.

The information in guest-physical mappings about access privileges and memory typing is derived from EPT
paging structures.

¢ Combined mappings.3 There are two kinds:

— Combined translations. Each of these is a mapping from a linear page number to the physical page frame to
which it translates, along with information about access privileges and memory typing.

— Combined paging-structure-cache entries. Each of these is a mapping from the upper portion of a linear
address to the physical address of the paging structure used to translate the corresponding region of the
linear-address space, along with information about access privileges.

The information in combined mappings about access privileges and memory typing is derived from both guest
paging structures and EPT paging structures.

28.3.2 Creating and Using Cached Translation Information

The following items detail the creation of the mappings described in the previous section:

® The following items describe the creation of mappings while EPT is not in use (including execution outside VMX
non-root operation):

4

— Linear mappings may be created. They are derived from the paging structures referenced (directly or
indirectly) by the current value of CR3 and are associated with the current VPID and the current PCID.

— No linear mappings are created with information derived from paging-structure entries that are not present
(bit 0 is O) or that set reserved bits. For example, if a PTE is not present, no linear mapping are created for
any linear page number whose translation would use that PTE.

— No guest-physical or combined mappings are created while EPT is not in use.
® The following items describe the creation of mappings while EPT is in use:

Earlier versions of this manual used the term “VPID-tagged” to identify linear mappings.
Earlier versions of this manual used the term “EPTP-tagged” to identify guest-physical mappings.
Earlier versions of this manual used the term “dual-tagged” to identify combined mappings.

This section associated cached information with the current VPID and PCID. If PCIDs are not supported or are not being used (e.g.,
because CR4.PCIDE = 0), all the information is implicitly associated with PCID 000H; see Section 4.10.1, “Process-Context Identifiers
(PCIDs)," in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 3A.

> wn =
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— Guest-physical mappings may be created. They are derived from the EPT paging structures referenced
(directly or indirectly) by bits 51:12 of the current EPTP. These 40 bits contain the address of the EPT-PML4-
table. (the notation EP4TA refers to those 40 bits). Newly created guest-physical mappings are associated
with the current EPATA.

— Combined mappings may be created. They are derived from the EPT paging structures referenced (directly
or indirectly) by the current EP4ATA. If CRO.PG = 1, they are also derived from the paging structures
referenced (directly or indirectly) by the current value of CR3. They are associated with the current VPID,
the current PZCID, and the current EP4TA.1 No combined paging-structure-cache entries are created if
CRO.PG = 0.

— No guest-physical mappings or combined mappings are created with information derived from EPT paging-
structure entries that are not present (see Section 28.2.2) or that are misconfigured (see Section
28.2.3.1).

— No combined mappings are created with information derived from guest paging-structure entries that are
not present or that set reserved bits.

— No linear mappings are created while EPT is in use.

The following items detail the use of the various mappings:

® IfEPT is notin use (e.g., when outside VMX non-root operation), a logical processor may use cached mappings
as follows:

— For accesses using linear addresses, it may use linear mappings associated with the current VPID and the
current PCID. It may also use global TLB entries (linear mappings) associated with the current VPID and
any PCID.

— No guest-physical or combined mappings are used while EPT is not in use.
® If EPT is in use, a logical processor may use cached mappings as follows:

— For accesses using linear addresses, it may use combined mappings associated with the current VPID, the
current PCID, and the current EP4TA. It may also use global TLB entries (combined mappings) associated
with the current VPID, the current EP4TA, and any PCID.

— For accesses using guest-physical addresses, it may use guest-physical mappings associated with the
current EP4TA.

— No linear mappings are used while EPT is in use.

28.3.3 Invalidating Cached Translation Information

Software modifications of paging structures (including EPT paging structures) may result in inconsistencies
between those structures and the mappings cached by a logical processor. Certain operations invalidate informa-
tion cached by a logical processor and can be used to eliminate such inconsistencies.

28.3.3.1 Operations that Invalidate Cached Mappings

The following operations invalidate cached mappings as indicated:

® Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX
operation (e.g., the INVLPG and INVPCID instructions) invalidate linear mappings and combined mappings.3
They are required to do so only for the current VPID (but, for combined mappings, all EP4TAS). Linear

1. At any given time, a logical processor may be caching combined mappings for a VPID and a PCID that are associated with different
EP4TAs. Similarly, it may be caching combined mappings for an EP4TA that are associated with different VPIDs and PCIDs.

2. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, CRO.PG can be 0 in VMX non-root
operation only if the “unrestricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls
are both 1.

3. See Section 4.10.4, “Invalidation of TLBs and Paging-Structure Caches,” in the Intel® 64 and IA-32 Architectures Software Devel-
oper’s Manual, Volume 3A for an enumeration of operations that architecturally invalidate entries in the TLBs and paging-structure
caches independent of VMX operation.
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mappings for the current VPID are invalidated even if EPT is in use.l Combined mappings for the current
VPID are invalidated even if EPT is not in use.?

® An EPT violation invalidates any guest-physical mappings (associated with the current EP4TA) that would be
used to translate the guest-physical address that caused the EPT violation. If that guest-physical address was
the translation of a linear address, the EPT violation also invalidates any combined mappings for that linear
address associated with the current PCID, the current VPID and the current EP4TA.

® If the “enable VPID” VM-execution control is 0, VM entries and VM exits invalidate linear mappings and
combined mappings associated with VPID 0000H (for all PCIDs). Combined mappings for VPID O0O00OH are
invalidated for all EP4TAs.

® Execution of the INVVPID instruction invalidates linear mappings and combined mappings. Invalidation is
based on instruction operands, called the INVVPID type and the INVVPID descriptor. Four INVVPID types are
currently defined:

— Individual-address. If the INVVPID type is O, the logical processor invalidates linear mappings and
combined mappings associated with the VPID specified in the INVVPID descriptor and that would be used
to translate the linear address specified in of the INVVPID descriptor. Linear mappings and combined
mappings for that VPID and linear address are invalidated for all PCIDs and, for combined mappings, all
EP4TAs. (The instruction may also invalidate mappings associated with other VPIDs and for other linear
addresses.)

— Single-context. If the INVVPID type is 1, the logical processor invalidates all linear mappings and
combined mappings associated with the VPID specified in the INVVPID descriptor. Linear mappings and
combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings, all EP4ATAs.
(The instruction may also invalidate mappings associated with other VPIDs.)

— All-context. If the INVVPID type is 2, the logical processor invalidates linear mappings and combined
mappings associated with all VPIDs except VPID 0000H and with all PCIDs. (The instruction may also
invalidate linear mappings with VPID O000H.) Combined mappings are invalidated for all EP4TAs.

— Single-context-retaining-globals. If the INVVPID type is 3, the logical processor invalidates linear
mappings and combined mappings associated with the VPID specified in the INVVPID descriptor. Linear
mappings and combined mappings for that VPID are invalidated for all PCIDs and, for combined mappings,
all EP4TAs. The logical processor is not required to invalidate information that was used for global transla-
tions (although it may do so). See Section 4.10, “Caching Translation Information” for details regarding
global translations. (The instruction may also invalidate mappings associated with other VPIDs.)

See Chapter 30 for details of the INVVPID instruction. See Section 28.3.3.3 for guidelines regarding use of this
instruction.

® Execution of the INVEPT instruction invalidates guest-physical mappings and combined mappings. Invalidation
is based on instruction operands, called the INVEPT type and the INVEPT descriptor. Two INVEPT types are
currently defined:

— Single-context. If the INVEPT type is 1, the logical processor invalidates all guest-physical mappings and
combined mappings associated with the EPATA specified in the INVEPT descriptor. Combined mappings for
that EPATA are invalidated for all VPIDs and all PCIDs. (The instruction may invalidate mappings associated
with other EP4TAS.)

— All-context. If the INVEPT type is 2, the logical processor invalidates guest-physical mappings and
combined mappings associated with all EP4TAs (and, for combined mappings, for all VPIDs and PCIDs).

See Chapter 30 for details of the INVEPT instruction. See Section 28.3.3.4 for guidelines regarding use of this
instruction.

® A power-up or a reset invalidates all linear mappings, guest-physical mappings, and combined mappings.

1. While no linear mappings are created while EPT is in use, a logical processor may retain, while EPT is in use, linear mappings (for the
same VPID as the current one) there were created earlier, when EPT was not in use.

2. While no combined mappings are created while EPT is not in use, a logical processor may retain, while EPT is in not use, combined
mappings (for the same VPID as the current one) there were created earlier, when EPT was in use.
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28.3.3.2 Operations that Need Not Invalidate Cached Mappings

The following items detail cases of operations that are not required to invalidate certain cached mappings:

® Operations that architecturally invalidate entries in the TLBs or paging-structure caches independent of VMX
operation are not required to invalidate any guest-physical mappings.

® The INVVPID instruction is not required to invalidate any guest-physical mappings.
® The INVEPT instruction is not required to invalidate any linear mappings.

® VMX transitions are not required to invalidate any guest-physical mappings. If the “enable VPID” VM-execution
control is 1, VMX transitions are not required to invalidate any linear mappings or combined mappings.

® The VMXOFF and VMXON instructions are not required to invalidate any linear mappings, guest-physical
mappings, or combined mappings.

A logical processor may invalidate any cached mappings at any time. For this reason, the operations identified
above may invalidate the indicated mappings despite the fact that doing so is not required.

28.3.3.3 Guidelines for Use of the INVVPID Instruction

The need for VMM software to use the INVVPID instruction depends on how that software is virtualizing memory
(e.g., see Section 32.3, “Memory Virtualization™).

If EPT is not in use, it is likely that the VMM is virtualizing the guest paging structures. Such a VMM may configure
the VMCS so that all or some of the operations that invalidate entries the TLBs and the paging-structure caches
(e.g., the INVLPG instruction) cause VM exits. If VMM software is emulating these operations, it may be necessary
to use the INVVPID instruction to ensure that the logical processor’s TLBs and the paging-structure caches are
appropriately invalidated.

Requirements of when software should use the INVVPID instruction depend on the specific algorithm being used
for page-table virtualization. The following items provide guidelines for software developers:

® Emulation of the INVLPG instruction may require execution of the INVVPID instruction as follows:
— The INVVPID type is individual-address (0).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

— The linear address in the INVVPID descriptor is that of the operand of the INVLPG instruction being
emulated.

® Some instructions invalidate all entries in the TLBs and paging-structure caches—except for global translations.
An example is the MOV to CR3 instruction. (See Section 4.10, “Caching Translation Information” in the Intel®
64 and IA-32 Architectures Software Developer’s Manual, Volume 3A for details regarding global translations.)
Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context-retaining-globals (3).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

® Some instructions invalidate all entries in the TLBs and paging-structure caches—including for global transla-
tions. An example is the MOV to CR4 instruction if the value of value of bit 4 (page global enable—PGE) is
changing. Emulation of such an instruction may require execution of the INVVPID instruction as follows:

— The INVVPID type is single-context (1).

— The VPID in the INVVPID descriptor is the one assigned to the virtual processor whose execution is being
emulated.

If EPT is not in use, the logical processor associates all mappings it creates with the current VPID, and it will use
such mappings to translate linear addresses. For that reason, a VMM should not use the same VPID for different
non-EPT guests that use different page tables. Doing so may result in one guest using translations that pertain to
the other.

If EPT is in use, the instructions enumerated above might not be configured to cause VM exits and the VMM might
not be emulating them. In that case, executions of the instructions by guest software properly invalidate the
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required entries in the TLBs and paging-structure caches (see Section 28.3.3.1); execution of the INVVPID instruc-
tion is not required.

If EPT is in use, the logical processor associates all mappings it creates with the value of bits 51:12 of current EPTP.
If a VMM uses different EPTP values for different guests, it may use the same VPID for those guests. Doing so
cannot result in one guest using translations that pertain to the other.

The following guidelines apply more generally and are appropriate even if EPT is in use:

As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if
software does not properly invalidate information that may be cached from the paging structures. If, at one
time, the current VPID on a logical processor was a non-zero value X, it is recommended that software use the
INVVPID instruction with the “single-context” INVVPID type and with VPID X in the INVVPID descriptor before
a VM entry on the same logical processor that establishes VPID X and either (a) the “virtualize APIC accesses”
VM-execution control was changed from O to 1; or (b) the value of the APIC-access address was changed.

Software can use the INVVPID instruction with the “all-context” INVVPID type immediately after execution of
the VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially
undesired retention of information cached from paging structures between separate uses of VMX operation.

28.3.3.4 (Guidelines for Use of the INVEPT Instruction

The following items provide guidelines for use of the INVEPT instruction to invalidate information cached from the
EPT paging structures.

Software should use the INVEPT instruction with the “single-context” INVEPT type after making any of the
following changes to an EPT paging-structure entry (the INVEPT descriptor should contain an EPTP value that
references — directly or indirectly — the modified EPT paging structure):

— Changing any of the privilege bits 2:0 from 1 to 0.1

— Changing the physical address in bits 51:12.

— Clearing bit 8 (the accessed flag) if accessed and dirty flags for EPT will be enabled.

— For an EPT PDPTE or an EPT PDE, changing bit 7 (which determines whether the entry maps a page).

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), changing either bits 5:3 or bit 6. (These bits
determine the effective memory type of accesses using that EPT paging-structure entry; see Section
28.2.6.)

— For the last EPT paging-structure entry used to translate a guest-physical address (an EPT PDPTE with bit 7
set to 1, an EPT PDE with bit 7 set to 1, or an EPT PTE), clearing bit 9 (the dirty flag) if accessed and dirty
flags for EPT will be enabled.

Software should use the INVEPT instruction with the “single-context” INVEPT type before a VM entry with an
EPTP value X such that X[6] = 1 (accessed and dirty flags for EPT are enabled) if the logical processor had
earlier been in VMX non-root operation with an EPTP value Y such that Y[6] = O (accessed and dirty flags for
EPT are not enabled) and Y[51:12] = X[51:12].

Software may use the INVEPT instruction after modifying a present EPT paging-structure entry (see Section
28.2.2) to change any of the privilege bits 2:0 from O to 1.2 Failure to do so may cause an EPT violation that
would not otherwise occur. Because an EPT violation invalidates any mappings that would be used by the access
that caused the EPT violation (see Section 28.3.3.1), an EPT violation will not recur if the original access is
performed again, even if the INVEPT instruction is not executed.

Because a logical processor does not cache any information derived from EPT paging-structure entries that are
not present (see Section 28.2.2) or misconfigured (see Section 28.2.3.1), it is not necessary to execute INVEPT
following modification of an EPT paging-structure entry that had been not present or misconfigured.

If the “mode-based execute control for EPT" VM-execution control is 1, software should use the INVEPT instruction changing privi-
lege bit 10 from 1 to O.

If the “mode-based execute control for EPT" VM-execution control is 1, software may use the INVEPT instruction after modifying a
present EPT paging-structure entry to change privilege bit 10 from O to 1.
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® As detailed in Section 29.4.5, an access to the APIC-access page might not cause an APIC-access VM exit if
software does not properly invalidate information that may be cached from the EPT paging structures. If EPT
was in use on a logical processor at one time with EPTP X, it is recommended that software use the INVEPT
instruction with the “single-context” INVEPT type and with EPTP X in the INVEPT descriptor before a VM entry
on the same logical processor that enables EPT with EPTP X and either (a) the “virtualize APIC accesses” VM-
execution control was changed from O to 1; or (b) the value of the APIC-access address was changed.

® Software can use the INVEPT instruction with the “all-context” INVEPT type immediately after execution of the
VMXON instruction or immediately prior to execution of the VMXOFF instruction. Either prevents potentially
undesired retention of information cached from EPT paging structures between separate uses of VMX
operation.

In a system containing more than one logical processor, software must account for the fact that information from
an EPT paging-structure entry may be cached on logical processors other than the one that modifies that entry. The
process of propagating the changes to a paging-structure entry is commonly referred to as “TLB shootdown.” A
discussion of TLB shootdown appears in Section 4.10.5, “Propagation of Paging-Structure Changes to Multiple
Processors,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 3A.
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CHAPTER 29
APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

The VMCS includes controls that enable the virtualization of interrupts and the Advanced Programmable Interrupt
Controller (APIC).

When these controls are used, the processor will emulate many accesses to the APIC, track the state of the virtual
APIC, and deliver virtual interrupts — all in VMX non-root operation with out a VM exit.1

The processor tracks the state of the virtual APIC using a virtual-APIC page identified by the virtual-machine
monitor (VMM). Section 29.1 discusses the virtual-APIC page and how the processor uses it to track the state of the
virtual APIC.

The following are the VM-execution controls relevant to APIC virtualization and virtual interrupts (see Section 24.6
for information about the locations of these controls):

® Virtual-interrupt delivery. This controls enables the evaluation and delivery of pending virtual interrupts
(Section 29.2). It also enables the emulation of writes (memory-mapped or MSR-based, as enabled) to the
APIC registers that control interrupt prioritization.

® Use TPR shadow. This control enables emulation of accesses to the APIC’s task-priority register (TPR) via CR8
(Section 29.3) and, if enabled, via the memory-mapped or MSR-based interfaces.

® Virtualize APIC accesses. This control enables virtualization of memory-mapped accesses to the APIC
(Section 29.4) by causing VM exits on accesses to a VMM-specified APIC-access page. Some of the other
controls, if set, may cause some of these accesses to be emulated rather than causing VM exits.

® Virtualize xX2APIC mode. This control enables virtualization of MSR-based accesses to the APIC (Section
29.5).

® APIC-register virtualization. This control allows memory-mapped and MSR-based reads of most APIC
registers (as enabled) by satisfying them from the virtual-APIC page. It directs memory-mapped writes to the
APIC-access page to the virtual-APIC page, following them by VM exits for VMM emulation.

® Process posted interrupts. This control allows software to post virtual interrupts in a data structure and send
a notification to another logical processor; upon receipt of the notification, the target processor will process the
posted interrupts by copying them into the virtual-APIC page (Section 29.6).

“Virtualize APIC accesses”, “virtualize x2APIC mode”, “virtual-interrupt delivery”, and “APIC-register virtualization”
are all secondary processor-based VM-execution controls. If bit 31 of the primary processor-based VM-execution
controls is O, the processor operates as if these controls were all 0. See Section 24.6.2.

29.1  VIRTUAL APIC STATE

The virtual-APIC page is a 4-KByte region of memory that the processor uses to virtualize certain accesses to
APIC registers and to manage virtual interrupts. The physical address of the virtual-APIC page is the virtual-APIC
address, a 64-bit VM-execution control field in the VMCS (see Section 24.6.8).

Depending on the settings of certain VM-execution controls, the processor may virtualize certain fields on the
virtual-APIC page with functionality analogous to that performed by the local APIC. Section 29.1.1 identifies and
defines these fields. Section 29.1.2, Section 29.1.3, Section 29.1.4, and Section 29.1.5 detail the actions taken to
virtualize updates to some of these fields.

29.1.1 Virtualized APIC Registers

Depending on the setting of certain VM-execution controls, a logical processor may virtualize certain accesses to
APIC registers using the following fields on the virtual-APIC page:

® Virtual task-priority register (VTPR): the 32-bit field located at offset 080H on the virtual-APIC page.

1. Inmost cases, it is not necessary for a virtual-machine monitor (VMM) to inject virtual interrupts as part of VM entry.
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® Virtual processor-priority register (VPPR): the 32-bit field located at offset OAOH on the virtual-APIC
page.
® Virtual end-of-interrupt register (VEOI): the 32-bit field located at offset 0BOH on the virtual-APIC page.

® Virtual interrupt-service register (VISR): the 256-bit value comprising eight non-contiguous 32-bit fields
at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H on the virtual-APIC page. Bit x of the VISR
is at bit position (x & 1FH) at offset (100H | ((x & EOH) » 1)). The processor uses only the low 4 bytes of each
of the 16-byte fields at offsets 100H, 110H, 120H, 130H, 140H, 150H, 160H, and 170H.

® Virtual interrupt-request register (VIRR): the 256-bit value comprising eight non-contiguous 32-bit fields
at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H on the virtual-APIC page. Bit x of the VIRR
is at bit position (x & 1FH) at offset (200H | ((x & EOH) » 1)). The processor uses only the low 4 bytes of each
of the 16-Byte fields at offsets 200H, 210H, 220H, 230H, 240H, 250H, 260H, and 270H.

®  Virtual interrupt-command register (VICR_LO): the 32-bit field located at offset 300H on the virtual-APIC
page

® Virtual interrupt-command register (VICR_HI): the 32-bit field located at offset 310H on the virtual-APIC
page.

29.1.2 TPR Virtualization

The processor performs TPR virtualization in response to the following operations: (1) virtualization of the MOV
to CR8 instruction; (2) virtualization of a write to offset 080H on the APIC-access page; and (3) virtualization of the
WRMSR instruction with ECX = 808H. See Section 29.3, Section 29.4.3, and Section 29.5 for details of when TPR
virtualization is performed.

The following pseudocode details the behavior of TPR virtualization:
IF “virtual-interrupt delivery” is O
THEN
IF VTPR[7:4] < TPR threshold (see Section 24.6.8)
THEN cause VM exit due to TPR below threshold;
Fl;
ELSE
perform PPR virtualization (see Section 29.1.3);
evaluate pending virtual interrupts (see Section 25.2.1);
Fl;

Any VM exit caused by TPR virtualization is trap-like: the instruction causing TPR virtualization completes before
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the next
instruction).

29.1.3 PPR Virtualization

The processor performs PPR virtualization in response to the following operations: (1) VM entry; (2) TPR virtu-
alization; and (3) EOI virtualization. See Section 26.3.2.5, Section 29.1.2, and Section 29.1.4 for details of when
PPR virtualization is performed.

PPR virtualization uses the guest interrupt status (specifically, SVI; see Section 24.4.2) and VTPR. The following
pseudocode details the behavior of PPR virtualization:
IF VTPR[7:4] = SVI[7:4]
THEN VPPR « VTPR & FFH;
ELSE VPPR « SVI & FOH;
Fl;

PPR virtualization always clears bytes 3:1 of VPPR.

PPR virtualization is caused only by TPR virtualization, EOI virtualization, and VM entry. Delivery of a virtual inter-
rupt also modifies VPPR, but in a different way (see Section 29.2.2). No other operations modify VPPR, even if they
modify SVI, VISR, or VTPR.
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29.1.4 EOIl Virtualization

The processor performs EOI virtualization in response to the following operations: (1) virtualization of a write to
offset OBOH on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 80BH. See
Section 29.4.3 and Section 29.5 for details of when EOI virtualization is performed. EOI virtualization occurs only
if the “virtual-interrupt delivery” VM-execution control is 1.

EOI virtualization uses and updates the guest interrupt status (specifically, SVI; see Section 24.4.2). The following
pseudocode details the behavior of EOI virtualization:
Vector « SVI;
VISR[Vector] « O; (see Section 29.1.1 for definition of VISR)
IF any bits set in VISR
THEN SVI « highest index of bit set in VISR
ELSE SVI « O;
Fl;
perform PPR virtualiation (see Section 29.1.3);
IF EOI_exit_bitmap[Vector] = 1 (see Section 24.6.8 for definition of EQI_exit_bitmap)
THEN cause EQI-induced VM exit with Vector as exit qualification;
ELSE evaluate pending virtual interrupts; (see Section 29.2.1)
Fl;

Any VM exit caused by EOI virtualization is trap-like: the instruction causing EOI virtualization completes before
the VM exit occurs (for example, the value of CS:RIP saved in the guest-state area of the VMCS references the next
instruction).

29.1.5 Self-IPI Virtualization

The processor performs self-1P1 virtualization in response to the following operations: (1) virtualization of a
write to offset 300H on the APIC-access page; and (2) virtualization of the WRMSR instruction with ECX = 83FH.
See Section 29.4.3 and Section 29.5 for details of when self-1P1 virtualization is performed. Self-1PI virtualization
occurs only if the “virtual-interrupt delivery” VM-execution control is 1.

Each operation that leads to self-1PI virtualization provides an 8-bit vector (see Section 29.4.3 and Section 29.5).
Self-1P1 virtualization updates the guest interrupt status (specifically, RVI; see Section 24.4.2). The following
pseudocode details the behavior of self-1PI virtualization:

VIRR[Vector] « 1; (see Section 29.1.1 for definition of VIRR)

RVI « max{RVI,Vector};

evaluate pending virtual interrupts; (see Section 29.2.1)

29.2 EVALUATION AND DELIVERY OF VIRTUAL INTERRUPTS

If the “virtual-interrupt delivery” VM-execution control is 1, certain actions in VMX non-root operation or during
VM entry cause the processor to evaluate and deliver virtual interrupts.

Evaluation of virtual interrupts is triggered by certain actions change the state of the virtual-APIC page and is
described in Section 29.2.1. This evaluation may result in recognition of a virtual interrupt. Once a virtual interrupt
is recognized, the processor may deliver it within VMX non-root operation without a VM exit. Virtual-interrupt
delivery is described in Section 29.2.2.

29.2.1 Evaluation of Pending Virtual Interrupts

If the “virtual-interrupt delivery” VM-execution control is 1, certain actions cause a logical processor to evaluate
pending virtual interrupts.

The following actions cause the evaluation of pending virtual interrupts: VM entry; TPR virtualization; EOI virtual-
ization; self-1PI virtualization; and posted-interrupt processing. See Section 26.3.2.5, Section 29.1.2, Section
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29.1.4, Section 29.1.5, and Section 29.6 for details of when evaluation of pending virtual interrupts is performed.
No other operations cause the evaluation of pending virtual interrupts, even if they modify RVI or VPPR.

Evaluation of pending virtual interrupts uses the guest interrupt status (specifically, RVI; see Section 24.4.2). The
following pseudocode details the evaluation of pending virtual interrupts:
IF “interrupt-window exiting” is 0 AND
RVI[7:4] > VPPR[7:4] (see Section 29.1.1 for definition of VPPR)
THEN recognize a pending virtual interrupt;
ELSE
do not recognize a pending virtual interrupt;
Fl;

Once recognized, a virtual interrupt may be delivered in VMX non-root operation; see Section 29.2.2.

Evaluation of pending virtual interrupts is caused only by VM entry, TPR virtualization, EOI virtualization, self-1PI
virtualization, and posted-interrupt processing. No other operations do so, even if they modify RVI or VPPR. The
logical processor ceases recognition of a pending virtual interrupt following the delivery of a virtual interrupt.

29.2.2 \Virtual-Interrupt Delivery

If a virtual interrupt has been recognized (see Section 29.2.1), it is delivered at an instruction boundary when the
following conditions all hold: (1) RFLAGS.IF = 1; (2) there is no blocking by STI; (3) there is no blocking by MOV
SS or by POP SS; and (4) the “interrupt-window exiting” VM-execution control is O.

Virtual-interrupt delivery has the same priority as that of VM exits due to the 1-setting of the “interrupt-window
exiting” VM-execution control.2 Thus, non-maskable interrupts (NMIs) and higher priority events take priority over
delivery of a virtual interrupt; delivery of a virtual interrupt takes priority over external interrupts and lower priority
events.

Virtual-interrupt delivery wakes a logical processor from the same inactive activity states as would an external
interrupt. Specifically, it wakes a logical processor from the states entered using the HLT and MWAIT instructions.
It does not wake a logical processor in the shutdown state or in the wait-for-SIPI state.

Virtual-interrupt delivery updates the guest interrupt status (both RVI and SVI; see Section 24.4.2) and delivers an
event within VMX non-root operation without a VM exit. The following pseudocode details the behavior of virtual-
interrupt delivery (see Section 29.1.1 for definition of VISR, VIRR, and VPPR):
Vector « RVI;
VISR[Vector] « 1;
SVI « Vector;
VPPR « Vector & FOH;
VIRR[Vector] « O;
IF any bits setin VIRR
THEN RVI « highest index of bit set in VIRR
ELSE RVI « O;
Fl;
deliver interrupt with Vector through IDT;
cease recognition of any pending virtual interrupt;

If a logical processor is in enclave mode, an Asynchronous Enclave Exit (AEX) occurs before delivery of a virtual
interrupt (see Chapter 40, “Enclave Exiting Events”).

2. Alogical processor never recognizes or delivers a virtual interrupt if the “interrupt-window exiting” VM-execution control is 1.
Because of this, the relative priority of virtual-interrupt delivery and VM exits due to the 1-setting of that control is not defined.
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29.3  VIRTUALIZING CR8-BASED TPR ACCESSES

In 64-bit mode, software can access the local APIC’s task-priority register (TPR) through CR8. Specifically, software
uses the MOV from CR8 and MOV to CRS8 instructions (see Section 10.8.6, “Task Priority in 1A-32e Mode”). This
section describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these CR8-based APIC accesses by setting the “CR8-load exiting” and
“CR8-store exiting” VM-execution controls, ensuring that the accesses cause VM exits (see Section 25.1.3). Alter-
natively, there are methods for virtualizing some CR8-based APIC accesses without VM exits.

Normally, an execution of MOV from CR8 or MOV to CR8 that does not fault or cause a VM exit accesses the APIC’s
TPR. However, such an execution are treated specially if the “use TPR shadow” VM-execution control is 1. The
following items provide details:

® MOV from CR8. The instruction loads bits 3:0 of its destination operand with bits 7:4 of VTPR (see Section
29.1.1). Bits 63:4 of the destination operand are cleared.

® MOV to CR8. The instruction stores bits 3:0 of its source operand into bits 7:4 of VTPR; the remainder of VTPR
(bits 3:0 and bits 31:8) are cleared. Following this, the processor performs TPR virtualization (see Section
29.1.2).

29.4  VIRTUALIZING MEMORY-MAPPED APIC ACCESSES

When the local APIC is in xAPIC mode, software accesses the local APIC’s control registers using a memory-
mapped interface. Specifically, software uses linear addresses that translate to physical addresses on page frame
indicated by the base address in the 1A32_APIC_BASE MSR (see Section 10.4.4, “Local APIC Status and Location”).
This section describes how these accesses can be virtualized.

A virtual-machine monitor (VMM) can virtualize these memory-mapped APIC accesses by ensuring that any access
to a linear address that would access the local APIC instead causes a VM exit. This could be done using paging or
the extended page-table mechanism (EPT). Another way is by using the 1-setting of the “virtualize APIC accesses”
VM-execution control.

If the “virtualize APIC accesses” VM-execution control is 1, the logical processor treats specially memory accesses
using linear addresses that translate to physical addresses in the 4-KByte APIC-access page.3 (The APIC-access
page is identified by the API1C-access address, a field in the VMCS; see Section 24.6.8.)

In general, an access to the APIC-access page causes an APIC-access VM exit. APIC-access VM exits provide a
VMM with information about the access causing the VM exit. Section 29.4.1 discusses the priority of APIC-access
VM exits.

Certain VM-execution controls enable the processor to virtualize certain accesses to the APIC-access page without
a VM exit. In general, this virtualization causes these accesses to be made to the virtual-APIC page instead of the
APIC-access page.

NOTES

Unless stated otherwise, this section characterizes only linear accesses to the APIC-access page;
an access to the APIC-access page is a linear access if (1) it results from a memory access using a
linear address; and (2) the access’s physical address is the translation of that linear address.
Section 29.4.6 discusses accesses to the APIC-access page that are not linear accesses.

The distinction between the APIC-access page and the virtual-APIC page allows a VMM to share
paging structures or EPT paging structures among the virtual processors of a virtual machine (the
shared paging structures referencing the same APIC-access address, which appears in the VMCS of

3. Even when addresses are translated using EPT (see Section 28.2), the determination of whether an APIC-access VM exit occurs
depends on an access's physical address, not its guest-physical address. Even when CRO.PG = 0, ordinary memory accesses by soft-
ware use linear addresses; the fact that CRO.PG = O means only that the identity translation is used to convert linear addresses to
physical (or guest-physical) addresses.
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all the virtual processors) while giving each virtual processor its own virtual APIC (the VMCS of each
virtual processor will have a unique virtual-APIC address).

Section 29.4.2 discusses when and how the processor may virtualize read accesses from the APIC-access page.
Section 29.4.3 does the same for write accesses. When virtualizing a write to the APIC-access page, the processor
typically takes actions in addition to passing the write through to the virtual-APIC page.

The discussion in those sections uses the concept of an operation within which these memory accesses may occur.
For those discussions, an “operation” can be an iteration of a REP-prefixed string instruction, an execution of any
other instruction, or delivery of an event through the IDT.

The 1-setting of the “virtualize APIC accesses” VM-execution control may also affect accesses to the APIC-access
page that do not result directly from linear addresses. This is discussed in Section 29.4.6.

Special treatment may apply to Intel SGX instructions or if the logical processor is in enclave mode. See Section
42.5.3 for details.

29.4.1 Priority of APIC-Access VM Exits

The following items specify the priority of APIC-access VM exits relative to other events.

® The priority of an APIC-access VM exit due to a memory access is below that of any page fault or EPT violation
that that access may incur. That is, an access does not cause an APIC-access VM exit if it would cause a page
fault or an EPT violation.

® A memory access does not cause an APIC-access VM exit until after the accessed flags are set in the paging
structures (including EPT paging structures, if enabled).

® Awrite access does not cause an APIC-access VM exit until after the dirty flags are set in the appropriate paging
structure and EPT paging structure (if enabled).

® With respect to all other events, any APIC-access VM exit due to a memory access has the same priority as any
page fault or EPT violation that the access could cause. (This item applies to other events that the access may
generate as well as events that may be generated by other accesses by the same operation.)

These principles imply, among other things, that an APIC-access VM exit may occur during the execution of a
repeated string instruction (including INS and OUTS). Suppose, for example, that the first n iterations (n may be
0) of such an instruction do not access the APIC-access page and that the next iteration does access that page. As
a result, the first n iterations may complete and be followed by an APIC-access VM exit. The instruction pointer
saved in the VMCS references the repeated string instruction and the values of the general-purpose registers
reflect the completion of n iterations.

29.4.2 Virtualizing Reads from the APIC-Access Page

A read access from the APIC-access page causes an APIC-access VM exit if any of the following are true:
® The “use TPR shadow” VM-execution control is O.

® The access is for an instruction fetch.

® The access is more than 32 bits in size.

® The access is part of an operation for which the processor has already virtualized a write to the APIC-access
page.

® The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits
3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a read access is virtualized depends on the setting of the “APIC-register

virtualization” VM-execution control:

® If “APIC-register virtualization” is O, a read access is virtualized if its page offset is 080H (task priority);
otherwise, the access causes an APIC-access VM exit.

® If “APIC-register virtualization is 1, a read access is virtualized if it is entirely within one the following ranges of
offsets:

29-6 Vol.3C



APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

— 020H-023H (local APIC ID);

— O030H—-033H (local APIC version);

— 080H—-083H (task priority);

— OBOH-0B3H (end of interrupt);

— ODOH-0D3H (logical destination);

— OEOH-OE3H (destination format);

— OFOH-O0OF3H (spurious-interrupt vector);

— 100H-103H, 110H-113H, 120H—-123H, 130H-133H, 140H-143H, 150H-153H, 160H-163H, or 170H—
173H (in-service);

— 180H-183H, 190H-193H, 1A0OH-1A3H, 1BOH-1B3H, 1COH-1C3H, 1DOH-1D3H, 1EOH-1E3H, or 1FOH—
1F3H (trigger mode);

— 200H-203H, 210H-213H, 220H—-223H, 230H-233H, 240H-243H, 250H-253H, 260H-263H, or 270H—
273H (interrupt request);

— 280H-283H (error status);

— 300H—-303H or 310H—313H (interrupt command);

— 320H-323H, 330H—333H, 340H—343H, 350H—-353H, 360H—-363H, or 370H-373H (LVT entries);
— 380H-383H (initial count); or

— 3EOH-3E3H (divide configuration).

In all other cases, the access causes an APIC-access VM exit.

A read access from the APIC-access page that is virtualized returns data from the corresponding page offset on the
virtual-APIC page.?

29.4.3 \Virtualizing Writes to the APIC-Access Page

Whether a write access to the APIC-access page is virtualized depends on the settings of the VM-execution controls
and the page offset of the access. Section 29.4.3.1 details when APIC-write virtualization occurs.

Unlike reads, writes to the local APIC have side effects; because of this, virtualization of writes to the APIC-access
page may require emulation specific to the access’s page offset (which identifies the APIC register being accessed).
Section 29.4.3.2 describes this APIC-write emulation.

For some page offsets, it is necessary for software to complete the virtualization after a write completes. In these
cases, the processor causes an APIC-write VM exit to invoke VMM software. Section 29.4.3.3 discusses APIC-
write VM exits.

29.4.3.1 Determining Whether a Write Access is Virtualized

A write access to the APIC-access page causes an APIC-access VM exit if any of the following are true:
® The “use TPR shadow” VM-execution control is O.
® The access is more than 32 bits in size.

® The access is part of an operation for which the processor has already virtualized a write (with a different page
offset or a different size) to the APIC-access page.

® The access is not entirely contained within the low 4 bytes of a naturally aligned 16-byte region. That is, bits
3:2 of the access’s address are 0, and the same is true of the address of the highest byte accessed.

If none of the above are true, whether a write access is virtualized depends on the settings of the “APIC-register
virtualization” and “virtual-interrupt delivery” VM-execution controls:

4, The memory type used for accesses that read from the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR
(see Appendix A.1).
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If the “APIC-register virtualization” and “virtual-interrupt delivery” VM-execution controls are both O, a write
access is virtualized if its page offset is 080H; otherwise, the access causes an APIC-access VM exit.

If the “APIC-register virtualization” VM-execution control is O and the “virtual-interrupt delivery” VM-execution
control is 1, a write access is virtualized if its page offset is 080H (task priority), OBOH (end of interrupt), and
300H (interrupt command — low); otherwise, the access causes an APIC-access VM exit.

If “APIC-register virtualization is 1, a write access is virtualized if it is entirely within one the following ranges of
offsets:

— 020H—-023H (local APIC ID);

— 080H—-083H (task priority);

— O0BOH-0B3H (end of interrupt);

— ODOH-0D3H (logical destination);

— OEOH—-OE3H (destination format);

— OFOH-O0OF3H (spurious-interrupt vector);

— 280H-283H (error status);

— 300H—-303H or 310H-313H (interrupt command);

— 320H-323H, 330H-333H, 340H-343H, 350H—-353H, 360H—363H, or 370H-373H (LVT entries);
— 380H-383H (initial count); or

— 3EOH-3E3H (divide configuration).

In all other cases, the access causes an APIC-access VM exit.

The processor virtualizes a write access to the APIC-access page by writing data to the corresponding page offset
on the virtual-APIC page.® Following this, the processor performs certain actions after completion of the operation
of which the access was a part.6 APIC-write emulation is described in Section 29.4.3.2.

29.4.3.2 APIC-Write Emulation

If the processor virtualizes a write access to the APIC-access page, it performs additional actions after completion
of an operation of which the access was a part. These actions are called APIC-write emulation.

The details of APIC-write emulation depend upon the page offset of the virtualized write access:

7

080H (task priority). The processor clears bytes 3:1 of VTPR and then causes TPR virtualization (Section
29.1.2).

OBOH (end of interrupt). If the “virtual-interrupt delivery” VM-execution control is 1, the processor clears VEOI
and then causes EOI virtualization (Section 29.1.4); otherwise, the processor causes an APIC-write VM exit
(Section 29.4.3.3).

300H (interrupt command — low). If the “virtual-interrupt delivery” VM-execution control is 1, the processor
checks the value of VICR_LO to determine whether the following are all true:

— Reserved bits (31:20, 17:16, 13) and bit 12 (delivery status) are all O.
— Bits 19:18 (destination shorthand) are 01B (self).

— Bit 15 (trigger mode) is O (edge).

— Bits 10:8 (delivery mode) are 000B (fixed).

— Bits 7:4 (the upper half of the vector) are not 0000B.

The memory type used for accesses that write to the virtual-APIC page is reported in bits 53:50 of the IA32_VMX_BASIC MSR (see
Appendix A.1).

Recall that, for the purposes of this discussion, an operation is an iteration of a REP-prefixed string instruction, an execution of any
other instruction, or delivery of an event through the IDT.

For any operation, there can be only one page offset for which a write access was virtualized. This is because a write access is not
virtualized if the processor has already virtualized a write access for the same operation with a different page offset.
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If all of the items above are true, the processor performs self-1PI virtualization using the 8-bit vector in byte O
of VICR_LO (Section 29.1.5).

If the “virtual-interrupt delivery” VM-execution control is O, or if any of the items above are false, the
processor causes an APIC-write VM exit (Section 29.4.3.3).

® 310H-313H (interrupt command — high). The processor clears bytes 2:0 of VICR_HI. No other virtualization or
VM exit occurs.

® Any other page offset. The processor causes an APIC-write VM exit (Section 29.4.3.3).

APIC-write emulation takes priority over system-management interrupts (SMIs), INIT signals, and lower priority
events. APIC-write emulation is not blocked if RFLAGS.IF = 0 or by the MOV SS, POP SS, or STI instructions.

If an operation causes a fault after a write access to the APIC-access page and before APIC-write emulation, and
that fault is delivered without a VM exit, APIC-write emulation occurs after the fault is delivered and before the fault
handler can execute. If an operation causes a VM exit (perhaps due to a fault) after a write access to the APIC-
access page and before APIC-write emulation, the APIC-write emulation does not occur.

29.4.3.3 APIC-Write VM Exits

In certain cases, VMM software must be invoked to complete the virtualization of a write access to the APIC-access
page. In this case, APIC-write emulation causes an APIC-write VM exit. (Section 29.4.3.2 details the cases that
causes APIC-write VM exits.)

APIC-write VM exits are invoked by APIC-write emulation, and APIC-write emulation occurs after an operation that
performs a write access to the APIC-access page. Because of this, every APIC-write VM exit is trap-like: it occurs
after completion of the operation containing the write access that caused the VM exit (for example, the value of
CS:RIP saved in the guest-state area of the VMCS references the next instruction).

The basic exit reason for an APIC-write VM exit is “APIC write.” The exit qualification is the page offset of the write
access that led to the VM exit.

As noted in Section 29.5, execution of WRMSR with ECX = 83FH (self-IPI MSR) can lead to an APIC-write VM exit
if the “virtual-interrupt delivery” VM-execution control is 1. The exit qualification for such an APIC-write VM exit is
3FOH.

29.4.4 Instruction-Specific Considerations

Certain instructions that use linear address may cause page faults even though they do not use those addresses to
access memory. The APIC-virtualization features may affect these instructions as well:

® CLFLUSH, CLFLUSHOPT. With regard to faulting, the processor operates as if each of these instructions reads
from the linear address in its source operand. If that address translates to one on the APIC-access page, the
instruction may cause an APIC-access VM exit. If it does not, it will flush the corresponding cache line on the
virtual-APIC page instead of the APIC-access page.

® ENTER. With regard to faulting, the processor operates if ENTER writes to the byte referenced by the final
value of the stack pointer (even though it does not if its size operand is non-zero). If that value translates to an
address on the APIC-access page, the instruction may cause an APIC-access VM exit. If it does not, it will cause
the APIC-write emulation appropriate to the address’s page offset.

®* MASKMOVQ and MAKSMOVDQU. Even if the instruction’s mask is zero, the processor may operate with
regard to faulting as if MASKMOVQ or MASKMOVDQU writes to memory (the behavior is implementation-
specific). In such a situation, an APIC-access VM exit may occur.

¢ MONITOR. With regard to faulting, the processor operates as if MONITOR reads from the effective address in
RAX. If the resulting linear address translates to one on the APIC-access page, the instruction may cause an
APIC-access VM exit.8 If it does not, it will monitor the corresponding address on the virtual-APIC page instead
of the APIC-access page.

©

This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For IA-32 processors, this notation refers to the 32-bit forms of those registers (EAX, EIP,
ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer specifically to lower 32 bits of the indicated register.
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® PREFETCH. An execution of the PREFETCH instruction that would result in an access to the APIC-access page
does not cause an APIC-access VM exit. Such an access may prefetch data; if so, it is from the corresponding
address on the virtual-APIC page.

Virtualization of accesses to the APIC-access page is principally intended for basic instructions such as AND, MOV,
OR, TEST, XCHG, and XOR. Use of an instruction that normally operates on floating-point, SSE, AVX, or AVX-512
registers may cause an APIC-access VM exit unconditionally regardless of the page offset it accesses on the APIC-
access page.

29.4.5 Issues Pertaining to Page Size and TLB Management

The 1-setting of the “virtualize APIC accesses” VM-execution is guaranteed to apply only if translations to the APIC-
access address use a 4-KByte page. The following items provide details:

¢ IfEPT is not in use, any linear address that translates to an address on the APIC-access page should use a 4-
KByte page. Any access to a linear address that translates to the APIC-access page using a larger page may
operate as if the “virtualize APIC accesses” VM-execution control were 0.

® IfEPT is in use, any guest-physical address that translates to an address on the APIC-access page should use a
4-KByte page. Any access to a linear address that translates to a guest-physical address that in turn translates
to the APIC-access page using a larger page may operate as if the “virtualize APIC accesses” VM-execution
control were 0. (This is true also for guest-physical accesses to the APIC-access page; see Section 29.4.6.1.)

In addition, software should perform appropriate TLB invalidation when making changes that may affect APIC-
virtualization. The specifics depend on whether VPIDs or EPT is being used:

® VPIDs being used but EPT not being used. Suppose that there is a VPID that has been used before and that
software has since made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution
control when it had previously been 0; or (2) changed the paging structures so that some linear address
translates to the APIC-access address when it previously did not. In that case, software should execute
INVVPID (see “INVVPID— Invalidate Translations Based on VPID” in Section 30.3) before performing on the
same logical processor and with the same VPID.®

® EPT being used. Suppose that there is an EPTP value that has been used before and that software has since
made either of the following changes: (1) set the “virtualize APIC accesses” VM-execution control when it had
previously been 0; or (2) changed the EPT paging structures so that some guest-physical address translates to
the APIC-access address when it previously did not. In that case, software should execute INVEPT (see
“INVEPT— Invalidate Translations Derived from EPT” in Section 30.3) before performing on the same logical
processor and with the same EPTP value.1©

® Neither VPIDs nor EPT being used. No invalidation is required.

Failure to perform the appropriate TLB invalidation may result in the logical processor operating as if the “virtualize
APIC accesses” VM-execution control were 0 in responses to accesses to the affected address. (No invalidation is
necessary if neither VPIDs nor EPT is being used.)

29.4.6 APIC Accesses Not Directly Resulting From Linear Addresses

Section 29.4 has described the treatment of accesses that use linear addresses that translate to addresses on the
APIC-access page. This section considers memory accesses that do not result directly from linear addresses.

® An access is called a guest-physical access if (1) CR0O.PG = 1;11 (2) the “enable EPT” VM-execution control
is 1;12 (3) the access’s physical address is the result of an EPT translation; and (4) either (a) the access was
not generated by a linear address; or (b) the access’s guest-physical address is not the translation of the

9. INVVPID should use either (1) the all-contexts INVVPID type; (2) the single-context INVVPID type with the VPID in the INVVPID
descriptor; or (3) the individual-address INVVPID type with the linear address and the VPID in the INVVPID descriptor.

10. INVEPT should use either (1) the global INVEPT type; or (2) the single-context INVEPT type with the EPTP value in the INVEPT
descriptor.

11. If the capability MSR IA32_VMX_CRO_FIXEDO reports that CRO.PG must be 1 in VMX operation, CRO.PG must be 1 unless the “unre-
stricted guest” VM-execution control and bit 31 of the primary processor-based VM-execution controls are both 1.
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access’s linear address. Section 29.4.6.1 discusses the treatment of guest-physical accesses to the APIC-
access page.

® An access is called a physical access if (1) either (a) the “enable EPT” VM-execution control is O; or (b) the
access’s physical address is not the result of a translation through the EPT paging structures; and (2) either
(a) the access is not generated by a linear address; or (b) the access’s physical address is not the translation
of its linear address. Section 29.4.6.2 discusses the treatment of physical accesses to the APIC-access page.

29.4.6.1 Guest-Physical Accesses to the APIC-Access Page

Guest-physical accesses include the following when guest-physical addresses are being translated using EPT:

® Reads from the guest paging structures when translating a linear address (such an access uses a guest-
physical address that is not the translation of that linear address).

® Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that
causes the logical processor to use) PAE paging (see Section 4.4).

® Updates to the accessed and dirty flags in the guest paging structures when using a linear address (such an
access uses a guest-physical address that is not the translation of that linear address).

Every guest-physical access to an address on the APIC-access page causes an APIC-access VM exit. Such accesses
are never virtualized regardless of the page offset.

The following items specify the priority relative to other events of APIC-access VM exits caused by guest-physical
accesses to the APIC-access page.

® The priority of an APIC-access VM exit caused by a guest-physical access to memory is below that of any EPT
violation that that access may incur. That is, a guest-physical access does not cause an APIC-access VM exit if
it would cause an EPT violation.

® With respect to all other events, any APIC-access VM exit caused by a guest-physical access has the same
priority as any EPT violation that the guest-physical access could cause.

29.4.6.2 Physical Accesses to the APIC-Access Page
Physical accesses include the following:
® If the “enable EPT” VM-execution control is O:
— Reads from the paging structures when translating a linear address.

— Loads of the page-directory-pointer-table entries by MOV to CR when the logical processor is using (or that
causes the logical processor to use) PAE paging (see Section 4.4).

— Updates to the accessed and dirty flags in the paging structures.

¢ If the “enable EPT” VM-execution control is 1, accesses to the EPT paging structures (including updates to the
accessed and dirty flags for EPT).

® Any of the following accesses made by the processor to support VMX non-root operation:
— Accesses to the VMCS region.

— Accesses to data structures referenced (directly or indirectly) by physical addresses in VM-execution
control fields in the VMCS. These include the 1/0 bitmaps, the MSR bitmaps, and the virtual-APIC page.

® Accesses that effect transitions into and out of SMM.13 These include the following:
— Accesses to SMRAM during SMI delivery and during execution of RSM.

— Accesses during SMM VM exits (including accesses to MSEG) and during VM entries that return from SMM.

12."Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, VMX non-root operation functions as if the “enable EPT" VM-execution control were 0. See Section 24.6.2.

13. Technically, these accesses do not occur in VMX non-root operation. They are included here for clarity.

Vol. 3C 29-11



APIC VIRTUALIZATION AND VIRTUAL INTERRUPTS

A physical access to the APIC-access page may or may not cause an APIC-access VM exit. If it does not cause an
APIC-access VM exit, it may access the APIC-access page or the virtual-APIC page. Physical write accesses to the
APIC-access page may or may not cause APIC-write emulation or APIC-write VM exits.

The priority of an APIC-access VM exit caused by physical access is not defined relative to other events that the
access may cause.

It is recommended that software not set the APIC-access address to any of the addresses used by physical memory
accesses (identified above). For example, it should not set the APIC-access address to the physical address of any
of the active paging structures if the “enable EPT” VM-execution control is 0.

29.5 VIRTUALIZING MSR-BASED APIC ACCESSES

When the local APIC is in x2APIC mode, software accesses the local APIC’s control registers using the MSR inter-
face. Specifically, software uses the RDMSR and WRMSR instructions, setting ECX (identifying the MSR being
accessed) to values in the range 800H—8FFH (see Section 10.12, “Extended XAPIC (x2APIC)”). This section
describes how these accesses can be virtualized.

A virtual-machine monitor can virtualize these MSR-based APIC accesses by configuring the MSR bitmaps (see
Section 24.6.9) to ensure that the accesses cause VM exits (see Section 25.1.3). Alternatively, there are methods
for virtualizing some MSR-based APIC accesses without VM exits.

Normally, an execution of RDMSR or WRMSR that does not fault or cause a VM exit accesses the MSR indicated in
ECX. However, such an execution treats some values of ECX in the range 800H—8FFH specially if the “virtualize
Xx2APIC mode” VM-execution control is 1. The following items provide details:

® RDMSR. The instruction’s behavior depends on the setting of the “APIC-register virtualization” VM-execution
control.

— If the “APIC-register virtualization” VM-execution control is 0, behavior depends upon the value of ECX.

* If ECX contains 808H (indicating the TPR MSR), the instruction reads the 8 bytes from offset 080H on
the virtual-APIC page (VTPR and the 4 bytes above it) into EDX:EAX. This occurs even if the local APIC
is not in x2APIC mode (no general-protection fault occurs because the local APIC is not x2APIC mode).

* If ECX contains any other value in the range 800H—8FFH, the instruction operates normally. If the local
APIC is in x2APIC mode and ECX indicates a readable APIC register, EDX and EAX are loaded with the
value of that register. If the local APIC is not in x2APIC mode or ECX does not indicate a readable APIC
register, a general-protection fault occurs.

— If “APIC-register virtualization” is 1 and ECX contains a value in the range 800H—8FFH, the instruction reads
the 8 bytes from offset X on the virtual-APIC page into EDX:EAX, where X = (ECX & FFH) « 4. This occurs
even if the local APIC is not in x2APIC mode (no general-protection fault occurs because the local APIC is
not in Xx2APIC mode).

®  WRMSR. The instruction’s behavior depends on the value of ECX and the setting of the “virtual-interrupt
delivery” VM-execution control.

Special processing applies in the following cases: (1) ECX contains 808H (indicating the TPR MSR); (2) ECX
contains 80BH (indicating the EOlI MSR) and the “virtual-interrupt delivery” VM-execution control is 1; and
(3) ECX contains 83FH (indicating the self-IPI MSR) and the “virtual-interrupt delivery” VM-execution control
is 1.

If special processing applies, no general-protection exception is produced due to the fact that the local APIC is
in XAPIC mode. However, WRMSR does perform the normal reserved-bit checking:

— If ECX contains 808H or 83FH, a general-protection fault occurs if either EDX or EAX[31:8] is non-zero.
— If ECX contains 80BH, a general-protection fault occurs if either EDX or EAX is non-zero.

If there is no fault, WRMSR stores EDX:EAX at offset X on the virtual-APIC page, where X = (ECX & FFH) « 4.
Following this, the processor performs an operation depending on the value of ECX:

— If ECX contains 808H, the processor performs TPR virtualization (see Section 29.1.2).
— If ECX contains 80BH, the processor performs EOI virtualization (see Section 29.1.4).

— If ECX contains 83FH, the processor then checks the value of EAX[7:4] and proceeds as follows:
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* If the value is non-zero, the logical processor performs self-1PI virtualization with the 8-bit vector in
EAX[7:0] (see Section 29.1.5).

* |If the value is zero, the logical processor causes an APIC-write VM exit as if there had been a write
access to page offset 3FOH on the APIC-access page (see Section 29.4.3.3).

If special processing does not apply, the instruction operates normally. If the local APIC is in x2APIC mode
and ECX indicates a writable APIC register, the value in EDX:EAX is written to that register. If the local APIC is
not in x2APIC mode or ECX does not indicate a writable APIC register, a general-protection fault occurs.

29.6  POSTED-INTERRUPT PROCESSING

Posted-interrupt processing is a feature by which a processor processes the virtual interrupts by recording them as
pending on the virtual-APIC page.

Posted-interrupt processing is enabled by setting the “process posted interrupts” VM-execution control. The
processing is performed in response to the arrival of an interrupt with the posted-interrupt notification vector.
In response to such an interrupt, the processor processes virtual interrupts recorded in a data structure called a
posted-interrupt descriptor. The posted-interrupt notification vector and the address of the posted-interrupt
descriptor are fields in the VMCS; see Section 24.6.8.

If the “process posted interrupts” VM-execution control is 1, a logical processor uses a 64-byte posted-interrupt
descriptor located at the posted-interrupt descriptor address. The posted-interrupt descriptor has the following
format:

Table 29-1. Format of Posted-Interrupt Descriptor

Bit Name Description

Position(s)

2550 Posted-interrupt requests One bit for each interrupt vector. There is a posted-interrupt request for a vector if
the corresponding bit is 1

256 Outstanding notification If this bit is set, there is a notification outstanding for one or more posted interrupts
in bits 255:0

511:257 Reserved for software and These bits may be used by software and by other agents in the system (e.g.,

other agents chipset). The processor does not modify these bits.

The notation PIR (posted-interrupt requests) refers to the 256 posted-interrupt bits in the posted-interrupt
descriptor.

Use of the posted-interrupt descriptor differs from that of other data structures that are referenced by pointers in
a VMCS. There is a general requirement that software ensure that each such data structure is modified only when
no logical processor with a current VMCS that references it is in VMX non-root operation. That requirement does
not apply to the posted-interrupt descriptor. There is a requirement, however, that such modifications be done
using locked read-modify-write instructions.

If the “external-interrupt exiting” VM-execution control is 1, any unmasked external interrupt causes a VM exit
(see Section 25.2). If the “process posted interrupts” VM-execution control is also 1, this behavior is changed and
the processor handles an external interrupt as follows: 14

1. The local APIC is acknowledged; this provides the processor core with an interrupt vector, called here the
physical vector.

2. If the physical vector equals the posted-interrupt notification vector, the logical processor continues to the next
step. Otherwise, a VM exit occurs as it would normally due to an external interrupt; the vector is saved in the
VM-exit interruption-information field.

3. The processor clears the outstanding-notification bit in the posted-interrupt descriptor. This is done atomically
so as to leave the remainder of the descriptor unmodified (e.g., with a locked AND operation).

14. VM entry ensures that the “process posted interrupts” VM-execution control is 1 only if the “external-interrupt exiting” VM-execu-
tion control is also 1. SeeSection 26.2.1.1.
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7.

The processor writes zero to the EOI register in the local APIC; this dismisses the interrupt with the posted-
interrupt notification vector from the local APIC.

The logical processor performs a logical-OR of PIR into VIRR and clears PIR. No other agent can read or write a
PIR bit (or group of bits) between the time it is read (to determine what to OR into VIRR) and when it is cleared.

The logical processor sets RVI to be the maximum of the old value of RVI and the highest index of all bits that
were set in PIR; if no bit was set in PIR, RVI is left unmodified.

The logical processor evaluates pending virtual interrupts as described in Section 29.2.1.

The logical processor performs the steps above in an uninterruptible manner. If step #7 leads to recognition of a
virtual interrupt, the processor may deliver that interrupt immediately.

Steps #1 to #7 above occur when the interrupt controller delivers an unmasked external interrupt to the CPU core.
The following items consider certain cases of interrupt delivery:

Interrupt delivery can occur between iterations of a REP-prefixed instruction (after at least one iteration has
completed but before all iterations have completed). If this occurs, the following items characterize processor
state after posted-interrupt processing completes and before guest execution resumes:

— RIP references the REP-prefixed instruction;
— RCX, RSI, and RDI are updated to reflect the iterations completed; and

— RFLAGS.RF = 1.

Interrupt delivery can occur when the logical processor is in the active, HLT, or MWAIT states. If the logical
processor had been in the active or MWAIT state before the arrival of the interrupt, it is in the active state
following completion of step #7; if it had been in the HLT state, it returns to the HLT state after step #7 (if a
pending virtual interrupt was recognized, the logical processor may immediately wake from the HLT state).

Interrupt delivery can occur while the logical processor is in enclave mode. If the logical processor had been in
enclave mode before the arrival of the interrupt, an Asynchronous Enclave Exit (AEX) may occur before the
steps #1 to #7 (see Chapter 40, “Enclave Exiting Events”). If no AEX occurs before step #1 and a VM exit
occurs at step #2, an AEX occurs before the VM exit is delivered.
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CHAPTER 30
VMX INSTRUCTION REFERENCE

NOTE

This chapter was previously located in the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 2B as chapter 5.

30.1 OVERVIEW

This chapter describes the virtual-machine extensions (VMX) for the Intel 64 and IA-32 architectures. VMX is
intended to support virtualization of processor hardware and a system software layer acting as a host to multiple
guest software environments. The virtual-machine extensions (VMX) includes five instructions that manage the
virtual-machine control structure (VMCS), four instructions that manage VMX operation, two TLB-management
instructions, and two instructions for use by guest software. Additional details of VMX are described in Chapter 23
through Chapter 29.

The behavior of the VMCS-maintenance instructions is summarized below:

® VMPTRLD — This instruction takes a single 64-bit source operand that is in memory. It makes the referenced
VMCS active and current, loading the current-VMCS pointer with this operand and establishes the current VMCS
based on the contents of VMCS-data area in the referenced VMCS region. Because this makes the referenced
VMCS active, a logical processor may start maintaining on the processor some of the VMCS data for the VMCS.

® VMPTRST — This instruction takes a single 64-bit destination operand that is in memory. The current-VMCS
pointer is stored into the destination operand.

® VMCLEAR — This instruction takes a single 64-bit operand that is in memory. The instruction sets the launch
state of the VMCS referenced by the operand to “clear”, renders that VMCS inactive, and ensures that data for
the VMCS have been written to the VMCS-data area in the referenced VMCS region. If the operand is the same
as the current-VMCS pointer, that pointer is made invalid.

® VMREAD — This instruction reads a component from a VMCS (the encoding of that field is given in a register
operand) and stores it into a destination operand that may be a register or in memory.

®* VMWRITE — This instruction writes a component to a VMCS (the encoding of that field is given in a register
operand) from a source operand that may be a register or in memory.

The behavior of the VMX management instructions is summarized below:

®  VMLAUNCH — This instruction launches a virtual machine managed by the VMCS. A VM entry occurs, trans-
ferring control to the VM.

® VMRESUME — This instruction resumes a virtual machine managed by the VMCS. A VM entry occurs, trans-
ferring control to the VM.

® VMXOFF — This instruction causes the processor to leave VMX operation.

® VMXON — This instruction takes a single 64-bit source operand that is in memory. It causes a logical processor
to enter VMX root operation and to use the memory referenced by the operand to support VMX operation.

The behavior of the VMX-specific TLB-management instructions is summarized below:

® INVEPT — This instruction invalidates entries in the TLBs and paging-structure caches that were derived from
extended page tables (EPT).

® INVVPID — This instruction invalidates entries in the TLBs and paging-structure caches based on a Virtual-
Processor ldentifier (VPID).

None of the instructions above can be executed in compatibility mode; they generate invalid-opcode exceptions if
executed in compatibility mode.

The behavior of the guest-available instructions is summarized below:

® VMCALL — This instruction allows software in VMX non-root operation to call the VMM for service. A VM exit
occurs, transferring control to the VMM.
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® VMFUNC — This instruction allows software in VMX non-root operation to invoke a VM function (processor
functionality enabled and configured by software in VMX root operation) without a VM exit.

30.2 CONVENTIONS

The operation sections for the VMX instructions in Section 30.3 use the pseudo-function VMexit, which indicates
that the logical processor performs a VM exit.

The operation sections also use the pseudo-functions VMsucceed, VMfail, VMfaillnvalid, and VMfailValid. These
pseudo-functions signal instruction success or failure by setting or clearing bits in RFLAGS and, in some cases, by
writing the VM-instruction error field. The following pseudocode fragments detail these functions:

VMsucceed:
CF«<Q;
PF < 0O;
AF < 0O;
ZF < Q;
SF«0;
OF < 0O;

VMfail(ErrorNumber):
IF VMCS pointer is valid
THEN VMfailValid(ErrorNumber);
ELSE VMfaillnvalid;
Fl;

VMfaillnvalid:
CFe1;
PF < Q;
AF < Q;
ZF < 0;
SF «0Q;
OF «Q;

VMfailValid(ErrorNumber):// executed only if there is a current VMCS
CF«O;
PF < 0O;
AF < 0O;
ZF « 1;
SF«0;
OF < 0;
Set the VM-instruction error field to ErrorNumber;

The different VM-instruction error numbers are enumerated in Section 30.4, “VM Instruction Error Numbers”.

30.3 VMXINSTRUCTIONS

This section provides detailed descriptions of the VMX instructions.
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INVEPT— Invalidate Translations Derived from EPT

Opcode Instruction Description

66 OF 38 80 INVEPT r64, m128 Invalidates EPT-derived entries in the TLBs and paging-structure caches (in 64-
bit mode)

66 OF 38 80 INVEPT r32, m128 Invalidates EPT-derived entries in the TLBs and paging-structure caches (outside
64-bit mode)

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches that were derived
from extended page tables (EPT). (See Chapter 28, “VMX Support for Address Translation”.) Invalidation is based
on the INVEPT type specified in the register operand and the INVEPT descriptor specified in the memory
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVEPT types supported by a logical processors are reported in the 1A32_VMX_EPT_VPID_CAP MSR (see
Appendix A, “VMX Capability Reporting Facility”). There are two INVEPT types currently defined:

® Single-context invalidation. If the INVEPT type is 1, the logical processor invalidates all mappings associated
with bits 51:12 of the EPT pointer (EPTP) specified in the INVEPT descriptor. It may invalidate other mappings
as well.

® Global invalidation: If the INVEPT type is 2, the logical processor invalidates mappings associated with all
EPTPs.

If an unsupported INVEPT type is specified, the instruction fails.

INVEPT invalidates all the specified mappings for the indicated EPTP(s) regardless of the VPID and PCID values with
which those mappings may be associated.

The INVEPT descriptor comprises 128 bits and contains a 64-bit EPTP value in bits 63:0 (see Figure 30-1).

127 6463 0
Reserved (must be zero) EPT pointer (EPTP)

Figure 30-1. INVEPT Descriptor

Operation

IF (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL >0
THEN #GP(0);
ELSE
INVEPT_TYPE « value of register operand;
IF 1IA32_VMX_EPT_VPID_CAP MSR indicates that processor does not support INVEPT_TYPE
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE /I INVEPT_TYPE must be 1 or 2
INVEPT_DESC « value of memory operand;
EPTP « INVEPT_DESC[63:0];
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CASE INVEPT_TYPE OF
1: // single-context invalidation
IF VM entry with the “enable EPT" VM execution control set to 1
would fail due to the EPTP value
THEN VMfail(Invalid operand to INVEPT/INVVPID);

ELSE
Invalidate mappings associated with EPTP[51:12];
VMsucceed;
Fl;
BREAK;
2: // global invalidation
Invalidate mappings associated with all EPTPs;
VMsucceed;
BREAK;
ESAC;
Fl;
Fl;
Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not O.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

If the logical processor does not support EPT (1A32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Real-Address Mode Exceptions
#UD The INVEPT instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The INVEPT instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVEPT instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.
#SS(0) If the memory operand is in the SS segment and the memory address is in a non-canonical
form.
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#UD If not in VMX operation.
If the logical processor does not support EPT (1A32_VMX_PROCBASED_CTLS2[33]=0).

If the logical processor supports EPT (IA32_VMX_PROCBASED_CTLS2[33]=1) but does not
support the INVEPT instruction (IA32_VMX_EPT_VPID_CAP[20]=0).

Vol.3C 30-5



VMX INSTRUCTION REFERENCE

INVVPID— Invalidate Translations Based on VPID

Opcode Instruction Description

66 OF 38 81 INVVPID r64, m128 Invalidates entries in the TLBs and paging-structure caches based on VPID (in
64-bit mode)

66 OF 38 81 INVVPID r32, m128 Invalidates entries in the TLBs and paging-structure caches based on VPID
(outside 64-bit mode)

Description

Invalidates mappings in the translation lookaside buffers (TLBs) and paging-structure caches based on virtual-
processor identifier (VPID). (See Chapter 28, “VMX Support for Address Translation”.) Invalidation is based on
the INVVPID type specified in the register operand and the INVVPID descriptor specified in the memory
operand.

Outside IA-32e mode, the register operand is always 32 bits, regardless of the value of CS.D; in 64-bit mode, the
register operand has 64 bits (the instruction cannot be executed in compatibility mode).

The INVVPID types supported by a logical processors are reported in the 1A32_VMX_EPT_VPID_CAP MSR (see
Appendix A, “VMX Capability Reporting Facility”). There are four INVVPID types currently defined:

® Individual-address invalidation: If the INVVPID type is O, the logical processor invalidates mappings for the
linear address and VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for
other linear addresses (or other VPIDs) as well.

® Single-context invalidation: If the INVVPID type is 1, the logical processor invalidates all mappings tagged with
the VPID specified in the INVVPID descriptor. In some cases, it may invalidate mappings for other VPIDs as
well.

® All-contexts invalidation: If the INVVPID type is 2, the logical processor invalidates all mappings tagged with all
VPIDs except VPID O000H. In some cases, it may invalidate translations with VPID 0O000H as well.

® Single-context invalidation, retaining global translations: If the INVVPID type is 3, the logical processor
invalidates all mappings tagged with the VPID specified in the INVVPID descriptor except global translations. In
some cases, it may invalidate global translations (and mappings with other VPIDs) as well. See the “Caching
Translation Information” section in Chapter 4 of the 1A-32 Intel Architecture Software Developer’s Manual,
Volumes 3A for information about global translations.

If an unsupported INVVPID type is specified, the instruction fails.

INVVPID invalidates all the specified mappings for the indicated VPID(s) regardless of the EPTP and PCID values
with which those mappings may be associated.

The INVVPID descriptor comprises 128 bits and consists of a VPID and a linear address as shown in Figure 30-2.

127 6463 1615 0
Linear Address Reserved (must be zero) VPID

Figure 30-2. INVVPID Descriptor
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Operation

IF (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL > 0
THEN #GP(0);
ELSE
INVVPID_TYPE « value of register operand;
IF1A32_VMX_EPT_VPID_CAP MSR indicates that processor does not support

INVVPID_TYPE
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE // INVVPID_TYPE must be in the range 0-3

INVVPID_DESC « value of memory operand;
IF INVVPID_DESC[63:16] = 0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
CASE INVVPID_TYPE OF
0: /1 individual-address invalidation
VPID « INVVPID_DESC[15:0];
IFVPID=0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
GL_ADDR « INVVPID_DESC[127:64];
IF (GL_ADDR is not in a canonical form)
THEN
VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
Invalidate mappings for GL_ADDR tagged with VPID;
VMsucceed;
Fl;
Fl;
BREAK;
1: /1 single-context invalidation
VPID « INVVPID_DESC[15:0];
IFVPID=0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
Invalidate all mappings tagged with VPID;
VVMsucceed;
Fl;
BREAK;
2: /1 all-context invalidation
Invalidate all mappings tagged with all non-zero VPIDs;
VMsucceed;
BREAK;
3: /1 single-context invalidation retaining globals
VPID « INVVPID_DESC[15:0];
IFVPID=0
THEN VMfail(Invalid operand to INVEPT/INVVPID);
ELSE
Invalidate all mappings tagged with VPID except global translations;
VMsucceed;
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Fl;
BREAK;
ESAC;
Fl;
Fl;
Fl;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not O.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.

#UD If not in VMX operation.

If the logical processor does not support VPIDs (1A32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does not
support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).

Real-Address Mode Exceptions
#UD The INVVPID instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The INVVPID instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The INVVPID instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory operand is in the CS, DS, ES, FS, or GS segments and the memory address is
in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory destination operand is in the SS segment and the memory address is in a non-
canonical form.

#UD If not in VMX operation.

If the logical processor does not support VPIDs (1A32_VMX_PROCBASED_CTLS2[37]=0).

If the logical processor supports VPIDs (IA32_VMX_PROCBASED_CTLS2[37]=1) but does not
support the INVVPID instruction (IA32_VMX_EPT_VPID_CAP[32]=0).
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VMCALL—Call to VM Monitor

Opcode Instruction Description
OF 01 C1 VMCALL Call to VM monitor by causing VM exit.
Description

This instruction allows guest software can make a call for service into an underlying VM monitor. The details of the
programming interface for such calls are VMM-specific; this instruction does nothing more than cause a VM exit,
registering the appropriate exit reason.

Use of this instruction in VMX root operation invokes an SMM monitor (see Section 34.15.2). This invocation will
activate the dual-monitor treatment of system-management interrupts (SMIs) and system-management mode
(SMM) if it is not already active (see Section 34.15.6).

Operation

IF not in VMX operation
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIF (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = Q)
THEN #UD;
ELSIFCPL> 0
THEN #GP(0);
ELSIF in SMM or the logical processor does not support the dual-monitor treatment of SMIs and SMM or the valid bit in the
IA32_SMM_MONITOR_CTL MSR is clear
THEN VMfail (VWMCALL executed in VMX root operation);
ELSIF dual-monitor treatment of SMIs and SMM is active
THEN perform an SMM VM exit (see Section 34.15.2);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF launch state of current VMCS is not clear
THEN VMfailValid(VMCALL with non-clear VMCS);
ELSIF VM-exit control fields are not valid (see Section 34.15.6.1)
THEN VMfailValid (VMCALL with invalid VM-exit control fields);
ELSE
enter SMM;
read revision identifier in MSEG;
IF revision identifier does not match that supported by processor
THEN
leave SMM;
VMfailValid(VMCALL with incorrect MSEG revision identifier);
ELSE
read SMM-monitor features field in MSEG (see Section 34.15.6.1);
IF features field is invalid
THEN
leave SMM;
VMfailValid(VMCALL with invalid SMM-monitor features);
ELSE activate dual-monitor treatment of SMIs and SMM (see Section 34.15.6);
Fl;
Fl;
Fl;
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Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O and the logical processor is in VMX root operation.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD If executed outside VMX operation.

Virtual-8086 Mode Exceptions
#UD If executed outside VMX non-root operation.

Compatibility Mode Exceptions
#UD If executed outside VMX non-root operation.

64-Bit Mode Exceptions
#UD If executed outside VMX operation.
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VMCLEAR—Clear Virtual-Machine Control Structure

Opcode Instruction Description
66 OF C7 /6 VMCLEAR m64 Copy VMCS data to VMCS region in memory.

Description

This instruction applies to the VMCS whose VMCS region resides at the physical address contained in the instruc-
tion operand. The instruction ensures that VMCS data for that VMCS (some of these data may be currently main-
tained on the processor) are copied to the VMCS region in memory. It also initializes parts of the VMCS region (for
example, it sets the launch state of that VMCS to clear). See Chapter 24, “Virtual-Machine Control Structures”.

The operand of this instruction is always 64 bits and is always in memory. If the operand is the current-VMCS
pointer, then that pointer is made invalid (set to FFFFFFFF_FFFFFFFFH).

Note that the VMCLEAR instruction might not explicitly write any VMCS data to memory; the data may be already
resident in memory before the VMCLEAR is executed.

Operation

IF (register operand) or (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VM exit;
ELSIFCPL >0
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width'
THEN VMfail(VMCLEAR with invalid physical address);
ELSIF addr = VMXON pointer
THEN VMfail(VMCLEAR with VMXON pointer);
ELSE
ensure that data for VMCS referenced by the operand is in memory;
initialize implementation-specific data in VMCS region;
launch state of VMCS referenced by the operand « “clear”
IF operand addr = current-VMCS pointer
THEN current-VMCS pointer < FFFFFFFF_FFFFFFFFH;
Fl;
VMsucceed;
FI;
Fl;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not O.
If the memory operand effective address is outside the CS, DS, ES, FS, or GS segment limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the operand is located in an execute-only code segment.

1. If1A32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the memory operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.

#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMCLEAR instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMCLEAR instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMCLEAR instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in
a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory operand.

#SS(0) If the source operand is in the SS segment and the memory address is in a non-canonical
form.

#UD If operand is a register.

If not in VMX operation.
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VMFUNC—Invoke VM function

Opcode Instruction Description
OF 01 D4 VMFUNC Invoke VM function specified in EAX.
Description

This instruction allows software in VMX non-root operation to invoke a VM function, which is processor functionality
enabled and configured by software in VMX root operation. The value of EAX selects the specific VM function being
invoked.

The behavior of each VM function (including any additional fault checking) is specified in Section 25.5.5,
“VYM Functions”.

Operation
Perform functionality of the VM function specified in EAX;

Flags Affected
Depends on the VM function specified in EAX. See Section 25.5.5, “VM Functions”.

Protected Mode Exceptions (not including those defined by specific VM functions)
#UD If executed outside VMX non-root operation.

If “enable VM functions” VM-execution control is O.

If EAX > 64.

Real-Address Mode Exceptions
Same exceptions as in protected mode.

Virtual-8086 Exceptions
Same exceptions as in protected mode.

Compatibility Mode Exceptions
Same exceptions as in protected mode.

64-Bit Mode Exceptions
Same exceptions as in protected mode.
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VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine

Opcode Instruction Description

OF 01 C2 VMLAUNCH Launch virtual machine managed by current VMCS.
0F 01 C3 VMRESUME Resume virtual machine managed by current VMCS.
Description

Effects a VM entry managed by the current VMCS.

® VMLAUNCH fails if the launch state of current VMCS is not “clear”. If the instruction is successful, it sets the
launch state to “launched.”

® VMRESUME fails if the launch state of the current VMCS is not “launched.”

If VM entry is attempted, the logical processor performs a series of consistency checks as detailed in Chapter 26,
“VM Entries”. Failure to pass checks on the VMX controls or on the host-state area passes control to the instruction
following the VMLAUNCH or VMRESUME instruction. If these pass but checks on the guest-state area fail, the logical
processor loads state from the host-state area of the VMCS, passing control to the instruction referenced by the RIP
field in the host-state area.

VM entry is not allowed when events are blocked by MOV SS or POP SS. Neither VMLAUNCH nor VMRESUME should
be used immediately after either MOV to SS or POP to SS.

Operation

IF (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL >0
THEN #GP(0);
ELSIF current-VMCS pointer is not valid
THEN VMfaillnvalid;
ELSIF events are being blocked by MOV SS
THEN VMfailValid(VM entry with events blocked by MOV SS);
ELSIF (VMLAUNCH and launch state of current VMCS is not “clear”)
THEN VMfailValid(VMLAUNCH with non-clear VMCS);
ELSIF (VMRESUME and launch state of current VMCS is not “launched”)
THEN VMfailValid(VMRESUME with non-launched VMCS);
ELSE
Check settings of VMX controls and host-state area;
IF invalid settings
THEN VMfailValid(VM entry with invalid VMX-control field(s)) or
VMfailValid(VM entry with invalid host-state field(s)) or
VMfailValid(VM entry with invalid executive-VMCS pointer)) or
VMfailValid(VM entry with non-launched executive VMCS) or
VMfailValid(VM entry with executive-VMCS pointer not VMXON pointer) or
VMfailValid(VM entry with invalid VM-execution control fields in executive
VMCS)
as appropriate;
ELSE
Attempt to load guest state and PDPTRs as appropriate;
clear address-range monitoring;
IF failure in checking guest state or PDPTRs
THEN VM entry fails (see Section 26.7);
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ELSE
Attempt to load MSRs from VM-entry MSR-load area;
IF failure
THEN VM entry fails
(see Section 26.7);
ELSE
IF VMLAUNCH
THEN launch state of VMCS « “launched”;
Fl;
IF in SMM and “entry to SMM" VM-entry control is O
THEN
IF “deactivate dual-monitor treatment” VM-entry
control is O
THEN SMM-transfer VMCS pointer «
current-VMCS pointer;
Fl;
IF executive-VMCS pointer is VMXON pointer
THEN current-VMCS pointer «
VMCS-link pointer;
ELSE current-VMCS pointer «
executive-VMCS pointer;
Fl;
leave SMM;
FI;
VM entry succeeds;
Fl;

Fl;
Fl;
Fl;

Further details of the operation of the VM-entry appear in Chapter 26.

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMLAUNCH and VMRESUME instructions are not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.
#UD If executed outside VMX operation.
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VMPTRLD—Load Pointer to Virtual-Machine Control Structure

Opcode Instruction Description
OF C7 /6 VMPTRLD m64 Loads the current VMCS pointer from memory.
Description

Marks the current-VMCS pointer valid and loads it with the physical address in the instruction operand. The instruc-
tion fails if its operand is not properly aligned, sets unsupported physical-address bits, or is equal to the VMXON
pointer. In addition, the instruction fails if the 32 bits in memory referenced by the operand do not match the VMCS
revision identifier supported by this processor.1

The operand of this instruction is always 64 bits and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned OR
addr sets any bits beyond the physical-address width?
THEN VMfail(VMPTRLD with invalid physical address);
ELSIF addr = VMXON pointer
THEN VMfail(VMPTRLD with VMXON pointer);
ELSE
rev < 32 bits located at physical address addr;
IF rev[30:0] = VMCS revision identifier supported by processor OR
rev[31] = 1 AND processor does not support 1-setting of “VMCS shadowing”
THEN VMfail(VMPTRLD with incorrect VMCS revision identifier);
ELSE
current-VMCS pointer « addr;
VMsucceed;
Fl;
Fl;
Fl;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0) If the current privilege level is not O.
If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.
If the DS, ES, FS, or GS register contains an unusable segment.

1. Software should consult the VMX capability MSR VMX_BASIC to discover the VMCS revision identifier supported by this processor
(see Appendix A, “"VMX Capability Reporting Facility”).

2. IfIA32_VMX_BASIC[48] is read as 1, VMfail occurs if addr sets any bits in the range 63:32; see Appendix A.1.
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#SS(0)

#UD
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If the source operand is located in an execute-only code segment.

If a page fault occurs in accessing the memory source operand.

If the memory source operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.

If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions

#UD

The VMPTRLD instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

The VMPTRLD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD

The VMPTRLD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD

If the current privilege level is not O.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in
a non-canonical form.

If a page fault occurs in accessing the memory source operand.

If the source operand is in the SS segment and the memory address is in a non-canonical
form.

If operand is a register.
If not in VMX operation.
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VMPTRST—Store Pointer to Virtual-Machine Control Structure

Opcode Instruction Description
OFC77/7 VMPTRST m64 Stores the current VMCS pointer into memory.
Description

Stores the current-VMCS pointer into a specified memory address. The operand of this instruction is always 64 bits
and is always in memory.

Operation

IF (register operand) or (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSE
64-bit in-memory destination operand « current-VMCS pointer;
VMsucceed;
Fl;

Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory destination operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any code segment.
#PF(fault-code) If a page fault occurs in accessing the memory destination operand.
#SS(0) If the memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.
#UD If operand is a register.

If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMPTRST instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMPTRST instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMPTRST instruction is not recognized in compatibility mode.
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64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the destination operand is in the CS, DS, ES, FS, or GS segments and the memory address
is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing the memory destination operand.

#SS(0) If the destination operand is in the SS segment and the memory address is in a non-canonical
form.

#UD If operand is a register.

If not in VMX operation.
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VMREAD—Read Field from Virtual-Machine Control Structure

Opcode Instruction Description

OF 78 VMREAD r/m64, r64 Reads a specified VMCS field (in 64-bit mode).

OF 78 VMREAD r/m32, r32 Reads a specified VMCS field (outside 64-bit mode).
Description

Reads a specified field from a VMCS and stores it into a specified destination operand (register or memory). In VMX
root operation, the instruction reads from the current VMCS. If executed in VMX non-root operation, the instruction
reads from the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register source operand. Outside 1A-32e
mode, the source operand has 32 bits, regardless of the value of CS.D. In 64-bit mode, the source operand has 64
bits.

The effective size of the destination operand, which may be a register or in memory, is always 32 bits outside 1A-
32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS field
specified by the source operand is shorter than this effective operand size, the high bits of the destination operand
are cleared to 0. If the VMCS field is longer, then the high bits of the field are not read.

Note that any faults resulting from accessing a memory destination operand can occur only after determining, in
the operation section below, that the relevant VMCS pointer is valid and that the specified VMCS field is supported.

Operation

IF (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation AND (“VMCS shadowing” is O OR source operand sets bits in range 63:15 OR
VMREAD bit corresponding to bits 14:0 of source operand is 1)1
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR
(in VMX non-root operation AND VMCS link pointer is not valid)
THEN VMfaillnvalid;
ELSIF source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSE
IF in VMX root operation
THEN destination operand « contents of field indexed by source operand in current VMCS;
ELSE destination operand « contents of field indexed by source operand in VMCS referenced by VMCS link pointer;

Fl;
VVMsucceed;
Fl;
Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.

1. The VMREAD bit for a source operand is defined as follows. Let x be the value of bits 14:0 of the source operand and let addr be the
VMREAD-bitmap address. The corresponding VMREAD bit is in bit position x & 7 of the byte at physical address addr| (x » 3).
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#SS(0)

#UD
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If a memory destination operand effective address is outside the CS, DS, ES, FS, or GS
segment limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the destination operand is located in a read-only data segment or any code segment.
If a page fault occurs in accessing a memory destination operand.

If a memory destination operand effective address is outside the SS segment limit.

If the SS register contains an unusable segment.

If not in VMX operation.

Real-Address Mode Exceptions

#UD

The VMREAD instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

The VMREAD instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD

The VMREAD instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD

If the current privilege level is not O.

If the memory destination operand is in the CS, DS, ES, FS, or GS segments and the memory
address is in a non-canonical form.

If a page fault occurs in accessing a memory destination operand.

If the memory destination operand is in the SS segment and the memory address is in a non-
canonical form.

If not in VMX operation.
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VMRESUME—Resume Virtual Machine

See VMLAUNCH/VMRESUME—Launch/Resume Virtual Machine.
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VMWRITE—Write Field to Virtual-Machine Control Structure

Opcode Instruction Description

OF 79 VMWRITE r64, r/m64 Writes a specified VMCS field (in 64-bit mode)

0F 79 VMWRITE r32, r/m32 Writes a specified VMCS field (outside 64-bit mode)
Description

Writes the contents of a primary source operand (register or memory) to a specified field in a VMCS. In VMX root
operation, the instruction writes to the current VMCS. If executed in VMX non-root operation, the instruction writes
to the VMCS referenced by the VMCS link pointer field in the current VMCS.

The VMCS field is specified by the VMCS-field encoding contained in the register secondary source operand.
Outside 1A-32e mode, the secondary source operand is always 32 bits, regardless of the value of CS.D. In 64-bit
mode, the secondary source operand has 64 bits.

The effective size of the primary source operand, which may be a register or in memory, is always 32 bits outside
I1A-32e mode (the setting of CS.D is ignored with respect to operand size) and 64 bits in 64-bit mode. If the VMCS
field specified by the secondary source operand is shorter than this effective operand size, the high bits of the
primary source operand are ignored. If the VMCS field is longer, then the high bits of the field are cleared to O.

Note that any faults resulting from accessing a memory source operand occur after determining, in the operation
section below, that the relevant VMCS pointer is valid but before determining if the destination VMCS field is
supported.

Operation

IF (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation AND (“VMCS shadowing” is O OR secondary source operand sets bits in range 63:15 OR
VMWRITE bit corresponding to bits 14:0 of secondary source operand is 1)1
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSIF (in VMX root operation AND current-VMCS pointer is not valid) OR
(in VMX non-root operation AND VMCS-link pointer is not valid)
THEN VMfaillnvalid;
ELSIF secondary source operand does not correspond to any VMCS field
THEN VMfailValid(VMREAD/VMWRITE from/to unsupported VMCS component);
ELSIF VMCS field indexed by secondary source operand is a \/M-exit information field AND
processor does not support writing to such fields?
THEN VMfailValid(VMWRITE to read-only VMCS component);
ELSE

IF in VMX root operation

THEN field indexed by secondary source operand in current VMCS « primary source operand;
ELSE field indexed by secondary source operand in VMCS referenced by VMCS link pointer « primary source operand;
Fl;
VMsucceed;
Fl;

1. The VMWRITE bit for a secondary source operand is defined as follows. Let x be the value of bits 14:0 of the secondary source oper-
and and let addr be the VMWRITE-bitmap address. The corresponding VMWRITE bit is in bit position x & 7 of the byte at physical
address addr| (x » 3).

2. Software can discover whether these fields can be written by reading the VMX capability MSR I1A32_VMX_MISC (see Appendix A.6).
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Flags Affected
See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If the current privilege level is not O.
If a memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.
If the DS, ES, FS, or GS register contains an unusable segment.
If the source operand is located in an execute-only code segment.
#PF(fault-code) If a page fault occurs in accessing a memory source operand.
#SS(0) If a memory source operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.
#UD If not in VMX operation.

Real-Address Mode Exceptions
#UD The VMWRITE instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMWRITE instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions
#UD The VMWRITE instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If the current privilege level is not O.

If the memory source operand is in the CS, DS, ES, FS, or GS segments and the memory
address is in a non-canonical form.

#PF(fault-code) If a page fault occurs in accessing a memory source operand.

#SS(0) If the memory source operand is in the SS segment and the memory address is in a non-
canonical form.

#UD If not in VMX operation.
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Opcode Instruction Description
OF01C4 VMXOFF Leaves VMX operation.
Description

Takes the logical processor out of VMX operation, unblocks INIT signals, conditionally re-enables A20M, and clears

any address-range monitoring.1

Operation

IF (not in VMX operation) or (CRO.PE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF in VMX non-root operation
THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);
ELSIF dual-monitor treatment of SMIs and SMM is active
THEN VMfail(VMXOFF under dual-monitor treatment of SMiIs and SMM);
ELSE
leave VMX operation;
unblock INIT;
IF IA32_SMM_MONITOR_CTL[2] = 02
THEN unblock SMis;
IF outside SMX operation3
THEN unblock and enable A20M;

Fl;
clear address-range monitoring;
VMsucceed;

Fl;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.

Real-Address Mode Exceptions
#UD The VMXOFF instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions
#UD The VMXOFF instruction is not recognized in virtual-8086 mode.

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures

Software Developer’s Manual, olume 3A.

2. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMIis regardless of the value of the register’s value
bit (bit 0). Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR IA32_VMX_MISC (see

Appendix A.6) to determine whether this is allowed.

3. Alogical processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the

last execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”
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Compatibility Mode Exceptions
#UD The VMXOFF instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions
#GP(0) If executed in VMX root operation with CPL > 0.
#UD If executed outside VMX operation.
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VMXON—Enter VMX Operation

Opcode Instruction Description
F3 OF C7 /6 VMXON m64 Enter VMX root operation.
Description

Puts the logical processor in VMX operation with no current VMCS, blocks INIT signals, disables A20M, and clears
any address-range monitoring established by the MONITOR instruction.t

The operand of this instruction is a 4KB-alignhed physical address (the VMXON pointer) that references the VMXON
region, which the logical processor may use to support VMX operation. This operand is always 64 bits and is always
in memory.

Operation

IF (register operand) or (CRO.PE = 0) or (CR4.VMXE = 0) or (RFLAGS.VM = 1) or (IA32_EFER.LMA =1 and CS.L = 0)
THEN #UD;
ELSIF not in VMX operation
THEN
IF (CPL > 0) or (in A20M mode) or
(the values of CRO and CR4 are not supported in VMX operation; see Section 23.8) or
(bit O (lock bit) of IA32_FEATURE_CONTROL MSR is clear) or
(in SMX operation? and bit 1 of IA32_FEATURE_CONTROL MSR is clear) or
(outside SMX operation and bit 2 of IA32_FEATURE_CONTROL MSR is clear)
THEN #GP(0);
ELSE
addr « contents of 64-bit in-memory source operand;
IF addr is not 4KB-aligned or
addr sets any bits beyond the physical-address width3
THEN VMfaillnvalid;
ELSE
rev < 32 bits located at physical address addr;
IF rev[30:0] = VMCS revision identifier supported by processor OR rev[31] =1
THEN VMfaillnvalid;
ELSE
current-VMCS pointer « FFFFFFFF_FFFFFFFFH;
enter VMX operation;
block INIT signals;
block and disable A20M;
clear address-range monitoring;
IF the processor supports Intel PT but does not allow it to be used in VMX operation4
THEN IA32_RTIT_CTL.TraceEn « O;
Fl;
VMsucceed;

1. See the information on MONITOR/MWAIT in Chapter 8, “Multiple-Processor Management,” of the Intel® 64 and IA-32 Architectures
Software Developer’s Manual, \/olume 3A.

2. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference.”

3. IfIA32_VMX_BASIC[48] is read as 1, VMfaillnvalid occurs if addr sets any bits in the range 63:32; see Appendix A.1.

4, Software should read the VMX capability MSR IA32_VMX_MISC to determine whether the processor allows Intel PT to be used in
VMX operation (see Appendix A.6).
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Fl;
Fl;

Fl;

ELSIF in VMX non-root operation

THEN VMexit;
ELSIFCPL> 0
THEN #GP(0);

ELSE VMfail("VMXON executed in VMX root operation”);

Fl;

Flags Affected

See the operation section and Section 30.2.

Protected Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD

If executed outside VMX operation with CPL=>0 or with invalid CRO or CR4 fixed bits.

If executed in A20M mode.

If the memory source operand effective address is outside the CS, DS, ES, FS, or GS segment
limit.

If the DS, ES, FS, or GS register contains an unusable segment.

If the source operand is located in an execute-only code segment.

If the value of the 1A32_FEATURE_CONTROL MSR does not support entry to VMX operation in
the current processor mode.

If a page fault occurs in accessing the memory source operand.

If the memory source operand effective address is outside the SS segment limit.
If the SS register contains an unusable segment.

If operand is a register.

If executed with CR4.VMXE = 0.

Real-Address Mode Exceptions

#UD

The VMXON instruction is not recognized in real-address mode.

Virtual-8086 Mode Exceptions

#UD

The VMXON instruction is not recognized in virtual-8086 mode.

Compatibility Mode Exceptions

#UD

The VMXON instruction is not recognized in compatibility mode.

64-Bit Mode Exceptions

#GP(0)

#PF(fault-code)
#SS(0)

#UD
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If executed outside VMX operation with CPL > 0 or with invalid CRO or CR4 fixed bits.
If executed in A20M mode.

If the source operand is in the CS, DS, ES, FS, or GS segments and the memory address is in
a non-canonical form.

If the value of the IA32_FEATURE_CONTROL MSR does not support entry to VMX operation in
the current processor mode.

If a page fault occurs in accessing the memory source operand.

If the source operand is in the SS segment and the memory address is in a non-canonical
form.

If operand is a register.
If executed with CR4.VMXE = 0.
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VM INSTRUCTION ERROR NUMBERS

For certain error conditions, the VM-instruction error field is loaded with an error number to indicate the source of
the error. Table 30-1 lists VM-instruction error numbers.

Table 30-1. VM-Instruction Error Numbers

EITr:'lrb er Description

1 VMCALL executed in VMX root operation

2 VMCLEAR with invalid physical address

3 VMCLEAR with VMXON pointer

4 VMLAUNCH with non-clear VMCS

5 VMRESUME with non-launched VMCS

6 VMRESUME after VMXOFF (VMXOFF and VMXON between VMLAUNCH and VMRESUME)?

7 VM entry with invalid control field(s)P<

8 VM entry with invalid host-state field(s)?

9 VMPTRLD with invalid physical address

10 VMPTRLD with VMXON pointer

11 VMPTRLD with incorrect VMCS revision identifier

12 VMREAD/VMWRITE from/to unsupported VMCS component

13 VMWRITE to read-only VMCS component

15 VMXON executed in VMX root operation

16 VM entry with invalid executive-VMCS pointer®

17 VM entry with non-launched executive VMCSP

18 VM entry with executive-VMCS pointer not VMXON pointer (when attempting to deactivate the dual-monitor treatment of
SMIs and SMM)P

19 VMCALL with non-clear VMCS (when attempting to activate the dual-monitor treatment of SMIs and SMM)

20 VMCALL with invalid VM-exit control fields

22 VMCALL with incorrect MSEG revision identifier (when attempting to activate the dual-monitor treatment of SMIs and SMM)

23 VMXOFF under dual-monitor treatment of SMis and SMM

24 VMCALL with invalid SMM-monitor features (when attempting to activate the dual-monitor treatment of SMIs and SMM)

25 VM entry with invalid VM-execution control fields in executive VMCS (when attempting to return from SMM)<

26 VM entry with events blocked by MOV SS.

28 Invalid operand to INVEPT/INVVPID.

NOTES:

a. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS".

b. VM-entry checks on control fields and host-state fields may be performed in any order. Thus, an indication by error number of one
cause does not imply that there are not also other errors. Different processors may give different error numbers for the same VMCS.

c. Error number 7 is not used for VM entries that return from SMM that fail due to invalid VM-execution control fields in the executive
VMCS. Error number 25 is used for these cases.

Vol. 3C 30-29



VMX INSTRUCTION REFERENCE

30-30 Vol.3C



CHAPTER 31
VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

31.1 VMX SYSTEM PROGRAMMING OVERVIEW

The Virtual Machine Monitor (VMM) is a software class used to manage virtual machines (VM). This chapter
describes programming considerations for VMMs.

Each VM behaves like a complete physical machine and can run operating system (OS) and applications. The VMM
software layer runs at the most privileged level and has complete ownership of the underlying system hardware.
The VMM controls creation of a VM, transfers control to a VM, and manages situations that can cause transitions
between the guest VMs and host VMM. The VMM allows the VMs to share the underlying hardware and yet provides
isolation between the VMs. The guest software executing in a VM is unaware of any transitions that might have
occurred between the VM and its host.

31.2 SUPPORTING PROCESSOR OPERATING MODES IN GUEST ENVIRONMENTS

Typically, VMMs transfer control to a VM using VMX transitions referred to as VM entries. The boundary conditions
that define what a VM is allowed to execute in isolation are specified in a virtual-machine control structure (VMCS).

As noted in Section 23.8, processors may fix certain bits in CRO and CR4 to specific values and not support other

values. The first processors to support VMX operation require that CRO.PE and CRO.PG be 1 in VMX operation. Thus,
a VM entry is allowed only to guests with paging enabled that are in protected mode or in virtual-8086 mode. Guest
execution in other processor operating modes need to be specially handled by the VMM.

One example of such a condition is guest execution in real-mode. A VMM could support guest real-mode execution
using at least two approaches:

® By using a fast instruction set emulator in the VMM.

® By using the similarity between real-mode and virtual-8086 mode to support real-mode guest execution in a
virtual-8086 container. The virtual-8086 container may be implemented as a virtual-8086 container task within
a monitor that emulates real-mode guest state and instructions, or by running the guest VM as the virtual-8086
container (by entering the guest with RFLAGS.VM! set). Attempts by real-mode code to access privileged state
outside the virtual-8086 container would trap to the VMM and would also need to be emulated.

Another example of such a condition is guest execution in protected mode with paging disabled. A VMM could
support such guest execution by using “identity” page tables to emulate unpaged protected mode.

31.2.1 Using Unrestricted Guest Mode

Processors which support the “unrestricted guest” VM-execution control allow VM software to run in real-address
mode and unpaged protected mode. Since these modes do not use paging, VMM software must virtualize guest
memory using EPT.

Special notes for 64-bit VMM software using the 1-setting of the “unrestricted guest” VM-execution control:

® Itis recommended that 64-bit VMM software use the 1-settings of the "load 1A32_EFER" VM entry control and
the "save 1A32_EFER" VM-exit control. If VM entry is establishing CRO.PG=0 and if the "lA-32e mode guest"
and "load 1A32_EFER" VM entry controls are both 0, VM entry leaves 1A32_EFER.LME unmaodified (i.e., the host
value will persist in the guest).

® Itis not necessary for VMM software to track guest transitions into and out of 1A-32e mode for the purpose of
maintaining the correct setting of the "I1A-32e mode guest” VM entry control. This is because VM exits on

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLACS, etc.).
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processors supporting the 1-setting of the "unrestricted guest” VM-execution control save the (guest) value of
IA32_EFER.LMA into the "lIA-32e mode guest” VM entry control.

31.3  MANAGING VMCS REGIONS AND POINTERS

A VMM must observe necessary procedures when working with a VMCS, the associated VMCS pointer, and the
VMCS region. It must also not assume the state of persistency for VMCS regions in memory or cache.

Before entering VMX operation, the host VMM allocates a VMXON region. A VMM can host several virtual machines
and have many VMCSs active under its management. A unique VMCS region is required for each virtual machine;
a VMXON region is required for the VMM itself.

A VMM determines the VMCS region size by reading IA32_VMX_BASIC MSR; it creates VMCS regions of this size
using a 4-KByte-alignhed area of physical memory. Each VMCS region needs to be initialized with a VMCS revision
identifier (at byte offset 0) identical to the revision reported by the processor in the VMX capability MSR.

NOTE

Software must not read or write directly to the VMCS data region as the format is not architecturally
defined. Consequently, Intel recommends that the VMM remove any linear-address mappings to
VMCS regions before loading.

System software does not need to do special preparation to the VMXON region before entering into VMX operation.
The address of the VMXON region for the VMM is provided as an operand to VMXON instruction. Once in VMX root
operation, the VMM needs to prepare data fields in the VMCS that control the execution of a VM upon a VM entry.
The VMM can make a VMCS the current VMCS by using the VMPTRLD instruction. VMCS data fields must be read or
written only through VMREAD and VMWRITE commands respectively.

Every component of the VMCS is identified by a 32-bit encoding that is provided as an operand to VMREAD and
VMWRITE. Appendix B provides the encodings. A VMM must properly initialize all fields in a VMCS before using the
current VMCS for VM entry.

A VMCS is referred to as a controlling VMCS if it is the current VMCS on a logical processor in VMX non-root opera-
tion. A current VMCS for controlling a logical processor in VMX non-root operation may be referred to as a working
VMCS if the logical processor is not in VMX non-root operation. The relationship of active, current (i.e. working) and
controlling VMCS during VMX operation is shown in Figure 31-1.

NOTE

As noted in Section 24.1, the processor may optimize VMX operation by maintaining the state of an
active VMCS (one for which VMPTRLD has been executed) on the processor. Before relinquishing
control to other system software that may, without informing the VMM, remove power from the
processor (e.g., for transitions to S3 or S4) or leave VMX operation, a VMM must VMCLEAR all active
VMCSs. This ensures that all VMCS data cached by the processor are flushed to memory and that
no other software can corrupt the current VMM’s VMCS data. It is also recommended that the VMM
execute VMXOFF after such executions of VMCLEAR.

The VMX capability MSR 1A32_VMX_BASIC reports the memory type used by the processor for accessing a VMCS
or any data structures referenced through pointers in the VMCS. Software must maintain the VMCS structures in
cache-coherent memory. Software must always map the regions hosting the 1/0 bitmaps, MSR bitmaps, VM-exit
MSR-store area, VM-exit MSR-load area, and VM-entry MSR-load area to the write-back (WB) memory type.
Mapping these regions to uncacheable (UC) memory type is supported, but strongly discouraged due to negative
impact on performance.

31.4  USING VMX INSTRUCTIONS

VMX instructions are allowed only in VMX root operation. An attempt to execute a VMX instruction in VMX non-root
operation causes a VM exit.
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(a) VMX Operation and VMX Transitions
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Figure 31-1. VMX Transitions and States of VMCS in a Logical Processor

Processors perform various checks while executing any VMX instruction. They follow well-defined error handling on
failures. VMX instruction execution failures detected before loading of a guest state are handled by the processor
as follows:

¢ If the working-VMCS pointer is not valid, the instruction fails by setting RFLAGS.CF to 1.

® If the working-VMCS pointer is valid, RFLAGS.ZF is set to 1 and the proper error-code is saved in the VM-
instruction error field of the working-VMCS.

Software is required to check RFLAGS.CF and RFLAGS.ZF to determine the success or failure of VMX instruction
executions.

The following items provide details regarding use of the VM-entry instructions (VMLAUNCH and VMRESUME):

® If the working-VMCS pointer is valid, the state of the working VMCS may cause the VM-entry instruction to fail.
RFLAGS.ZF is set to 1 and one of the following values is saved in the VM-instruction error field:

— 4: VMLAUNCH with non-clear VMCS.
If this error occurs, software can avoid the error by executing VMRESUME.

— 5: VMRESUME with non-launched VMCS.
If this error occurs, software can avoid the error by executing VMLAUNCH.
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— 6: VMRESUME after VMXOFF.1
If this error occurs, software can avoid the error by executing the following sequence of instructions:

VMPTRST (working-VMCS pointer)
VMCLEAR (working-VMCS pointer)
VMPTRLD (working-VMCS pointer)
VMLAUNCH

(VMPTRST may not be necessary is software already knows the working-VMCS pointer.)

If none of the above errors occur, the processor checks on the VMX controls and host-state area. If any of these
checks fail, the VM-entry instruction fails. RFLAGS.ZF is set to 1 and either 7 (VM entry with invalid control
field(s)) or 8 (VM entry with invalid host-state field(s)) is saved in the VM-instruction error field.

After a VM-entry instruction (VMRESUME or VMLAUNCH) successfully completes the general checks and checks
on VMX controls and the host-state area (see Section 26.2), any errors encountered while loading of guest-
state (due to bad guest-state or bad MSR loading) causes the processor to load state from the host-state area
of the working VMCS as if a VM exit had occurred (see Section 31.7).

This failure behavior differs from that of VM exits in that no guest-state is saved to the guest-state area. A VMM
can detect its VM-exit handler was invoked by such a failure by checking bit 31 (for 1) in the exit reason field of
the working VMCS and further identify the failure by using the exit qualification field.

See Chapter 26 for more details about the VM-entry instructions.

31.5 VMMSETUP & TEAR DOWN

VMMs need to ensure that the processor is running in protected mode with paging before entering VMX operation.
The following list describes the minimal steps required to enter VMX root operation with a VMM running at CPL = 0.

Check VMX support in processor using CPUID.

Determine the VMX capabilities supported by the processor through the VMX capability MSRs. See Section
31.5.1 and Appendix A.

Create a VMXON region in non-pageable memory of a size specified by 1A32_VMX_BASIC MSR and aligned to a
4-KByte boundary. Software should read the capability MSRs to determine width of the physical addresses that
may be used for the VMXON region and ensure the entire VMXON region can be addressed by addresses with
that width. Also, software must ensure that the VMXON region is hosted in cache-coherent memory.

Initialize the version identifier in the VMXON region (the first 31 bits) with the VMCS revision identifier reported
by capability MSRs. Clear bit 31 of the first 4 bytes of the VMXON region.

Ensure the current processor operating mode meets the required CRO fixed bits (CRO.PE = 1, CRO.PG = 1).
Other required CRO fixed bits can be detected through the 1A32_VMX_CRO_FIXEDO and
1A32_VMX_CRO_FIXED1 MSRs.

Enable VMX operation by setting CR4.VMXE = 1. Ensure the resultant CR4 value supports all the CR4 fixed bits
reported in the 1A32_VMX_CR4_FIXEDO and I1A32_VMX_CR4_FIXED1 MSRs.

Ensure that the 1A32_FEATURE_CONTROL MSR (MSR index 3AH) has been properly programmed and that its
lock bit is set (Bit O = 1). This MSR is generally configured by the BIOS using WRMSR.

Execute VMXON with the physical address of the VMXON region as the operand. Check successful execution of
VMXON by checking if RFLAGS.CF = 0.

Upon successful execution of the steps above, the processor is in VMX root operation.

A VMM executing in VMX root operation and CPL = O leaves VMX operation by executing VMXOFF and verifies
successful execution by checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

If an SMM monitor has been configured to service SMIs while in VMX operation (see Section 34.15), the SMM
monitor needs to be torn down before the executive monitor can leave VMX operation (see Section 34.15.7).
VMXOFF fails for the executive monitor (a VMM that entered VMX operation by way of issuing VMXON) if SMM
monitor is configured.

1. Earlier versions of this manual described this error as “VMRESUME with a corrupted VMCS".
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31.5.1 Algorithms for Determining VMX Capabilities

As noted earlier, a VMM should determine the VMX capabilities supported by the processor by reading the VMX
capability MSRs. The architecture for these MSRs is detailed in Appendix A.

As noted in Chapter 26, “VM Entries”, certain VMX controls are reserved and must be set to a specific value (O or
1) determined by the processor. The specific value to which a reserved control must be set is its default setting.
Most controls have a default setting of 0; Appendix A.2 identifies those controls that have a default setting of 1. The
term defaultl describes the class of controls whose default setting is 1. The are controls in this class from the pin-
based VM-execution controls, the primary processor-based VM-execution controls, the VM-exit controls, and the
VM-entry controls. There are no secondary processor-based VM-execution controls in the defaultl class.

Future processors may define new functionality for one or more reserved controls. Such processors would allow
each newly defined control to be set either to O or to 1. Software that does not desire a control’s new functionality
should set the control to its default setting.

The capability MSRs 1A32_VMX_PINBASED_CTLS, 1A32_VMX_PROCBASED_CTLS, 1A32_VMX_EXIT_CTLS, and
1IA32_VMX_ENTRY_CTLS report, respectively, on the allowed settings of most of the pin-based VM-execution
controls, the primary processor-based VM-execution controls, the VM-exit controls, and the VM-entry controls.
However, they will always report that any control in the defaultl class must be 1. If a logical processor allows any
control in the defaultl class to be O, it indicates this fact by returning 1 for the value of bit 55 of the
1A32_VMX_BASIC MSR. If this bit is 1, the logical processor supports the capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, 1A32_VMX_TRUE_PROCBASED_CTLS, I1A32_VMX_TRUE_EXIT_CTLS, and
1IA32_VMX_TRUE_ENTRY_CTLS. These capability MSRs report, respectively, on the allowed settings of all of the
pin-based VM-execution controls, the primary processor-based VM-execution controls, the VM-exit controls, and
the VM-entry controls.

Software may use one of the following high-level algorithms to determine the correct default control settings:1
1. The following algorithm does not use the details given in Appendix A.2:
a. Ignore bit 55 of the 1A32_VMX_BASIC MSR.

b. Using RDMSR, read the VMX capability MSRs 1A32_VMX_PINBASED_CTLS, IA32_VMX_PROCBASED_CTLS,
IA32_VMX_EXIT_CTLS, and 1A32_VMX_ENTRY_CTLS.

c. Set the VMX controls as follows:
i) If the relevant VMX capability MSR reports that a control has a single setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to O or 1; and (2) the control’s
meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to O or 1; and (2) the control’s
meaning is not known to the VMM; then set the control to O.

A VMM using this algorithm will set to 1 all controls in the defaultl class (in step (c)(i)). It will operate
correctly even on processors that allow some controls in the defaultl class to be 0. However, such a VMM will
not be able to use the new features enabled by the 0-setting of such controls. For that reason, this algorithm
is not recommended.

2. The following algorithm uses the details given in Appendix A.2. This algorithm requires software to know the
identity of the controls in the defaultl class:

a. Using RDMSR, read the 1A32_VMX_BASIC MSR.
b. Use bit 55 of that MSR as follows:

i) If bit 55 is 0, use RDMSR to read the VMX capability MSRs 1A32_VMX_PINBASED_CTLS,
1A32_VMX_PROCBASED_CTLS, 1A32_VMX_EXIT_CTLS, and 1A32_VMX_ENTRY_CTLS.

ii) If bit 55 is 1, use RDMSR to read the VMX capability MSRs 1A32_VMX_TRUE_PINBASED_CTLS,
IA32_VMX_TRUE_PROCBASED_CTLS, IA32_VMX_TRUE_EXIT_CTLS, and
IA32_VMX_TRUE_ENTRY_CTLS.

1. These algorithms apply only to the pin-based VM-execution controls, the primary processor-based VM-execution controls, the VM-
exit controls, and the VM-entry controls. Because there are no secondary processor-based VM-execution controls in the default1
class, a VMM can always set to 0 any such control whose meaning is unknown to it.
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c. Set the VMX controls as follows:
i) If the relevant VMX capability MSR reports that a control has a single setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to O or 1; and (2) the control’s
meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to 0 or 1; (2) the control’s
meaning is not known to the VMM; and (3) the control is not in the defaultl class; then set the control
to O.

iv) If (1) the relevant VMX capability MSR reports that a control can be set to O or 1; (2) the control’s
meaning is not known to the VMM; and (3) the control is in the defaultl class; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in defaultl class whose meaning it does not know (either
in step (c)(i) or step (c)(iv)). It will operate correctly even on processors that allow some controls in the
defaultl class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 2 will be able to use the new
features enabled by the O-setting of such controls.

3. The following algorithm uses the details given in Appendix A.2. This algorithm does not require software to
know the identity of the controls in the defaultl class:

a. Using RDMSR, read the VMX capability MSRs 1A32_VMX_BASIC, 1A32_VMX_PINBASED_CTLS,
IA32_VMX_PROCBASED_CTLS, 1A32_VMX_EXIT_CTLS, and I1A32_VMX_ENTRY_CTLS.

b. If bit 55 of the IA32_VMX_BASIC MSR is 0, set the VMX controls as follows:
i) If the relevant VMX capability MSR reports that a control has a single setting, use that setting.

ii) If (1) the relevant VMX capability MSR reports that a control can be set to O or 1; and (2) the control’s
meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR reports that a control can be set to O or 1; and (2) the control’s
meaning is not known to the VMM; then set the control to O.

c. If bit 55 of the IA32_VMX_BASIC MSR is 1, use RDMSR to read the VMX capability MSRs
IA32_VMX_TRUE_PINBASED_CTLS, 1A32_VMX_TRUE_PROCBASED_CTLS, 1A32_VMX_TRUE_EXIT_CTLS,
and 1A32_VMX_TRUE_ENTRY_CTLS. Set the VMX controls as follows:

i) If the relevant VMX capability MSR just read reports that a control has a single setting, use that
setting.

ii) If (1) the relevant VMX capability MSR just read reports that a control can be set to O or 1; and (2) the
control’s meaning is known to the VMM; then set the control based on functionality desired.

iii) If (1) the relevant VMX capability MSR just read reports that a control can be set to O or 1; (2) the
control’s meaning is not known to the VMM; and (3) the relevant VMX capability MSR as read in step (a)
reports that a control can be set to O; then set the control to 0.

iv) If (1) the relevant VMX capability MSR just read reports that a control can be set to 0 or 1; (2) the
control’s meaning is not known to the VMM; and (3) the relevant VMX capability MSR as read in step (a)
reports that a control must be 1; then set the control to 1.

A VMM using this algorithm will set to 1 all controls in the defaultl class whose meaning it does not know (in
step (b)(i), step (c)(i), or step (c)(iv)). It will operate correctly even on processors that allow some controls
in the defaultl class to be 0. Unlike a VMM using Algorithm 1, a VMM using Algorithm 3 will be able to use the
new features enabled by the O-setting of such controls. Unlike a VMM using Algorithm 2, a VMM using
Algorithm 3 need not know the identities of the controls in the defaultl class.

31.6  PREPARATION AND LAUNCHING A VIRTUAL MACHINE

The following list describes the minimal steps required by the VMM to set up and launch a guest VM.

® Create a VMCS region in non-pageable memory of size specified by the VMX capability MSR 1A32_VMX_BASIC
and aligned to 4-KBytes. Software should read the capability MSRs to determine width of the physical
addresses that may be used for a VMCS region and ensure the entire VMCS region can be addressed by
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addresses with that width. The term “guest-VMCS address” refers to the physical address of the new VMCS
region for the following steps.

Initialize the version identifier in the VMCS (first 31 bits) with the VMCS revision identifier reported by the VMX
capability MSR 1A32_VMX_BASIC. Clear bit 31 of the first 4 bytes of the VMCS region.

Execute the VMCLEAR instruction by supplying the guest-VMCS address. This will initialize the new VMCS
region in memory and set the launch state of the VMCS to “clear”. This action also invalidates the working-
VMCS pointer register to FFFFFFFF_FFFFFFFFH. Software should verify successful execution of VMCLEAR by
checking if RFLAGS.CF = 0 and RFLAGS.ZF = 0.

Execute the VMPTRLD instruction by supplying the guest-VMCS address. This initializes the working-VMCS
pointer with the new VMCS region’s physical address.

Issue a sequence of VMWRITEsS to initialize various host-state area fields in the working VMCS. The initialization
sets up the context and entry-points to the VMM upon subsequent VM exits from the guest. Host-state fields
include control registers (CRO, CR3 and CR4), selector fields for the segment registers (CS, SS, DS, ES, FS, GS
and TR), and base-address fields (for FS, GS, TR, GDTR and IDTR; RSP, RIP and the MSRs that control fast
system calls).

Chapter 27 describes the host-state consistency checking done by the processor for VM entries. The VMM is
required to set up host-state that comply with these consistency checks. For example, VMX requires the host-
area to have a task register (TR) selector with Tl and RPL fields set to O and pointing to a valid TSS.

Use VMWRITES to set up the various VM-exit control fields, VM-entry control fields, and VM-execution control
fields in the VMCS. Care should be taken to make sure the settings of individual fields match the allowed 0 and
1 settings for the respective controls as reported by the VMX capability MSRs (see Appendix A). Any settings

inconsistent with the settings reported by the capability MSRs will cause VM entries to fail.

Use VMWRITE to initialize various guest-state area fields in the working VMCS. This sets up the context and
entry-point for guest execution upon VM entry. Chapter 27 describes the guest-state loading and checking
done by the processor for VM entries to protected and virtual-8086 guest execution.

The VMM is required to set up guest-state that complies with these consistency checks:

— If the VMM design requires the initial VM launch to cause guest software (typically the guest virtual BIOS)
execution from the guest’s reset vector, it may need to initialize the guest execution state to reflect the
state of a physical processor at power-on reset (described in Chapter 9, Intel® 64 and 1A-32 Architectures
Software Developer’s Manual, Volume 3A).

— The VMM may need to initialize additional guest execution state that is not captured in the VMCS guest-
state area by loading them directly on the respective processor registers. Examples include general
purpose registers, the CR2 control register, debug registers, floating point registers and so forth. VMM may
support lazy loading of FPU, MMX, SSE, and SSE2 states with CRO.TS = 1 (described in Intel® 64 and I1A-32
Architectures Software Developer’s Manual, Volume 3A).

Execute VMLAUNCH to launch the guest VM. If VMLAUNCH fails due to any consistency checks before guest-
state loading, RFLAGS.CF or RFLAGS.ZF will be set and the VM-instruction error field (see Section 24.9.5) will
contain the error-code. If guest-state consistency checks fail upon guest-state loading, the processor loads
state from the host-state area as if a VM exit had occurred (see Section 31.6).

VMLAUNCH updates the controlling-VMCS pointer with the working-VMCS pointer and saves the old value of
controlling-VMCS as the parent pointer. In addition, the launch state of the guest VMCS is changed to “launched”
from “clear”. Any programmed exit conditions will cause the guest to VM exit to the VMM. The VMM should execute
VMRESUME instruction for subsequent VM entries to guests in a “launched” state.

31.7 HANDLING OF VM EXITS

This section provides examples of software steps involved in a VMM’s handling of VM-exit conditions:

Determine the exit reason through a VMREAD of the exit-reason field in the working-VMCS. Appendix C
describes exit reasons and their encodings.

VMREAD the exit-qualification from the VMCS if the exit-reason field provides a valid qualification. The exit-
qualification field provides additional details on the VM-exit condition. For example, in case of page faults, the
exit-qualification field provides the guest linear address that caused the page fault.
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¢ Depending on the exit reason, fetch other relevant fields from the VMCS. Appendix C lists the various exit
reasons.

® Handle the VM-exit condition appropriately in the VMM. This may involve the VMM emulating one or more guest
instructions, programming the underlying host hardware resources, and then re-entering the VM to continue
execution.

31.7.1 Handling VM Exits Due to Exceptions

As noted in Section 25.2, an exception causes a VM exit if the bit corresponding to the exception’s vector is set in
the exception bitmap. (For page faults, the error code also determines whether a VM exit occurs.) This section
provide some guidelines of how a VMM might handle such exceptions.

Exceptions result when a logical processor encounters an unusual condition that software may not have expected.
When guest software encounters an exception, it may be the case that the condition was caused by the guest soft-
ware. For example, a guest application may attempt to access a page that is restricted to supervisor access. Alter-
natively, the condition causing the exception may have been established by the VMM. For example, a guest OS may
attempt to access a page that the VMM has chosen to make not present.

When the condition causing an exception was established by guest software, the VMM may choose to reflect the
exception to guest software. When the condition was established by the VMM itself, the VMM may choose to
resume guest software after removing the condition.

31.7Z.1.1  Reflecting Exceptions to Guest Software

If the VMM determines that a VM exit was caused by an exception due to a condition established by guest software,
it may reflect that exception to guest software. The VMM would cause the exception to be delivered to guest soft-
ware, where it can be handled as it would be if the guest were running on a physical machine. This section
describes how that may be done.

In general, the VMM can deliver the exception to guest software using VM-entry event injection as described in
Section 26.5. The VMM can copy (using VMREAD and VMWRITE) the contents of the VM-exit interruption-informa-
tion field (which is valid, since the VM exit was caused by an exception) to the VM-entry interruption-information
field (which, if valid, will cause the exception to be delivered as part of the next VM entry). The VMM would also
copy the contents of the VM-exit interruption error-code field to the VM-entry exception error-code field; this need
not be done if bit 11 (error code valid) is clear in the VM-exit interruption-information field. After this, the VMM can
execute VMRESUME.

The following items provide details that may qualify the general approach:

® Care should be taken to ensure that reserved bits 30:12 in the VM-entry interruption-information field are 0. In
particular, some VM exits may set bit 12 in the VM-exit interruption-information field to indicate NMI
unblocking due to IRET. If this bit is copied as 1 into the VM-entry interruption-information field, the next
VM entry will fail because that bit should be O.

® Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the exception causing the VM exit
occurred while another event was being delivered to guest software. If this is the case, it may not be
appropriate simply to reflect that exception to guest software. To provide proper virtualization of the exception
architecture, a VMM should handle nested events as a physical processor would. Processor handling is
described in Chapter 6, “Interrupt 8—Double Fault Exception (#DF)” in Intel® 64 and I1A-32 Architectures
Software Developer’s Manual, Volume 3A.

— The VMM should reflect the exception causing the VM exit to guest software in any of the following cases:

®* The value of bits 10:8 (interruption type) of the IDT-vectoring information field is anything other than 3
(hardware exception).

®* The value of bits 7:0 (vector) of the IDT-vectoring information field indicates a benign exception (1, 2,
3,4,5,6,7,9, 16, 17, 18, or 19).

®* The value of bits 7:0 (vector) of the VM-exit interruption-information field indicates a benign exception.
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®* The value of bits 7:0 of the IDT-vectoring information field indicates a contributory exception (O, 10,
11, 12, or 13) and the value of bits 7:0 of the VM-exit interruption-information field indicates a page
fault (14).

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware exception), the VMM should
reflect a double-fault exception to guest software in any of the following cases:

®* The value of bits 7:0 of the IDT-vectoring information field and the value of bits 7:0 of the VM-exit
interruption-information field each indicates a contributory exception.

®* The value of bits 7:0 of the IDT-vectoring information field indicates a page fault and the value of
bits 7:0 of the VM-exit interruption-information field indicates either a contributory exception or a page
fault.

A VMM can reflect a double-fault exception to guest software by setting the VM-entry interruption-
information and VM-entry exception error-code fields as follows:

® Set bits 7:0 (vector) of the VM-entry interruption-information field to 8 (#DF).

® Set bits 10:8 (interruption type) of the VM-entry interruption-information field to 3 (hardware
exception).

® Set bit 11 (deliver error code) of the VM-entry interruption-information field to 1.
® Clear bits 30:12 (reserved) of VM-entry interruption-information field.

® Set bit 31 (valid) of VM-entry interruption-information field.

* Set the VM-entry exception error-code field to zero.

— If the value of bits 10:8 of the IDT-vectoring information field is 3 (hardware exception) and the value of
bits 7:0 is 8 (#DF), guest software would have encountered a triple fault. Event injection should not be
used in this case. The VMM may choose to terminate the guest, or it might choose to enter the guest in the
shutdown activity state.

31.7.1.2 Resuming Guest Software after Handling an Exception

If the VMM determines that a VM exit was caused by an exception due to a condition established by the VMM itself,
it may choose to resume guest software after removing the condition. The approach for removing the condition
may be specific to the VMM’s software architecture. and algorithms This section describes how guest software may
be resumed after removing the condition.

In general, the VMM can resume guest software simply by executing VMRESUME. The following items provide
details of cases that may require special handling:

If the “NMI exiting” VM-execution control is 0, bit 12 of the VM-exit interruption-information field indicates that
the VM exit was due to a fault encountered during an execution of the IRET instruction that unblocked non-
maskable interrupts (NMIs). In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is O.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not 8 (the VM exit is not due
to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, NMIs were blocked before guest
software executed the IRET instruction that caused the fault that caused the VM exit. The VMM should set bit 3
(blocking by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before resuming guest
software.

If the “virtual NMIs” VM-execution control is 1, bit 12 of the VM-exit interruption-information field indicates
that the VM exit was due to a fault encountered during an execution of the IRET instruction that removed
virtual-NMI blocking. In particular, it provides this indication if the following are both true:

— Bit 31 (valid) in the IDT-vectoring information field is O.

— The value of bits 7:0 (vector) of the VM-exit interruption-information field is not 8 (the VM exit is not due
to a double-fault exception).

If both are true and bit 12 of the VM-exit interruption-information field is 1, there was virtual-NMI blocking
before guest software executed the IRET instruction that caused the fault that caused the VM exit. The VMM
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should set bit 3 (blocking by NMI) in the interruptibility-state field (using VMREAD and VMWRITE) before
resuming guest software.

¢ Bit 31 (valid) of the IDT-vectoring information field indicates, if set, that the exception causing the VM exit
occurred while another event was being delivered to guest software. The VMM should ensure that the other
event is delivered when guest software is resumed. It can do so using the VM-entry event injection described
in Section 26.5 and detailed in the following paragraphs:

— The VMM can copy (using VMREAD and VMWRITE) the contents of the IDT-vectoring information field
(which is presumed valid) to the VM-entry interruption-information field (which, if valid, will cause the
exception to be delivered as part of the next VM entry).

®* The VMM should ensure that reserved bits 30:12 in the VM-entry interruption-information field are O. In
particular, the value of bit 12 in the IDT-vectoring information field is undefined after all VM exits. If this
bit is copied as 1 into the VM-entry interruption-information field, the next VM entry will fail because the
bit should be 0.

* If the “virtual NMIs” VM-execution control is 1 and the value of bits 10:8 (interruption type) in the IDT-
vectoring information field is 2 (indicating NMI), the VM exit occurred during delivery of an NMI that had
been injected as part of the previous VM entry. In this case, bit 3 (blocking by NMI) will be 1 in the inter-
ruptibility-state field in the VMCS. The VMM should clear this bit; otherwise, the next VM entry will fail
(see Section 26.3.1.5).

— The VMM can also copy the contents of the IDT-vectoring error-code field to the VM-entry exception error-
code field. This need not be done if bit 11 (error code valid) is clear in the IDT-vectoring information field.

— The VMM can also copy the contents of the VM-exit instruction-length field to the VM-entry instruction-
length field. This need be done only if bits 10:8 (interruption type) in the IDT-vectoring information field
indicate either software interrupt, privileged software exception, or software exception.

31.8  MULTI-PROCESSOR CONSIDERATIONS

The most common VMM design will be the symmetric VMM. This type of VMM runs the same VMM binary on all
logical processors. Like a symmetric operating system, the symmetric VMM is written to ensure all critical data is
updated by only one processor at a time, 10 devices are accessed sequentially, and so forth. Asymmetric VMM
designs are possible. For example, an asymmetric VMM may run its scheduler on one processor and run just
enough of the VMM on other processors to allow the correct execution of guest VMs. The remainder of this section
focuses on the multi-processor considerations for a symmetric VMM.

A symmetric VMM design does not preclude asymmetry in its operations. For example, a symmetric VMM can
support asymmetric allocation of logical processor resources to guests. Multiple logical processors can be brought
into a single guest environment to support an MP-aware guest OS. Because an active VMCS can not control more
than one logical processor simultaneously, a symmetric VMM must make copies of its VMCS to control the VM allo-
cated to support an MP-aware guest OS. Care must be taken when accessing data structures shared between these
VMCSs. See Section 31.8.4.

Although it may be easier to develop a VMM that assumes a fully-symmetric view of hardware capabilities (with all
processors supporting the same processor feature sets, including the same revision of VMX), there are advantages
in developing a VMM that comprehends different levels of VMX capability (reported by VMX capability MSRs). One
possible advantage of such an approach could be that an existing software installation (VMM and guest software
stack) could continue to run without requiring software upgrades to the VMM, when the software installation is
upgraded to run on hardware with enhancements in the processor’s VMX capabilities. Another advantage could be
that a single software installation image, consisting of a VMM and guests, could be deployed to multiple hardware
platforms with varying VMX capabilities. In such cases, the VMM could fall back to a common subset of VMX
features supported by all VMX revisions, or choose to understand the asymmetry of the VMX capabilities and assign
VMs accordingly.

This section outlines some of the considerations to keep in mind when developing an MP-aware VMM.
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31.8.1 Initialization

Before enabling VMX, an MP-aware VMM must check to make sure that all processors in the system are compatible
and support features required. This can be done by:

® Checking the CPUID on each logical processor to ensure VMX is supported and that the overall feature set of
each logical processor is compatible.

® Checking VMCS revision identifiers on each logical processor.
® Checking each of the “allowed-1" or “allowed-0" fields of the VMX capability MSR’s on each processor.

31.8.2 Moving a VMCS Between Processors

An MP-aware VMM is free to assign any logical processor to a VM. But for performance considerations, moving a
guest VMCS to another logical processor is slower than resuming that guest VMCS on the same logical processor.
Certain VMX performance features (such as caching of portions of the VMCS in the processor) are optimized for a
guest VMCS that runs on the same logical processor.

The reasons are:

® To restart a guest on the same logical processor, a VMM can use VMRESUME. VMRESUME is expected to be
faster than VMLAUNCH in general.

® To migrate a VMCS to another logical processor, a VMM must use the sequence of VMCLEAR, VMPTRLD and
VMLAUNCH.

® Operations involving VMCLEAR can impact performance negatively. See
Section 24.11.3.

A VMM scheduler should make an effort to schedule a guest VMCS to run on the logical processor where it last ran.
Such a scheduler might also benefit from doing lazy VMCLEARs (that is: performing a VMCLEAR on a VMCS only
when the scheduler knows the VMCS is being moved to a new logical processor). The remainder of this section
describes the steps a VMM must take to move a VMCS from one processor to another.

A VMM must check the VMCS revision identifier in the VMX capability MSR 1A32_VMX_BASIC to determine if the
VMCS regions are identical between all logical processors. If the VMCS regions are identical (same revision ID) the
following sequence can be used to move or copy the VMCS from one logical processor to another:

® Perform a VMCLEAR operation on the source logical processor. This ensures that all VMCS data that may be
cached by the processor are flushed to memory.

® Copy the VMCS region from one memory location to another location. This is an optional step assuming the
VMM wishes to relocate the VMCS or move the VMCS to another system.

® Perform a VMPTRLD of the physical address of VMCS region on the destination processor to establish its current
VMCS pointer.

If the revision identifiers are different, each field must be copied to an intermediate structure using individual reads
(VMREAD) from the source fields and writes (VMWRITE) to destination fields. Care must be taken on fields that are
hard-wired to certain values on some processor implementations.

31.8.3 Paired Index-Data Registers

A VMM may need to virtualize hardware that is visible to software using paired index-data registers. Paired index-
data register interfaces, such as those used in PCI (CF8, CFC), require special treatment in cases where a VM
performing writes to these pairs can be moved during execution. In this case, the index (e.g. CF8) should be part
of the virtualized state. If the VM is moved during execution, writes to the index should be redone so subsequent
data reads/writes go to the right location.

31.8.4 External Data Structures

Certain fields in the VMCS point to external data structures (for example: the MSR bitmap, the 1/0 bitmaps). If a
logical processor is in VMX non-root operation, none of the external structures referenced by that logical
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processor's current VMCS should be modified by any logical processor or DMA. Before updating one of these struc-
tures, the VMM must ensure that no logical processor whose current VMCS references the structure is in VMX non-
root operation.

If a VMM uses multiple VMCS with each VMCS using separate external structures, and these structures must be
kept synchronized, the VMM must apply the same care to updating these structures.

31.8.5 CPUID Emulation

CPUID reports information that is used by OS and applications to detect hardware features. It also provides multi-
threading/multi-core configuration information. For example, MP-aware OSs rely on data reported by CPUID to
discover the topology of logical processors in a platform (see Section 8.9, “Programming Considerations for Hard-
ware Multi-Threading Capable Processors,” in the Intel® 64 and 1A-32 Architectures Software Developer’s Manual,
Volume 3A).

If a VMM is to support asymmetric allocation of logical processor resources to guest OSs that are MP aware, then
the VMM must emulate CPUID for its guests. The emulation of CPUID by the VMM must ensure the guest’s view of
CPUID leaves are consistent with the logical processor allocation committed by the VMM to each guest OS.

31.9  32-BIT AND 64-BIT GUEST ENVIRONMENTS

For the most part, extensions provided by VMX to support virtualization are orthogonal to the extensions provided
by Intel 64 architecture. There are considerations that impact VMM designs. These are described in the following
subsections.

31.9.1 Operating Modes of Guest Environments

For Intel 64 processors, VMX operation supports host and guest environments that run in 1A-32e mode or without
IA-32e mode. VMX operation also supports host and guest environments on 1A-32 processors.

A VMM entering VMX operation while 1A-32e mode is active is considered to be an 1A-32e mode host. A VMM
entering VMX operation while 1A-32e mode is not activated or not available is referred to as a 32-bit VMM. The type
of guest operations such VMMs support are summarized in Table 31-1.

Table 31-1. Operating Modes for Host and Guest Environments

Capability Guest Operation Guest Operation

in IA-32e mode Not Requiring IA-32e Mode
IA-32e mode VMM Yes Yes
32-bit VMM Not supported Yes

A VM exit may occur to an IA-32e mode guest in either 64-bit sub-mode or compatibility sub-mode of 1A-32e
mode. VMMs may resume guests in either mode. The sub-mode in which an 1A-32e mode guest resumes VMX non-
root operation is determined by the attributes of the code segment which experienced the VM exit. If CS.L = 1, the
guest is executing in 64-bit mode; if CS.L = 0, the guest is executing in compatibility mode (see Section 31.9.5).

Not all of an 1A-32e mode VMM must run in 64-bit mode. While some parts of an 1A-32e mode VMM must run in 64-
bit mode, there are only a few restrictions preventing a VMM from executing in compatibility mode. The most
notable restriction is that most VMX instructions cause exceptions when executed in compatibility mode.

31.9.2 Handling Widths of VMCS Fields

Individual VMCS control fields must be accessed using VMREAD or VMWRITE instructions. Outside of 64-Bit mode,
VMREAD and VMWRITE operate on 32 bits of data. The widths of VMCS control fields may vary depending on
whether a processor supports Intel 64 architecture.

31-12 Vol.3C



VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

Many VMCS fields are architected to extend transparently on processors supporting Intel 64 architecture (64 bits
on processors that support Intel 64 architecture, 32 bits on processors that do not). Some VMCS fields are 64-bits
wide regardless of whether the processor supports Intel 64 architecture or is in 1A-32e mode.

31.9.2.1 Natural-Width VMCS Fields

Many VMCS fields operate using natural width. Such fields return (on reads) and set (on writes) 32-bits when oper-
ating in 32-bit mode and 64-bits when operating in 64-bit mode. For the most part, these fields return the naturally
expected data widths. The “Guest RIP” field in the VMCS guest-state area is an example of this type of field.

31.9.2.2 64-Bit VMCS Fields

Unlike natural width fields, these fields are fixed to 64-bit width on all processors. When in 64-bit mode, reads of
these fields return 64-bit wide data and writes to these fields write 64-bits. When outside of 64-bit mode, reads of
these fields return the low 32-bits and writes to these fields write the low 32-bits and zero the upper 32-bits.
Should a non-1A-32e mode host require access to the upper 32-bits of these fields, a separate VMCS encoding is
used when issuing VMREAD/VMWRITE instructions.

The VMCS control field “MSR bitmap address” (which contains the physical address of a region of memory which
specifies which MSR accesses should generate VM-exits) is an example of this type of field. Specifying encoding
00002004H to VMREAD returns the lower 32-bits to non-1A-32e mode hosts and returns 64-bits to 64-bit hosts.
The separate encoding 00002005H returns only the upper 32-bits.

31.9.3 |A-32e Mode Hosts

An 1A-32e mode host is required to support 64-bit guest environments. Because activating I1A-32e mode currently
requires that paging be disabled temporarily and VMX entry requires paging to be enabled, 1A-32e mode must be
enabled before entering VMX operation. For this reason, it is not possible to toggle in and out of 1A-32e mode in a
VMM.

Section 31.5 describes the steps required to launch a VMM. An 1A-32e mode host is also required to set the “host
address-space size” VMCS VM-exit control to 1. The value of this control is then loaded in the 1A32_EFER.LME/LMA
and CS.L bits on each VM exit. This establishes a 64-bit host environment as execution transfers to the VMM entry
point. At a minimum, the entry point is required to be in a 64-bit code segment. Subsequently, the VMM can, if it
chooses, switch to 32-bit compatibility mode on a code-segment basis (see Section 31.9.1). Note, however, that
VMX instructions other than VMCALL and VMFUNC are not supported in compatibility mode; they generate an
invalid opcode exception if used.

The following VMCS controls determine the value of IA32_EFER when a VM exit occurs: the “host address-space
size” control (described above), the “load 1A32_EFER” VM-exit control, the “VM-exit MSR-load count,” and the “VM-
exit MSR-load address” (see Section 27.3).

If the “load 1A32_EFER” VM-exit control is 1, the value of the LME and LMA bits in the 1A32_EFER field in the host-
state area must be the value of the “host address-space size” VM-exit control.

The loading of IA32_EFER.LME/LMA and CS.L bits established by the “host address-space size” control precede any
loading of the 1A32_EFER MSR due from the VM-exit MSR-load area. If IA32_EFER is specified in the VM-exit MSR-
load area, the value of the LME bit in the load image of IA32_EFER should match the setting of the “host address-
space size” control. Otherwise the attempt to modify the LME bit (while paging is enabled) will lead to a VMX-abort.
However, IA32_EFER.LMA is always set by the processor to equal 1A32_EFER.LME & CRO.PG; the value specified
for LMA in the load image of the IA32_EFER MSR is ignored. For these and performance reasons, VMM writers may
choose to not use the VM-exit/entry MSR-load/save areas for IA32_EFER.

On a VMM teardown, VMX operation should be exited before deactivating 1A-32e mode if the latter is required.

31.9.4 |A-32e Mode Guests

A 32-bit guest can be launched by either 1A-32e-mode hosts or non-1A-32e-mode hosts. A 64-bit guests can only
be launched by a 1A-32e-mode host.

Vol. 3C 31-13



VIRTUAL-MACHINE MONITOR PROGRAMMING CONSIDERATIONS

In addition to the steps outlined in Section 31.6, VMM writers need to:

® Set the “l1A-32e-mode guest” VM-entry control to 1 in the VMCS to assure VM-entry (VMLAUNCH or
VMRESUME) will establish a 64-bit (or 32-bit compatible) guest operating environment.

® Enable paging (CR0O.PG) and PAE mode (CR4.PAE) to assure VM-entry to a 64-bit guest will succeed.

® Ensure that the host to be in 1A-32e mode (the 1A32_EFER.LMA must be set to 1) and the setting of the VM-exit
“host address-space size” control bit in the VMCS must also be set to 1.

If each of the above conditions holds true, then VM-entry will copy the value of the VM-entry “lA-32e-mode guest”
control bit into the guests IA32_EFER.LME bit, which will result in subsequent activation of 1A-32e mode. If any of
the above conditions is false, the VM-entry will fail and load state from the host-state area of the working VMCS as
if a VM exit had occurred (see Section 26.7).

The following VMCS controls determine the value of IA32_EFER on a VM entry: the “lIA-32e-mode guest” VM-entry
control (described above), the “load 1A32_EFER” VM-entry control, the “VM-entry MSR-load count,” and the “VM-
entry MSR-load address” (see Section 26.4).

If the “load 1IA32_EFER” VM-entry control is 1, the value of the LME and LMA bits in the IA32_EFER field in the
guest-state area must be the value of the “lA-32e-mode guest” VM-entry control. Otherwise, the VM entry fails.

The loading of IA32_EFER.LME bit (described above) precedes any loading of the IA32_EFER MSR from the VM-
entry MSR-load area of the VMCS. If loading of IA32_EFER is specified in the VM-entry MSR-load area, the value of
the LME bit in the load image should be match the setting of the “lA-32e-mode guest” VM-entry control. Otherwise,
the attempt to modify the LME bit (while paging is enabled) results in a failed VM entry. However, I1A32_EFER.LMA
is always set by the processor to equal 1A32_EFER.LME & CRO.PG; the value specified for LMA in the load image of
the 1A32_EFER MSR is ignored. For these and performance reasons, VMM writers may choose to not use the VM-
exit/entry MSR-load/save areas for IA32_EFER MSR.

Note that the VMM can control the processor’s architectural state when transferring control to a VM. VMM writers
may choose to launch guests in protected mode and subsequently allow the guest to activate 1A-32e mode or they
may allow guests to toggle in and out of 1A-32e mode. In this case, the VMM should require VM exit on accesses to
the 1A32_EFER MSR to detect changes in the operating mode and modify the VM-entry “lA-32e-mode guest”
control accordingly.

A VMM should save/restore the extended (full 64-bit) contents of the guest general-purpose registers, the new
general-purpose registers (R8-R15) and the SIMD registers introduced in 64-bit mode should it need to modify
these upon VM exit.

31.9.5 32-Bit Guests

To launch or resume a 32-bit guest, VMM writers can follow the steps outlined in Section 31.6, making sure that the
“l1A-32e-mode guest” VM-entry control bit is set to 0. Then the “lA-32e-mode guest” control bit is copied into the
guest IA32_EFER.LME bit, establishing 1A32_EFER.LMA as 0.

31.10 HANDLING MODEL SPECIFIC REGISTERS

Model specific registers (MSR) provide a wide range of functionality. They affect processor features, control the
programming interfaces, or are used in conjunction with specific instructions. As part of processor virtualization, a
VMM may wish to protect some or all MSR resources from direct guest access.

VMX operation provides the following features to virtualize processor MSRs.

31.10.1 Using VM-Execution Controls

Processor-based VM-execution controls provide two levels of support for handling guest access to processor MSRs
using RDMSR and WRMSR:

® MSR bitmaps: In VMX implementations that support a 1-setting (see Appendix A) of the user-MSR-bitmaps
execution control bit, MSR bitmaps can be used to provide flexibility in managing guest MSR accesses. The
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MSR-bitmap-address in the guest VMCS can be programmed by VMM to point to a bitmap region which
specifies VM-exit behavior when reading and writing individual MSRs.

MSR bitmaps form a 4-KByte region in physical memory and are required to be aligned to a 4-KByte boundary.
The first 1-KByte region manages read control of MSRs in the range 00000000H-00001FFFH; the second 1-
KByte region covers read control of MSR addresses in the range COOOO000H-COO01FFFH. The bitmaps for write
control of these MSRs are located in the 2-KByte region immediately following the read control bitmaps. While
the MSR bitmap address is part of VMCS, the MSR bitmaps themselves are not. This implies MSR bitmaps are
not accessible through VMREAD and VMWRITE instructions but rather by using ordinary memory writes. Also,
they are not specially cached by the processor and may be placed in normal cache-coherent memory by the
VMM.

When MSR bitmap addresses are properly programmed and the use-MSR-bitmap control (see Section 24.6.2)
is set, the processor consults the associated bit in the appropriate bitmap on guest MSR accesses to the corre-
sponding MSR and causes a VM exit if the bit in the bitmap is set. Otherwise, the access is permitted to
proceed. This level of protection may be utilized by VMMs to selectively allow guest access to some MSRs while
virtualizing others.

¢ Default MSR protection: If the use-MSR-bitmap control is not set, an attempt by a guest to access any MSR
causes a VM exit. This also occurs for any attempt to access an MSR outside the ranges identified above (even
if the use-MSR-bitmap control is set).

VM exits due to guest MSR accesses may be identified by the VMM through VM-exit reason codes. The MSR-read
exit reason implies guest software attempted to read an MSR protected either by default or through MSR bitmaps.
The MSR-write exit reason implies guest software attempting to write a MSR protected through the VM-execution
controls. Upon VM exits caused by MSR accesses, the VMM may virtualize the guest MSR access through emulation
of RDMSR/WRMSR.

31.10.2 Using VM-Exit Controls for MSRs

If a VMM allows its guest to access MSRs directly, the VMM may need to store guest MSR values and load host MSR
values for these MSRs on VM exits. This is especially true if the VMM uses the same MSRs while in VMX root oper-
ation.

A VMM can use the VM-exit MSR-store-address and the VM-exit MSR-store-count exit control fields (see Section
24.7.2) to manage how MSRs are stored on VM exits. The VM-exit MSR-store-address field contains the physical
address (16-byte aligned) of the VM-exit MSR-store area (a table of entries with 16 bytes per entry). Each table
entry specifies an MSR whose value needs to be stored on VM exits. The VM-exit MSR-store-count contains the
number of entries in the table.

Similarly the VM-exit MSR-load-address and VM-exit MSR-load-count fields point to the location and size of the VM-
exit MSR load area. The entries in the VM-exit MSR-load area contain the host expected values of specific MSRs
when a VM exit occurs.

Upon VM-exit, bits 127:64 of each entry in the VM-exit MSR-store area is updated with the contents of the MSR
indexed by bits 31:0. Also, bits 127:64 of each entry in the VM-exit MSR-load area is updated by loading with
values from bits 127:64 the contents of the MSR indexed by bits 31:0.

31.10.3 Using VM-Entry Controls for MSRs

A VMM may require specific MSRs to be loaded explicitly on VM entries while launching or resuming guest execu-
tion. The VM-entry MSR-load-address and VM-entry MSR-load-count entry control fields determine how MSRs are
loaded on VM-entries. The VM-entry MSR-load-address and count fields are similar in structure and function to the
VM-exit MSR-load address and count fields, except the MSR loading is done on VM-entries.

31.10.4 Handling Special-Case MSRs and Instructions

A number of instructions make use of designated MSRs in their operation. The VMM may need to consider saving
the states of those MSRs. Instructions that merit such consideration include SYSENTER/SYSEXIT,
SYSCALL/SYSRET, SWAPGS.
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31.10.4.1 Handling IA32_EFER MSR

The 1A32_EFER MSR includes bit fields that allow system software to enable processor features. For example: the
SCE bit enables SYSCALL/SYSRET and the NXE bit enables the execute-disable bits in the paging-structure entries.

VMX provides hardware support to load the IA32_EFER MSR on VMX transitions and to save it on VM exits. Because
of this, VMM software need not use the RDMSR and WRMSR instruction to give the register different values during
host and guest execution.

31.10.4.2 Handling the SYSENTER and SYSEXIT Instructions

The SYSENTER and SYSEXIT instructions use three dedicated MSRs (IA32_SYSENTER_CS, I1A32_SYSENTER_ESP
and I1A32_SYSENTER_EIP) to manage fast system calls. These MSRs may be utilized by both the VMM and the
guest OS to manage system calls in VMX root operation and VMX non-root operation respectively.

VM entries load these MSRs from fields in the guest-state area of the VMCS. VM exits save the values of these MSRs
into those fields and loads the MSRs from fields in the host-state area.

31.10.4.3 Handling the SYSCALL and SYSRET Instructions

The SYSCALL/SYSRET instructions are similar to SYSENTER/SYSEXIT but are designed to operate within the
context of a 64-bit flat code segment. They are available only in 64-bit mode and only when the SCE bit of the
IA32_EFER MSR is set. SYSCALL/SYSRET invocations can occur from either 32-bit compatibility mode application
code or from 64-bit application code. Three related MSR registers (IA32_STAR, 1A32_LSTAR, 1A32_FMASK) are
used in conjunction with fast system calls/returns that use these instructions.

64-Bit hosts which make use of these instructions in the VMM environment will need to save the guest state of the
above registers on VM exit, load the host state, and restore the guest state on VM entry. One possible approach is
to use the VM-exit MSR-save and MSR-load areas and the VM-entry MSR-load area defined by controls in the VMCS.
A disadvantage to this approach, however, is that the approach results in the unconditional saving, loading, and
restoring of MSR registers on each VM exit or VM entry.

Depending on the design of the VMM, it is likely that many VM-exits will require no fast system call support but the
VMM will be burdened with the additional overhead of saving and restoring MSRs if the VMM chooses to support fast
system call uniformly. Further, even if the host intends to support fast system calls during a VM-exit, some of the
MSR values (such as the setting of the SCE bit in IA32_EFER) may not require modification as they may already be
set to the appropriate value in the guest.

For performance reasons, a VMM may perform lazy save, load, and restore of these MSR values on certain VM exits
when it is determined that this is acceptable. The lazy-save-load-restore operation can be carried out “manually”
using RDMSR and WRMSR.

31.10.4.4 Handling the SWAPGS Instruction

The SWAPGS instruction is available only in 64-bit mode. It swaps the contents of two specific MSRs
(IA32_GS_BASE and IA32_KERNEL_GS_BASE). The IA32_GS_BASE MSR shadows the base address portion of the
GS descriptor register; the 1A32_KERNEL_GS_BASE MSR holds the base address of the GS segment used by the
kernel (typically it houses kernel structures). SWAPGS is intended for use with fast system calls when in 64-bit
mode to allow immediate access to kernel structures on transition to kernel mode.

Similar to SYSCALL/SYSRET, 1A-32e mode hosts which use fast system calls may need to save, load, and restore
these MSR registers on VM exit and VM entry using the guidelines discussed in previous paragraphs.

31.10.4.5 Implementation Specific Behavior on Writing to Certain MSRs

As noted in Section 26.4 and Section 27.4, a processor may prevent writing to certain MSRs when loading guest
states on VM entries or storing guest states on VM exits. This is done to ensure consistent operation. The subset
and number of MSRs subject to restrictions are implementation specific. For initial VMX implementations, there are
two MSRs: IA32_BIOS_UPDT_TRIG and IA32_BIOS_SIGN_ID (see Chapter 35).
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31.10.5 Handling Accesses to Reserved MSR Addresses

Privileged software (either a VMM or a guest OS) can access a model specific register by specifying addresses in
MSR address space. VMMs, however, must prevent a guest from accessing reserved MSR addresses in MSR address
space.

Consult Chapter 35 for lists of supported MSRs and their usage. Use the MSR bitmap control to cause a VM exit
when a guest attempts to access a reserved MSR address. The response to such a VM exit should be to reflect
#GP(0) back to the guest.

31.11 HANDLING ACCESSES TO CONTROL REGISTERS

Bit fields in control registers (CRO, CR4) control various aspects of processor operation. The VMM must prevent
guests from modifying bits in CRO or CR4 that are reserved at the time the VMM is written.

Guest/host masks should be used by the VMM to cause VM exits when a guest attempts to modify reserved bits.
Read shadows should be used to ensure that the guest always reads the reserved value (usually 0) for such bits.
The VMM response to VM exits due to attempts from a guest to modify reserved bits should be to emulate the
response which the processor would have normally produced (usually a #GP(0)).

31.12 PERFORMANCE CONSIDERATIONS

VMX provides hardware features that may be used for improving processor virtualization performance. VMMs must
be designed to use this support properly. The basic idea behind most of these performance optimizations of the
VMM is to reduce the number of VM exits while executing a guest VM.

This section lists ways that VMMs can take advantage of the performance enhancing features in VMX.

® Read Access to Control Registers. Analysis of common client workloads with common PC operating systems
in a virtual machine shows a large number of VM-exits are caused by control register read accesses (particu-
larly CRO). Reads of CRO and CR4 does not cause VM exits. Instead, they return values from the CRO/CR4 read-
shadows configured by the VMM in the guest controlling-VMCS with the guest-expected values.

® Write Access to Control Registers. Most VMM designs require only certain bits of the control registers to be
protected from direct guest access. Write access to CRO/CR4 registers can be reduced by defining the host-
owned and guest-owned bits in them through the CRO/CR4 host/guest masks in the VMCS. CRO/CR4 write
values by the guest are qualified with the mask bits. If they change only guest-owned bits, they are allowed
without causing VM exits. Any write that cause changes to host-owned bits cause VM exits and need to be
handled by the VMM.

® Access Rights based Page Table protection. For VMM that implement access-rights-based page table
protection, the VMCS provides a CR3 target value list that can be consulted by the processor to determine if a
VM exit is required. Loading of CR3 with a value matching an entry in the CR3 target-list are allowed to proceed
without VM exits. The VMM can utilize the CR3 target-list to save page-table hierarchies whose state is
previously verified by the VMM.

® Page-fault handling. Another common cause for a VM exit is due to page-faults induced by guest address
remapping done through virtual memory virtualization. VMX provides page-fault error-code mask and match
fields in the VMCS to filter VM exits due to page-faults based on their cause (reflected in the error-code).

31.13 USE OF THE VMX-PREEMPTION TIMER

The VMX-preemption timer allows VMM software to preempt guest VM execution after a specified amount of time.
Typical VMX-preemption timer usage is to program the initial VM quantum into the timer, save the timer value on
each successive VM-exit (using the VM-exit control “save preemption timer value”) and run the VM until the timer
expires.

In an alternative scenario, the VMM may use another timer (e.g. the TSC) to track the amount of time the VM has
run while still using the VMX-preemption timer for VM preemption. In this scenario the VMM would not save the
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VMX-preemption timer on each VM-exit but instead would reload the VMX-preemption timer with initial VM
quantum less the time the VM has already run. This scenario includes all the VM-entry and VM-exit latencies in the
VM run time.

In both scenarios, on each successive VM-entry the VMX-preemption timer contains a smaller value until the VM
quantum ends. If the VMX-preemption timer is loaded with a value smaller than the VM-entry latency then the VM
will not execute any instructions before the timer expires. The VMM must ensure the initial VM quantum is greater
than the VM-entry latency; otherwise the VM will make no forward progress.
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CHAPTER 32
VIRTUALIZATION OF SYSTEM RESOURCES

32.1 OVERVIEW

When a VMM is hosting multiple guest environments (VMs), it must monitor potential interactions between soft-
ware components using the same system resources. These interactions can require the virtualization of resources.
This chapter describes the virtualization of system resources. These include: debugging facilities, address transla-
tion, physical memory, and microcode update facilities.

32.2 VIRTUALIZATION SUPPORT FOR DEBUGGING FACILITIES

The Intel 64 and 1A-32 debugging facilities (see Chapter 17) provide breakpoint instructions, exception conditions,
register flags, debug registers, control registers and storage buffers for functions related to debugging system and
application software. In VMX operation, a VMM can support debugging system and application software from within
virtual machines if the VMM properly virtualizes debugging facilities. The following list describes features relevant
to virtualizing these facilities.

® The VMM can program the exception-bitmap (see Section 24.6.3) to ensure it gets control on debug functions
(like breakpoint exceptions occurring while executing guest code such as INT3 instructions). Normally, debug
exceptions modify debug registers (such as DR6, DR7, IA32_DEBUGCTL). However, if debug exceptions cause
VM exits, exiting occurs before register modification.

¢ The VMM may utilize the VM-entry event injection facilities described in Section 26.5 to inject debug or
breakpoint exceptions to the guest. See Section 32.2.1 for a more detailed discussion.

® The MOV-DR exiting control bit in the processor-based VM-execution control field (see Section 24.6.2) can be
enabled by the VMM to cause VM exits on explicit guest access of various processor debug registers (for
example, MOV to/from DRO-DR7). These exits would always occur on guest access of DRO-DR7 registers
regardless of the values in CPL, DR4.DE or DR7.GD. Since all guest task switches cause VM exits, a VMM can
control any indirect guest access or modification of debug registers during guest task switches.

® Guest software access to debug-related model-specific registers (such as 1A32_DEBUGCTL MSR) can be
trapped by the VMM through MSR access control features (such as the MSR-bitmaps that are part of processor-
based VM-execution controls). See Section 31.10 for details on MSR virtualization.

® Debug registers such as DR7 and the 1A32_DEBUGCTL MSR may be explicitly modified by the guest (through
MOV-DR or WRMSR instructions) or modified implicitly by the processor as part of generating debug
exceptions. The current values of DR7 and the IA32_DEBUGCTL MSR are saved to guest-state area of VMCS on
every VM exit. Pending debug exceptions are debug exceptions that are recognized by the processor but not yet
delivered. See Section 26.6.3 for details on pending debug exceptions.

® DR7 and the IA32-DEBUGCTL MSR are loaded from values in the guest-state area of the VMCS on every VM
entry. This allows the VMM to properly virtualize debug registers when injecting debug exceptions to guest.
Similarly, the RFLAGS? register is loaded on every VM entry (or pushed to stack if injecting a virtual event) from
guest-state area of the VMCS. Pending debug exceptions are also loaded from guest-state area of VMCS so that
they may be delivered after VM entry is completed.

32.2.1 Debug Exceptions

If a VMM emulates a guest instruction that would encounter a debug trap (single step or data or 1/0 breakpoint), it
should cause that trap to be delivered. The VMM should not inject the debug exception using VM-entry event injec-
tion, but should set the appropriate bits in the pending debug exceptions field. This method will give the trap the

1. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLACS, etc.).
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right priority with respect to other events. (If the exception bitmap was programmed to cause VM exits on debug
exceptions, the debug trap will cause a VM exit. At this point, the trap can be injected during VM entry with the
proper priority.)

There is a valid pending debug exception if the BS bit (see Table 24-4) is set, regardless of the values of RFLAGS.TF
or 1A32_DEBUGCTL.BTF. The values of these bits do not impact the delivery of pending debug exceptions.

VMMs should exercise care when emulating a guest write (attempted using WRMSR) to I1A32_DEBUGCTL to modify
BTF if this is occurring with RFLAGS.TF = 1 and after a MOV SS or POP SS instruction (for example: while debug
exceptions are blocked). Note the following:

® Normally, if WRMSR clears BTF while RFLAGS.TF = 1 and with debug exceptions blocked, a single-step trap will
occur after WRMSR. A VMM emulating such an instruction should set the BS bit (see Table 24-4) in the pending
debug exceptions field before VM entry.

® Normally, if WRMSR sets BTF while RFLAGS.TF = 1 and with debug exceptions blocked, neither a single-step
trap nor a taken-branch trap can occur after WRMSR. A VMM emulating such an instruction should clear the BS
bit (see Table 24-4) in the pending debug exceptions field before VM entry.

32.3 MEMORY VIRTUALIZATION

VMMs must control physical memory to ensure VM isolation and to remap guest physical addresses in host physical
address space for virtualization. Memory virtualization allows the VMM to enforce control of physical memory and
yet support guest OSs’ expectation to manage memory address translation.

32.3.1 Processor Operating Modes & Memory Virtualization

Memory virtualization is required to support guest execution in various processor operating modes. This includes:
protected mode with paging, protected mode with no paging, real-mode and any other transient execution modes.
VMX allows guest operation in protected-mode with paging enabled and in virtual-8086 mode (with paging
enabled) to support guest real-mode execution. Guest execution in transient operating modes (such as in real
mode with one or more segment limits greater than 64-KByte) must be emulated by the VMM.

Since VMX operation requires processor execution in protected mode with paging (through CRO and CR4 fixed bits),
the VMM may utilize paging structures to support memory virtualization. To support guest real-mode execution,
the VMM may establish a simple flat page table for guest linear to host physical address mapping. Memory virtual-
ization algorithms may also need to capture other guest operating conditions (such as guest performing A20M#
address masking) to map the resulting 20-bit effective guest physical addresses.

32.3.2 Guest & Host Physical Address Spaces

Memory virtualization provides guest software with contiguous guest physical address space starting zero and
extending to the maximum address supported by the guest virtual processor’s physical address width. The VMM
utilizes guest physical to host physical address mapping to locate all or portions of the guest physical address space
in host memory. The VMM is responsible for the policies and algorithms for this mapping which may take into
account the host system physical memory map and the virtualized physical memory map exposed to a guest by the
VMM. The memory virtualization algorithm needs to accommodate various guest memory uses (such as: accessing
DRAM, accessing memory-mapped registers of virtual devices or core logic functions and so forth). For example:

® To support guest DRAM access, the VMM needs to map DRAM-backed guest physical addresses to host-DRAM
regions. The VMM also requires the guest to host memory mapping to be at page granularity.

® Virtual devices (1/0 devices or platform core logic) emulated by the VMM may claim specific regions in the guest
physical address space to locate memory-mapped registers. Guest access to these virtual registers may be
configured to cause page-fault induced VM-exits by marking these regions as always not present. The VMM
may handle these VM exits by invoking appropriate virtual device emulation code.
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32.3.3 Virtualizing Virtual Memory by Brute Force

VMX provides the hardware features required to fully virtualize guest virtual memory accesses. VMX allows the
VMM to trap guest accesses to the PAT (Page Attribute Table) MSR and the MTRR (Memory Type Range Registers).
This control allows the VMM to virtualize the specific memory type of a guest memory. The VMM may control
caching by controlling the guest CRO.CRD and CRO.NW bits, as well as by trapping guest execution of the INVD
instruction. The VMM can trap guest CR3 loads and stores, and it may trap guest execution of INVLPG.

Because a VMM must retain control of physical memory, it must also retain control over the processor’s address-
translation mechanisms. Specifically, this means that only the VMM can access CR3 (which contains the base of the
page directory) and can execute INVLPG (the only other instruction that directly manipulates the TLB).

At the same time that the VMM controls address translation, a guest operating system will also expect to perform
normal memory management functions. It will access CR3, execute INVLPG, and modify (what it believes to be)
page directories and page tables. Virtualization of address translation must tolerate and support guest attempts to
control address translation.

A simple-minded way to do this would be to ensure that all guest attempts to access address-translation hardware
trap to the VMM where such operations can be properly emulated. It must ensure that accesses to page directories
and page tables also get trapped. This may be done by protecting these in-memory structures with conventional
page-based protection. The VMM can do this because it can locate the page directory because its base address is
in CR3 and the VMM receives control on any change to CR3; it can locate the page tables because their base
addresses are in the page directory.

Such a straightforward approach is not necessarily desirable. Protection of the in-memory translation structures
may be cumbersome. The VMM may maintain these structures with different values (e.g., different page base
addresses) than guest software. This means that there must be traps on guest attempt to read these structures
and that the VMM must maintain, in auxiliary data structures, the values to return to these reads. There must also
be traps on modifications to these structures even if the translations they effect are never used. All this implies
considerable overhead that should be avoided.

32.3.4 Alternate Approach to Memory Virtualization

Guest software is allowed to freely modify the guest page-table hierarchy without causing traps to the VMM.
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any
potential problems arising from inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB.

This section describes an alternative approach that allows guest software to freely access page directories and
page tables. Traps occur on CR3 accesses and executions of INVLPG. They also occur when necessary to ensure
that guest modifications to the translation structures actually take effect. The software mechanisms to support this
approach are collectively called virtual TLB. This is because they emulate the functionality of the processor’s phys-
ical translation look-aside buffer (TLB).

The basic idea behind the virtual TLB is similar to that behind the processor TLB. While the page-table hierarchy
defines the relationship between physical to linear address, it does not directly control the address translation of
each memory access. Instead, translation is controlled by the TLB, which is occasionally filled by the processor with
translations derived from the page-table hierarchy. With a virtual TLB, the page-table hierarchy established by
guest software (specifically, the guest operating system) does not control translation, either directly or indirectly.
Instead, translation is controlled by the processor (through its TLB) and by the VMM (through a page-table hier-
archy that it maintains).

Specifically, the VMM maintains an alternative page-table hierarchy that effectively caches translations derived
from the hierarchy maintained by guest software. The remainder of this document refers to the former as the
active page-table hierarchy (because it is referenced by CR3 and may be used by the processor to load its TLB) and
the latter as the guest page-table hierarchy (because it is maintained by guest software). The entries in the active
hierarchy may resemble the corresponding entries in the guest hierarchy in some ways and may differ in others.

Guest software is allowed to freely modify the guest page-table hierarchy without causing VM exits to the VMM.
Because of this, the active page-table hierarchy might not always be consistent with the guest hierarchy. Any
potential problems arising from any inconsistencies can be solved using techniques analogous to those used by the
processor and its TLB. Note the following:
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Suppose the guest page-table hierarchy allows more access than active hierarchy (for example: there is a
translation for a linear address in the guest hierarchy but not in the active hierarchy); this is analogous to a
situation in which the TLB allows less access than the page-table hierarchy. If an access occurs that would be
allowed by the guest hierarchy but not the active one, a page fault occurs; this is analogous to a TLB miss. The
VMM gains control (as it handles all page faults) and can update the active page-table hierarchy appropriately;
this corresponds to a TLB fill.

Suppose the guest page-table hierarchy allows less access than the active hierarchy; this is analogous to a
situation in which the TLB allows more access than the page-table hierarchy. This situation can occur only if the
guest operating system has modified a page-table entry to reduce access (for example: by marking it not-
present). Because the older, more permissive translation may have been cached in the TLB, the processor is
architecturally permitted to use the older translation and allow more access. Thus, the VMM may (through the
active page-table hierarchy) also allow greater access. For the new, less permissive translation to take effect,
guest software should flush any older translations from the TLB either by executing INVLPG or by loading CR3.
Because both these operations will cause a trap to the VMM, the VMM will gain control and can remove from the
active page-table hierarchy the translations indicated by guest software (the translation of a specific linear
address for INVLPG or all translations for a load of CR3).

As noted previously, the processor reads the page-table hierarchy to cache translations in the TLB. It also writes to
the hierarchy to main the accessed (A) and dirty (D) bits in the PDEs and PTEs. The virtual TLB emulates this
behavior as follows:

When a page is accessed by guest software, the A bit in the corresponding PTE (or PDE for a 4-MByte page) in
the active page-table hierarchy will be set by the processor (the same is true for PDEs when active page tables
are accessed by the processor). For guest software to operate properly, the VMM should update the A bit in the
guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE) marked not-present until it has
set the A bit in the guest entry.

When a page is written by guest software, the D bit in the corresponding PTE (or PDE for a 4-MByte page) in
the active page-table hierarchy will be set by the processor. For guest software to operate properly, the VMM
should update the D bit in the guest entry at this time. It can do this reliably if it keeps the active PTE (or PDE)
marked read-only until it has set the D bit in the guest entry. This solution is valid for guest software running at
privilege level 3; support for more privileged guest software is described in Section 32.3.5.

32.3.5 Details of Virtual TLB Operation

This section describes in more detail how a VMM could support a virtual TLB. It explains how an active page-table
hierarchy is initialized and how it is maintained in response to page faults, uses of INVLPG, and accesses to CR3.
The mechanisms described here are the minimum necessary. They may not result in the best performance.
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Figure 32-1. Virtual TLB Scheme

As noted above, the VMM maintains an active page-table hierarchy for each virtual machine that it supports. It also
maintains, for each machine, values that the machine expects for control registers CRO, CR2, CR3, and CR4 (they
control address translation). These values are called the guest control registers.

In general, the VMM selects the physical-address space that is allocated to guest software. The term guest address
refers to an address installed by guest software in the guest CR3, in a guest PDE (as a page table base address or
a page base address), or in a guest PTE (as a page base address). While guest software considers these to be
specific physical addresses, the VMM may map them differently.

32.3.5.1 Initialization of Virtual TLB

To enable the Virtual TLB scheme, the VMCS must be set up to trigger VM exits on:

® All writes to CR3 (the CR3-target count should be 0) or the paging-mode bits in CRO and CR4 (using the CRO
and CR4 guest/host masks)

® Page-fault (#PF) exceptions
® Execution of INVLPG

When guest software first enables paging, the VMM creates an aligned 4-KByte active page directory that is invalid
(all entries marked not-present). This invalid directory is analogous to an empty TLB.

32.3.5.2 Response to Page Faults

Page faults can occur for a variety of reasons. In some cases, the page fault alerts the VMM to an inconsistency
between the active and guest page-table hierarchy. In such cases, the VMM can update the former and re-execute
the faulting instruction. In other cases, the hierarchies are already consistent and the fault should be handled by
the guest operating system. The VMM can detect this and use an established mechanism for raising a page fault to
guest software.

The VMM can handle a page fault by following these steps (The steps below assume the guest is operating in a
paging mode without PAE. Analogous steps to handle address translation using PAE or four-level paging mecha-
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nisms can be derived by VMM developers according to the paging behavior defined in Chapter 3 of the Intel® 64
and 1A-32 Architectures Software Developer’s Manual, Volume 3A):

1.

7.

First consult the active PDE, which can be located using the upper 10 bits of the faulting address and the
current value of CR3. The active PDE is the source of the fault if it is marked not present or if its R/W bit and
U/S bits are inconsistent with the attempted guest access (the guest privilege level and the values of CRO.WP
and CR4.SMEP should also be taken into account).

If the active PDE is the source of the fault, consult the corresponding guest PDE using the same 10 bits from the
faulting address and the physical address that corresponds to the guest address in the guest CR3. If the guest
PDE would cause a page fault (for example: it is marked not present), then raise a page fault to the guest
operating system.

The following steps assume that the guest PDE would not have caused a page fault.

If the active PDE is the source of the fault and the guest PDE contains, as page-table base address (if PS = 0)
or page base address (PS = 1), a guest address that the VMM has chosen not to support; then raise a machine
check (or some other abort) to the guest operating system.

The following steps assume that the guest address in the guest PDE is supported for the virtual machine.
If the active PDE is marked not-present, then set the active PDE to correspond to guest PDE as follows:

a. If the active PDE contains a page-table base address (if PS = 0), then allocate an aligned 4-KByte active
page table marked completely invalid and set the page-table base address in the active PDE to be the
physical address of the newly allocated page table.

b. If the active PDE contains a page base address (if PS = 1), then set the page base address in the active PDE
to be the physical page base address that corresponds to the guest address in the guest PDE.

Set the P, U/S, and PS bits in the active PDE to be identical to those in the guest PDE.
Set the PWT, PCD, and G bits according to the policy of the VMM.
Set A = 1 in the guest PDE.

If D = 1 in the guest PDE or PS = 0 (meaning that this PDE refers to a page table), then set the R/W bit in
the active PDE as in the guest PDE.

- o a o

g. If D = 0in the guest PDE, PS = 1 (this is a 4-MByte page), and the attempted access is a write; then set
R/W in the active PDE as in the guest PDE and set D = 1 in the guest PDE.

h. If D = 0 in the guest PDE, PS = 1, and the attempted access is not a write; then set R/W = 0 in the active
PDE.

i. After modifying the active PDE, re-execute the faulting instruction.
The remaining steps assume that the active PDE is already marked present.

If the active PDE is the source of the fault, the active PDE refers to a 4-MByte page (PS = 1), the attempted
access is a write; D = 0 in the guest PDE, and the active PDE has caused a fault solely because it has R/W = 0;
then set R/W in the active PDE as in the guest PDE; set D = 1 in the guest PDE, and re-execute the faulting
instruction.

If the active PDE is the source of the fault and none of the above cases apply, then raise a page fault of the
guest operating system.

The remaining steps assume that the source of the original page fault is not the active PDE.

NOTE

It is possible that the active PDE might be causing a fault even though the guest PDE would not.
However, this can happen only if the guest operating system increased access in the guest PDE and
did not take action to ensure that older translations were flushed from the TLB. Such translations
might have caused a page fault if the guest software were running on bare hardware.

If the active PDE refers to a 4-MByte page (PS = 1) but is not the source of the fault, then the fault resulted
from an inconsistency between the active page-table hierarchy and the processor’s TLB. Since the transition to
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the VMM caused an address-space change and flushed the processor’s TLB, the VMM can simply re-execute the
faulting instruction.

The remaining steps assume that PS = 0 in the active and guest PDEs.

Consult the active PTE, which can be located using the next 10 bits of the faulting address (bits 21-12) and the
physical page-table base address in the active PDE. The active PTE is the source of the fault if it is marked not-
present or if its R/W bit and U/S bits are inconsistent with the attempted guest access (the guest privilege level
and the values of CRO.WP and CR4.SMEP should also be taken into account).

If the active PTE is not the source of the fault, then the fault has resulted from an inconsistency between the
active page-table hierarchy and the processor’s TLB. Since the transition to the VMM caused an address-space
change and flushed the processor’s TLB, the VMM simply re-executes the faulting instruction.

The remaining steps assume that the active PTE is the source of the fault.

Consult the corresponding guest PTE using the same 10 bits from the faulting address and the physical address
that correspond to the guest page-table base address in the guest PDE. If the guest PTE would cause a page
fault (it is marked not-present), the raise a page fault to the guest operating system.

The following steps assume that the guest PTE would not have caused a page fault.

If the guest PTE contains, as page base address, a physical address that is not valid for the virtual machine
being supported; then raise a machine check (or some other abort) to the guest operating system.

The following steps assume that the address in the guest PTE is valid for the virtual machine.
If the active PTE is marked not-present, then set the active PTE to correspond to guest PTE:

a. Set the page base address in the active PTE to be the physical address that corresponds to the guest page
base address in the guest PTE.

Set the P, U/S, and PS bits in the active PTE to be identical to those in the guest PTE.
Set the PWT, PCD, and G bits according to the policy of the VMM.

Set A = 1 in the guest PTE.

If D = 1 in the guest PTE, then set the R/W bit in the active PTE as in the guest PTE.

=0 a0 0T

If D = 0 in the guest PTE and the attempted access is a write, then set R/W in the active PTE as in the guest
PTE and set D = 1 in the guest PTE.

g. If D = 0in the guest PTE and the attempted access is not a write, then set R/W = 0 in the active PTE.
h. After modifying the active PTE, re-execute the faulting instruction.
The remaining steps assume that the active PTE is already marked present.

If the attempted access is a write, D = 0 (not dirty) in the guest PTE and the active PTE has caused a fault
solely because it has R/W = 0 (read-only); then set R/W in the active PTE as in the guest PTE, set D = 1 in the
guest PTE and re-execute the faulting instruction.

If none of the above cases apply, then raise a page fault of the guest operating system.

32.3.5.3 Response to Uses of INVLPG

Operating-systems can use INVLPG to flush entries from the TLB. This instruction takes a linear address as an
operand and software expects any cached translations for the address to be flushed. A VMM should set the
processor-based VM-execution control “INVLPG exiting” to 1 so that any attempts by a privileged guest to execute
INVLPG will trap to the VMM. The VMM can then modify the active page-table hierarchy to emulate the desired
effect of the INVLPG.

The following steps are performed. Note that these steps are performed only if the guest invocation of INVLPG
would not fault and only if the guest software is running at privilege level O:

1.

Locate the relevant active PDE using the upper 10 bits of the operand address and the current value of CR3. If
the PDE refers to a 4-MByte page (PS = 1), then set P = 0 in the PDE.

If the PDE is marked present and refers to a page table (PS = 0), locate the relevant active PTE using the next
10 bits of the operand address (bits 21-12) and the page-table base address in the PDE. Set P = 0 in the PTE.
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Examine all PTEs in the page table; if they are now all marked not-present, de-allocate the page table and set
P = 0 in the PDE (this step may be optional).

32.3.5.4 Response to CR3 Writes

A guest operating system may attempt to write to CR3. Any write to CR3 implies a TLB flush and a possible page
table change. The following steps are performed:

1. The VMM notes the new CR3 value (used later to walk guest page tables) and emulates the write.
2. The VMM allocates a new PD page, with all invalid entries.
3. The VMM sets actual processor CR3 register to point to the new PD page.

The VMM may, at this point, speculatively fill in VTLB mappings for performance reasons.

324 MICROCODE UPDATE FACILITY

The microcode code update facility may be invoked at various points during the operation of a platform. Typically,
the BIOS invokes the facility on all processors during the BIOS boot process. This is sufficient to boot the BIOS and
operating system. As a microcode update more current than the system BIOS may be available, system software
should provide another mechanism for invoking the microcode update facility. The implications of the microcode
update mechanism on the design of the VMM are described in this section.

NOTE

Microcode updates must not be performed during VMX non-root operation. Updates performed in
VMX non-root operation may result in unpredictable system behavior.

32.4.1 Early Load of Microcode Updates

The microcode update facility may be invoked early in the VMM or guest OS boot process. Loading the microcode
update early provides the opportunity to correct errata affecting the boot process but the technique generally
requires a reboot of the software.

A microcode update may be loaded from the OS or VMM image loader. Typically, such image loaders do not run on
every logical processor, so this method effects only one logical processor. Later in the VMM or OS boot process,
after bringing all application processors on-line, the VMM or OS needs to invoke the microcode update facility for all
application processors.

Depending on the order of the VMM and the guest OS boot, the microcode update facility may be invoked by the
VMM or the guest OS. For example, if the guest OS boots first and then loads the VMM, the guest OS may invoke
the microcode update facility on all the logical processors. If a VMM boots before its guests, then the VMM may
invoke the microcode update facility during its boot process. In both cases, the VMM or OS should invoke the micro-
code update facilities soon after performing the multiprocessor startup.

In the early load scenario, microcode updates may be contained in the VMM or OS image or, the VMM or OS may
manage a separate database or file of microcode updates. Maintaining a separate microcode update image data-
base has the advantage of reducing the number of required VMM or OS releases as a result of microcode update
releases.

32.4.2 Late Load of Microcode Updates

A microcode update may be loaded during normal system operation. This allows system software to activate the
microcode update at anytime without requiring a system reboot. This scenario does not allow the microcode update
to correct errata which affect the processor’s boot process but does allow high-availability systems to activate
microcode updates without interrupting the availability of the system. In this late load scenario, either the VMM or
a designated guest may load the microcode update. If the guest is loading the microcode update, the VMM must
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make sure that the entire guest memory buffer (which contains the microcode update image) will not cause a page
fault when accessed.

If the VMM loads the microcode update, then the VMM must have access to the current set of microcode updates.
These updates could be part of the VMM image or could be contained in a separate microcode update image data-
base (for example: a database file on disk or in memory). Again, maintaining a separate microcode update image
database has the advantage of reducing the number of required VMM or OS releases as a result of microcode
update releases.

The VMM may wish to prevent a guest from loading a microcode update or may wish to support the microcode
update requested by a guest using emulation (without actually loading the microcode update). To prevent micro-
code update loading, the VMM may return a microcode update signature value greater than the value of
1IA32_BIOS_SIGN_ID MSR. A well behaved guest will not attempt to load an older microcode update. The VMM may
also drop the guest attempts to write to IA32_BIOS_UPDT_TRIG MSR, preventing the guest from loading any
microcode updates. Later, when the guest queries 1A32_BIOS_SIGN_ID MSR, the VMM could emulate the micro-
code update signature that the guest expects.

In general, loading a microcode update later will limit guest software’s visibility of features that may be enhanced
by a microcode update.
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CHAPTER 33
HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR

33.1 OVERVIEW

This chapter describes what a VMM must consider when handling exceptions, interrupts, error conditions, and tran-
sitions between activity states.

33.2 INTERRUPT HANDLING IN VMX OPERATION

The following bullets summarize VMX support for handling interrupts:

® Control of processor exceptions. The VMM can get control on specific guest exceptions through the
exception-bitmap in the guest controlling VMCS. The exception bitmap is a 32-bit field that allows the VMM to
specify processor behavior on specific exceptions (including traps, faults, and aborts). Setting a specific bit in
the exception bitmap implies VM exits will be generated when the corresponding exception occurs. Any
exceptions that are programmed not to cause VM exits are delivered directly to the guest through the guest
IDT. The exception bitmap also controls execution of relevant instructions such as BOUND, INTO and INT3. VM
exits on page-faults are treated in such a way the page-fault error code is qualified through the page-fault-
error-code mask and match fields in the VMCS.

® Control over triple faults. If a fault occurs while attempting to call a double-fault handler in the guest and
that fault is not configured to cause a VM exit in the exception bitmap, the resulting triple fault causes a
VM exit.

® Control of external interrupts. VMX allows both host and guest control of external interrupts through the
“external-interrupt exiting” VM execution control. If the control is O, external-interrupts do not cause VM exits
and the interrupt delivery is masked by the guest programmed RFLAGS.IF value.® If the control is 1, external-
interrupts causes VM exits and are not masked by RFLAGS.IF. The VMM can identify VM exits due to external
interrupts by checking the exit reason for an “external interrupt” (value = 1).

® Control of other events. There is a pin-based VM-execution control that controls system behavior (exit or no-
exit) for NMI events. Most VMM usages will need handling of NMI external events in the VMM and hence will
specify host control of these events.

Some processors also support a pin-based VM-execution control called “virtual NMIs.” When this control is set,
NMIs cause VM exits, but the processor tracks guest readiness for virtual NMIs. This control interacts with the
“NMI-window exiting” VM-execution control (see below).

INIT and SIPI events always cause VM exits.

® Acknowledge interrupt on exit. The “acknowledge interrupt on exit” VM-exit control in the controlling VMCS
controls processor behavior for external interrupt acknowledgement. If the control is 1, the processor acknowl-
edges the interrupt controller to acquire the interrupt vector upon VM exit, and stores the vector in the VM-exit
interruption-information field. If the control is 0, the external interrupt is not acknowledged during VM exit.
Since RFLAGS.IF is automatically cleared on VM exits due to external interrupts, VMM re-enabling of interrupts
(setting RFLAGS.IF = 1) initiates the external interrupt acknowledgement and vectoring of the external
interrupt through the monitor/host IDT.

® Event-masking Support. VMX captures the masking conditions of specific events while in VMX non-root
operation through the interruptibility-state field in the guest-state area of the VMCS.

This feature allows proper virtualization of various interrupt blocking states, such as: (a) blocking of external
interrupts for the instruction following STI; (b) blocking of interrupts for the instruction following a MOV-SS or
POP-SS instruction; (c¢) SMI blocking of subsequent SMis until the next execution of RSM; and (d) NMI/SMI
blocking of NMIs until the next execution of IRET or RSM.

—_

. This chapter uses the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that support VMX oper-
ation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation refers to the 32-bit
forms of those registers (EAX, EIP, ESP, EFLACS, etc.).
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INIT and SIPI events are treated specially. INIT assertions are always blocked in VMX root operation and while
in SMM, and unblocked otherwise. SIPI events are always blocked in VMX root operation.

The interruptibility state is loaded from the VMCS guest-state area on every VM entry and saved into the VMCS
on every VM exit.

® Eventinjection. VMX operation allows injecting interruptions to a guest virtual machine through the use of
VM-entry interrupt-information field in VMCS. Injectable interruptions include external interrupts, NMI,
processor exceptions, software generated interrupts, and software traps. If the interrupt-information field
indicates a valid interrupt, exception or trap event upon the next VM entry; the processor will use the
information in the field to vector a virtual interruption through the guest IDT after all guest state and MSRs are
loaded. Delivery through the guest IDT emulates vectoring in non-VMX operation by doing the normal privilege
checks and pushing appropriate entries to the guest stack (entries may include RFLAGS, EIP and exception
error code). A VMM with host control of NMI and external interrupts can use the event-injection facility to
forward virtual interruptions to various guest virtual machines.

® Interrupt-window exiting. When set to 1, the “interrupt-window exiting” VM-execution control (Section
24.6.2) causes VM exits when guest RFLAGS.IF is 1 and no other conditions block external interrupts. A VM exit
occurs at the beginning of any instruction at which RFLAGS.IF = 1 and on which the interruptibility state of the
guest would allow delivery of an interrupt. For example: when the guest executes an STI instruction,
RFLAGS = 1, and if at the completion of next instruction the interruptibility state masking due to STI is
removed; a VM exit occurs if the “interrupt-window exiting” VM-execution control is 1. This feature allows a
VMM to queue a virtual interrupt to the guest when the guest is not in an interruptible state. The VMM can set
the “interrupt-window exiting” VM-execution control for the guest and depend on a VM exit to know when the
guest becomes interruptible (and, therefore, when it can inject a virtual interrupt). The VMM can detect such
VM exits by checking for the basic exit reason “interrupt-window” (value = 7). If this feature is not used, the
VMM will need to poll and check the interruptibility state of the guest to deliver virtual interrupts.

® NMI-window exiting. If the “virtual NMIs” VM-execution is set, the processor tracks virtual-NMI blocking.
The “NMI-window exiting” VM-execution control (Section 24.6.2) causes VM exits when there is no virtual-NMlI
blocking. For example, after execution of the IRET instruction, a VM exit occurs if the “NMI-window exiting” VM-
execution control is 1. This feature allows a VMM to queue a virtual NMI to a guest when the guest is not ready
to receive NMIs. The VMM can set the “NMI-window exiting” VM-execution control for the guest and depend on
a VM exit to know when the guest becomes ready for NMIs (and, therefore, when it can inject a virtual NMI).
The VMM can detect such VM exits by checking for the basic exit reason “NMI window” (value = 8). If this
feature is not used, the VMM will need to poll and check the interruptibility state of the guest to deliver virtual
NMls.

® VM-exit information. The VM-exit information fields provide details on VM exits due to exceptions and
interrupts. This information is provided through the exit-qualification, VM-exit-interruption-information,
instruction-length and interruption-error-code fields. Also, for VM exits that occur in the course of vectoring
through the guest IDT, information about the event that was being vectored through the guest IDT is provided
in the IDT-vectoring-information and IDT-vectoring-error-code fields. These information fields allow the VMM to
identify the exception cause and to handle it properly.

33.3 EXTERNAL INTERRUPT VIRTUALIZATION

VMX operation allows both host and guest control of external interrupts. While guest control of external interrupts
might be suitable for partitioned usages (different CPU cores/threads and 1/0 devices partitioned to independent
virtual machines), most VMMs built upon VMX are expected to utilize host control of external interrupts. The rest of
this section describes a general host-controlled interrupt virtualization architecture for standard PC platforms
through the use of VMX supported features.

With host control of external interrupts, the VMM (or the host OS in a hosted VMM model) manages the physical
interrupt controllers in the platform and the interrupts generated through them. The VMM exposes software-
emulated virtual interrupt controller devices (such as PIC and APIC) to each guest virtual machine instance.

33-2 Vol.3C



HANDLING BOUNDARY CONDITIONS IN A VIRTUAL MACHINE MONITOR

33.3.1 Virtualization of Interrupt Vector Space

The Intel 64 and 1A-32 architectures use 8-bit vectors of which 224 (20H — FFH) are available for external inter-
rupts. Vectors are used to select the appropriate entry in the interrupt descriptor table (IDT). VMX operation allows
each guest to control its own IDT. Host vectors refer to vectors delivered by the platform to the processor during
the interrupt acknowledgement cycle. Guest vectors refer to vectors programmed by a guest to select an entry in
its guest IDT. Depending on the 1/0 resource management models supported by the VMM design, the guest vector
space may or may not overlap with the underlying host vector space.

® Interrupts from virtual devices: Guest vector numbers for virtual interrupts delivered to guests on behalf of
emulated virtual devices have no direct relation to the host vector numbers of interrupts from physical devices
on which they are emulated. A guest-vector assigned for a virtual device by the guest operating environment
is saved by the VMM and utilized when injecting virtual interrupts on behalf of the virtual device.

® Interrupts from assigned physical devices: Hardware support for 1/0 device assignment allows physical 170
devices in the host platform to be assigned (direct-mapped) to VMs. Guest vectors for interrupts from direct-
mapped physical devices take up equivalent space from the host vector space, and require the VMM to perform
host-vector to guest-vector mapping for interrupts.

Figure 33-1 illustrates the functional relationship between host external interrupts and guest virtual external inter-
rupts. Device A is owned by the host and generates external interrupts with host vector X. The host IDT is set up
such that the interrupt service routine (ISR) for device driver A is hooked to host vector X as normal. VMM
emulates (over device A) virtual device C in software which generates virtual interrupts to the VM with guest
expected vector P. Device B is assigned to a VM and generates external interrupts with host vector Y. The host IDT
is programmed to hook the VMM interrupt service routine (ISR) for assigned devices for vector Y, and the VMM
handler injects virtual interrupt with guest vector Q to the VM. The guest operating system programs the guest to
hook appropriate guest driver’s ISR to vectors P and Q.
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Figure 33-1. Host External Interrupts and Guest Virtual Interrupts

33.3.2 Control of Platform Interrupts

To meet the interrupt virtualization requirements, the VMM needs to take ownership of the physical interrupts and
the various interrupt controllers in the platform. VMM control of physical interrupts may be enabled through the
host-control settings of the “external-interrupt exiting” VM-execution control. To take ownership of the platform
interrupt controllers, the VMM needs to expose the virtual interrupt controller devices to the virtual machines and
restrict guest access to the platform interrupt controllers.

Intel 64 and 1A-32 platforms can support three types of external interrupt control mechanisms: Programmable
Interrupt Controllers (PIC), Advanced Programmable Interrupt Controllers (APIC), and Message Signaled Inter-
rupts (MSI). The following sections provide information on the virtualization of each of these mechanisms.

33.3.2.1 PIC Virtualization

Typical PIC-enabled platform implementations support dual 8259 interrupt controllers cascaded as master and
slave controllers. They supporting up to 15 possible interrupt inputs. The 8259 controllers are programmed
through initialization command words (ICWx) and operation command words (OCWx) accessed through specific
1/0 ports. The various interrupt line states are captured in the PIC through interrupt requests, interrupt service
routines and interrupt mask registers.

Guest access to the PIC 1/0 ports can be restricted by activating 1/0 bitmaps in the guest controlling-VMCS (acti-
vate-1/0-bitmap bit in VM-execution control field set to 1) and pointing the 1I/0-bitmap physical addresses to valid
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bitmap regions. Bits corresponding to the PIC 1/0 ports can be cleared to cause a VM exit on guest access to these
ports.

If the VMM is not supporting direct access to any 1/0 ports from a guest, it can set the unconditional-1/0-exiting in
the VM-execution control field instead of activating 1/0 bitmaps. The exit-reason field in VM-exit information allows
identification of VM exits due to 1/0 access and can provide an exit-qualification to identify details about the guest
1/0 operation that caused the VM exit.

The VMM PIC virtualization needs to emulate the platform PIC functionality including interrupt priority, mask,
request and service states, and specific guest programmed modes of PIC operation.

33.3.2.2 XxAPIC Virtualization

Most modern Intel 64 and 1A-32 platforms include support for an APIC. While the standard PIC is intended for use
on uniprocessor systems, APIC can be used in either uniprocessor or multi-processor systems.

APIC based interrupt control consists of two physical components: the interrupt acceptance unit (Local APIC) which
is integrated with the processor, and the interrupt delivery unit (170 APIC) which is part of the 1/0 subsystem. APIC
virtualization involves protecting the platform’s local and 1/0 APICs and emulating them for the guest.

33.3.2.3 Local APIC Virtualization

The local APIC is responsible for the local interrupt sources, interrupt acceptance, dispensing interrupts to the
logical processor, and generating inter-processor interrupts. Software interacts with the local APIC by reading and
writing its memory-mapped registers residing within a 4-KByte uncached memory region with base address stored
in the 1A32_APIC_BASE MSR. Since the local APIC registers are memory-mapped, the VMM can utilize memory
virtualization techniques (such as page-table virtualization) to trap guest accesses to the page frame hosting the
virtual local APIC registers.

Local APIC virtualization in the VMM needs to emulate the various local APIC operations and registers, such as:
APIC identification/format registers, the local vector table (LVT), the interrupt command register (ICR), interrupt
capture registers (TMR, IRR and ISR), task and processor priority registers (TPR, PPR), the EOI register and the
APIC-timer register. Since local APICs are designed to operate with non-specific EOI, local APIC emulation also
needs to emulate broadcast of EOI to the guest’s virtual 1/0 APICs for level triggered virtual interrupts.

A local APIC allows interrupt masking at two levels: (1) mask bit in the local vector table entry for local interrupts
and (2) raising processor priority through the TPR registers for masking lower priority external interrupts. The VMM
needs to comprehend these virtual local APIC mask settings as programmed by the guest in addition to the guest
virtual processor interruptibility state (when injecting APIC routed external virtual interrupts to a guest VM).

VMX provides several features which help the VMM to virtualize the local APIC. These features allow many of guest
TPR accesses (using CR8 only) to occur without VM exits to the VMM:

® The VMCS contains a “virtual-APIC address” field. This 64-bit field is the physical address of the 4-KByte virtual
APIC page (4-KByte aligned). The virtual-APIC page contains a TPR shadow, which is accessed by the MOV CR8
instruction. The TPR shadow comprises bits 7:4 in byte 80H of the virtual-APIC page.

® The TPR threshold: bits 3:0 of this 32-bit field determine the threshold below which the TPR shadow cannot fall.
A VM exit will occur after an execution of MOV CR8 that reduces the TPR shadow below this value.

® The processor-based VM-execution controls field contains a “use TPR shadow” bit and a “CR8-store exiting” bit.
If the “use TPR shadow” VM-execution control is 1 and the “CR8-store exiting” VM-execution control is 0, then
a MOV from CRS8 reads from the TPR shadow. If the “CR8-store exiting” VM-execution control is 1, then MOV
from CR8 causes a VM exit; the “use TPR shadow” VM-execution control is ignored in this case.

® The processor-based VM-execution controls field contains a “CR8-load exiting” bit. If the “use TPR shadow”
VM-execution control is set and the “CR8-load exiting” VM-execution control is clear, then MOV to CR8 writes to
the “TPR shadow”. A VM exit will occur after this write if the value written is below the TPR threshold. If the
“CR8-load exiting” VM-execution control is set, then MOV to CR8 causes a VM exit; the “use TPR shadow” VM-
execution control is ignored in this case.
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33.3.2.4 1/0 APIC Virtualization

The 1/0 APIC registers are typically mapped to a 1 MByte region where each 1/0 APIC is allocated a 4K address
window within this range. The VMM may utilize physical memory virtualization to trap guest accesses to the virtual
1/0 APIC memory-mapped registers. The 1/0 APIC virtualization needs to emulate the various 1/0 APIC operations
and registers such as identification/version registers, indirect-1/0-access registers, EOI register, and the 1/0 redi-
rection table. 1/0 APIC virtualization also need to emulate various redirection table entry settings such as delivery
mode, destination mode, delivery status, polarity, masking, and trigger mode programmed by the guest and track
remote-IRR state on guest EOI writes to various virtual local APICs.

33.3.2.5 Virtualization of Message Signaled Interrupts

The PCI Local Bus Specification (Rev. 2.2) introduces the concept of message signaled interrupts (MSI). MSI enable
PCI devices to request service by writing a system-specified message to a system specified address. The transac-
tion address specifies the message destination while the transaction data specifies the interrupt vector, trigger
mode and delivery mode. System software is expected to configure the message data and address during MSI
device configuration, allocating one or more no-shared messages to MSI capable devices. Chapter 10, “Advanced
Programmable Interrupt Controller (APIC),” specifies the MSI message address and data register formats to be
followed on Intel 64 and 1A-32 platforms. While MSI is optional for conventional PCI devices, it is the preferred
interrupt mechanism for PCI-Express devices.

Since the MSI address and data are configured through PCI configuration space, to control these physical interrupts
the VMM needs to assume ownership of PCI configuration space. This allows the VMM to capture the guest config-
uration of message address and data for MSl-capable virtual and assigned guest devices. PCI configuration trans-
actions on PC-compatible systems are generated by software through two different methods:

1. The standard CONFIG_ADDRESS/CONFIG_DATA register mechanism (CFCH/CF8H ports) as defined in the PCI
Local Bus Specification.

2. The enhanced flat memory-mapped (MEMCFG) configuration mechanism as defined in the PCI-Express Base
Specification (Rev. 1.0a.).

The CFCH/CF8H configuration access from guests can be trapped by the VMM through use of 1/0-bitmap VM-
execution controls. The memory-mapped PCIl-Express MEMCFG guest configuration accesses can be trapped by
VMM through physical memory virtualization.

33.3.3 Examples of Handling of External Interrupts

The following sections illustrate interrupt processing in a VMM (when used to support the external interrupt virtu-
alization requirements).

33.3.3.1 Guest Setup

The VMM sets up the guest to cause a VM exit to the VMM on external interrupts. This is done by setting the
“external-interrupt exiting” VM-execution control in the guest controlling-VMCS.

33.3.3.2 Processor Treatment of External Interrupt

Interrupts are automatically masked by hardware in the processor on VM exit by clearing RFLAGS.IF. The exit-
reason field in VMCS is set to 1 to indicate an external interrupt as the exit reason.

If the VMM is utilizing the acknowledge-on-exit feature (by setting the “acknowledge interrupt on exit” VM-exit
control), the processor acknowledges the interrupt, retrieves the host vector, and saves the interrupt in the VM-
exit-interruption-information field (in the VM-exit information region of the VMCS) before transitioning control to
the VMM.
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33.3.3.3 Processing of External Interrupts by VMM

Upon VM exit, the VMM can determine the exit cause of an external interrupt by checking the exit-reason field
(value = 1) in VMCS. If the acknowledge-interrupt-on-exit control (see Section 24.7.1) is enabled, the VMM can
use the saved host vector (in the exit-interruption-information field) to switch to the appropriate interrupt handler.
If the “acknowledge interrupt on exit” VM-exit control is O, the VMM may re-enable interrupts (by setting
RFLAGS.IF) to allow vectoring of external interrupts through the monitor/host IDT.

The following steps may need to be performed by the VMM to process an external interrupt:

® Host Owned 1/0 Devices: For host-owned 1/0 devices, the interrupting device is owned by the VMM (or
hosting OS in a hosted VMM). In this model, the interrupt service routine in the VMM/host driver is invoked and,
upon ISR completion, the appropriate write sequences (TPR updates, EOI etc.) to respective interrupt
controllers are performed as normal. If the work completion indicated by the driver implies virtual device
activity, the VMM runs the virtual device emulation. Depending on the device class, physical device activity
could imply activity by multiple virtual devices mapped over the device. For each affected virtual device, the
VMM injects a virtual external interrupt event to respective guest virtual machines. The guest driver interacts
with the emulated virtual device to process the virtual interrupt. The interrupt controller emulation in the VMM
supports various guest accesses to the VMM'’s virtual interrupt controller.

® Guest Assigned 1/0 Devices: For assigned 1/0 devices, either the VMM uses a software proxy or it can
directly map the physical device to the assigned VM. In both cases, servicing of the interrupt condition on the
physical device is initiated by the driver running inside the guest VM. With host control of external interrupts,
interrupts from assigned physical devices cause VM exits to the VMM and vectoring through the host IDT to the
registered VMM interrupt handler. To unblock delivery of other low priority platform interrupts, the VMM
interrupt handler must mask the interrupt source (for level triggered interrupts) and issue the appropriate EOI
write sequences.

Once the physical interrupt source is masked and the platform EOI generated, the VMM can map the host vector to
its corresponding guest vector to inject the virtual interrupt into the assigned VM. The guest software does EOI
write sequences to its virtual interrupt controller after completing interrupt processing. For level triggered inter-
rupts, these EOI writes to the virtual interrupt controller may be trapped by the VMM which may in turn unmask
the previously masked interrupt source.

33.3.3.4 Generation of Virtual Interrupt Events by VMM

The following provides some of the general steps that need to be taken by VMM designs when generating virtual
interrupts:

1. Check virtual processor interruptibility state. The virtual processor interruptibility state is reflected in the guest
RFLAGS.IF flag and the processor interruptibility-state saved in the guest state area of the controlling-VMCS. If
RFLAGS.IF is set and the interruptibility state indicates readiness to take external interrupts (STI-masking and
MOV-SS/POP-SS-masking bits are clear), the guest virtual processor is ready to take external interrupts. If the
VMM design supports non-active guest sleep states, the VMM needs to make sure the current guest sleep state
allows injection of external interrupt events.

2. If the guest virtual processor state is currently not interruptible, a VMM may utilize the “interrupt-window
exiting” VM-execution to notify the VMM (through a VM exit) when the virtual processor state changes to inter-
ruptible state.

3. Check the virtual interrupt controller state. If the guest VM exposes a virtual local APIC, the current value of its
processor priority register specifies if guest software allows dispensing an external virtual interrupt with a
specific priority to the virtual processor. If the virtual interrupt is routed through the local vector table (LVT)
entry of the local APIC, the mask bits in the corresponding LVT entry specifies if the interrupt is currently
masked. Similarly, the virtual interrupt controller’s current mask (I0-APIC or PIC) and priority settings reflect
guest state to accept specific external interrupts. The VMM needs to check both the virtual processor and
interrupt controller states to verify its guest interruptibility state. If the guest is currently interruptible, the
VMM can inject the virtual interrupt. If the current guest state does not allow injecting a virtual interrupt, the
interrupt needs to be queued by the VMM until it can be delivered.

4. Prioritize the use of VM-entry event injection. A VMM may use VM-entry event injection to deliver various
virtual events (such as external interrupts, exceptions, traps, and so forth). VMM designs may prioritize use of
virtual-interrupt injection between these event types. Since each VM entry allows injection of one event,
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depending on the VMM event priority policies, the VMM may need to queue the external virtual interrupt if a
higher priority event is to be delivered on the next VM entry. Since the VMM has masked this particular interrupt
source (if it was level triggered) and done EOI to the platform interrupt controller, other platform interrupts can
be serviced while this virtual interrupt event is queued for later delivery to the VM.

5. Update the virtual interrupt controller state. When the above checks have passed, before generating the virtual
interrupt to the guest, the VMM updates the virtual interrupt controller state (Local-APIC, 10-APIC and/or PIC)
to reflect assertion of the virtual interrupt. This involves updating the various interrupt capture registers, and
priority registers as done by the respective hardware interrupt controllers. Updating the virtual interrupt
controller state is required for proper interrupt event processing by guest software.

6. Inject the virtual interrupt on VM entry. To inject an external virtual interrupt to a guest VM, the VMM sets up
the VM-entry interruption-information field in the guest controlling-VMCS before entry to guest using
VMRESUME. Upon VM entry, the processor will use this vector to access the gate in guest’s IDT and the value of
RFLAGS and EIP in guest-state area of controlling-VMCS is pushed on the guest stack. If the guest RFLAGS.IF
is clear, the STI-masking bit is set, or the MOV- SS/POP-SS-masking bit is set, the VM entry will fail and the
processor will load state from the host-state area of the working VMCS as if a VM exit had occurred (see Section
26.7).

33.4 ERROR HANDLING BY VMM

Error conditions may occur during VM entries and VM exits and a few other situations. This section describes how
VMM should handle these error conditions, including triple faults and machine-check exceptions.

33.4.1 VM-Exit Failures

All VM exits load processor state from the host-state area of the VMCS that was the controlling VMCS before the VM
exit. This state is checked for consistency while being loaded. Because the host-state is checked on VM entry, these
checks will generally succeed. Failure is possible only if host software is incorrect or if VMCS data in the VMCS
region in memory has been written by guest software (or by 1/0 DMA) since the last VM entry. VM exits may fail for
the following reasons:

® There was a failure on storing guest MSRs.
® There was failure in loading a PDPTR.

® The controlling VMCS has been corrupted (through writes to the corresponding VMCS region) in such a way that
the implementation cannot complete the VM exit.

® There was a failure on loading host MSRs.
® A machine-check event occurred.

If one of these problems occurs on a VM exit, a VMX abort results.

33.4.2 Machine-Check Considerations

The following sequence determine how machine-check events are handled during VMXON, VMXOFF, VM entries,
and VM exits:

®  VMXOFF and VMXON:

If a machine-check event occurs during VMXOFF or VMXON and CR4.MCE = 1, a machine-check exception
(#MC) is generated. If CR4.MCE = 0, the processor goes to shutdown state.

® VM entry:
If a machine-check event occurs during VM entry, one of the following three treatments must occur:

a. Normal delivery before VM entry. If CR4.MCE = 1 before VM entry, delivery of a machine-check exception
(#MC) through the host IDT occurs. If CR4.MCE = 0, the processor goes to shutdown state.
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b. Normal delivery after VM entry. If CR4.MCE = 1 after VM entry, delivery of a machine-check exception
(#MC) through the guest IDT occurs (alternatively, this exception may cause a VM exit). If CR4.MCE = 0,
the processor goes to shutdown state.

c. Load state from the host-state area of the working VMCS as if a VM exit had occurred (see Section 26.7).
The basic exit reason will be “VM-entry failure due to machine-check event.”

If the machine-check event occurs after any guest state has been loaded, option a above will not be used; it
may be used if the machine-check event occurs while checking host state and VMX controls (or while reporting
a failure due to such checks). An implementation may use option b only if all guest state has been loaded

properly.
® VM exit:
If a machine-check event occurs during VM exit, one of the following three treatments must occur:

a. Normal delivery before VM exit. If CR4.MCE = 1 before the VM exit, delivery of a machine-check exception
(#MC) through the guest IDT (alternatively, this may cause a VM exit). If CR4.MCE = 0, the processor goes
to shutdown state.

b. Normal delivery after VM exit. If CR4.MCE = 1 after the VM exit, delivery of a machine-check exception
(#MC) through the host IDT. If CR4.MCE = 0, the processor goes to shutdown state.

c. Fail the VM exit. If the VM exit is to VMX root operation, a VMX abort will result; it will block events as done
normally in VMX abort. The VMX abort indicator will show that a machine-check event induced the abort
operation.

If a machine-check event is induced by an action in VMX non-root operation before any determination is made
that the inducing action may cause a VM exit, that machine-check event should be considered as happening
during guest execution in VMX non-root operation. This is the case even if the part of the action that caused the
machine-check event was VMX-specific (for example, the processor’s consulting an 1/0 bitmap). If a machine-
check exception occurs and if bit 12H of the exception bitmap is cleared to 0, the exception is delivered to the
guest through gate 12H of its IDT; if the bit is set to 1, the machine-check exception causes a VM exit.

NOTE

The state saved in the guest-state area on VM exits due to machine-check exceptions should be
considered suspect. A VMM should consult the RIPV and EIPV bits in the 1A32_MCG_STATUS MSR
before resuming a guest that caused a VM exit due to a machine-check exception.

33.4.3 MCA Error Handling Guidelines for VMM

Section 33.4.2 covers general requirements for VMMs to handle machine-check exceptions, when normal operation
of the guest machine and/or the VMM is no longer possible. enhancements of machine-check architecture in newer
processors may support software recovery of uncorrected MC errors (UCR) signaled through either machine-check
exceptions or corrected machine-check interrupt (CMCI). Section 15.5 and Section 15.6 describes details of these
more recent enhancements of machine-check architecture.

In general, Virtual Machine Monitor (VMM) error handling should follow the recommendations for OS error handling
described in Section 15.3, Section 15.6, Section 15.9, and Section 15.10. This section describes additional guide-
lines for hosted and native hypervisor-based VMM implementations to support corrected MC errors and recoverable
uncorrected MC errors.

Because a hosted VMM provides virtualization services in the context of an existing standard host OS, the host OS
controls platform hardware through the host OS services such as the standard OS device drivers. In hosted VMMs.
MCA errors will be handled by the host OS error handling software.

In native VMMs, the hypervisor runs on the hardware directly, and may provide only a limited set of platform
services for guest VMs. Most platform services may instead be provided by a “control OS”. In hypervisor-based
VMMs, MCA errors will either be delivered directly to the VMM MCA handler (when the error is signaled while in the
VMM context) or cause by a VM exit from a guest VM or be delivered to the MCA intercept handler. There are two
general approaches the hypervisor can use to handle the MCA error: either within the hypervisor itself or by
forwarding the error to the control OS.
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33.4.3.1 VMM Error Handling Strategies

Broadly speaking, there are two strategies that VMMs may take for error handling:

® Basic error handling: in this approach the guest VM is treated as any other thread of execution. If the error
recovery action does not support restarting the thread after handling the error, the guest VM should be
terminated.

® MCA virtualization: in this approach, the VMM virtualizes the MCA events and hardware. This enables the VMM
to intercept MCA events and inject an MCA into the guest VM. The guest VM then has the opportunity to attempt
error recovery actions, rather than being terminated by the VMM.

Details of these approaches and implementation considerations for hosted and native VMMs are discussed below.

33.4.3.2 Basic VMM MCA error recovery handling

The simplest approach is for the VMM to treat the guest VM as any other thread of execution:

® MCE's that occur outside the stream of execution of a virtual machine guest will cause an MCE abort and may
be handled by the MCA error handler following the recovery actions and guidelines described in Section 15.9,
and Section 15.10. This includes logging the error and taking appropriate recovery actions when necessary. The
VMM must not resume the interrupted thread of execution or another VM until it has taken the appropriate
recovery action or, in the case of fatal MCAs, reset the system.

® MCE's that occur while executing in the context of a virtual machine will be intercepted by the VMM. The MCA
intercept handler may follow the error handling guidelines listed in Section 15.9 and Section 15.10 for SRAO
and SRAR errors. For SRAR errors, terminating the thread of execution will involve terminating the affected
guest VM. For fatal errors the MCA handler should log the error and reset the system -- the VMM should not
resume execution of the interrupted VM.

33.4.3.3 Implementation Considerations for the Basic Model

For hosted VMMs, the host OS MCA error handling code will perform error analysis and initiate the appropriate
recovery actions. For the basic model this flow does not change when terminating a guest VM although the specific
actions needed to terminate a guest VM may be different than terminating an application or user process.

For native, hypervisor-based VMMs, MCA errors will either be delivered directly to the VMM MCA handler (when the
error is signaled while in the VMM context) or cause a VM exit from a guest VM or be delivered to the MCA intercept
handler. There are two general approaches the hypervisor can use to handle the MCA error: either by forwarding
the error to the control OS or within the hypervisor itself. These approaches are described in the following para-
graphs.

The hypervisor may forward the error to the control OS for handling errors. This approach simplifies the hypervisor
error handling since it relies on the control OS to implement the basic error handling model. The control OS error
handling code will be similar to the error handling code in the hosted VMM. Errors can be forwarded to the control
OS via an OS callback or by injecting an MCE event into the control OS. Injecting an MCE will cause the control OS
MCA error handler to be invoked. The control OS is responsible for terminating the affected guest VM, if necessary,
which may require cooperation from the hypervisor.

Alternatively, the error may be handled completely in the hypervisor. The hypervisor error handler is enhanced to

implement the basic error handling model and the hypervisor error handler has the capability to fully analyze the

error information and take recovery actions based on the guidelines. In this case error handling steps in the hyper-
visor are similar to those for the hosted VMM described above (where the hypervisor replaces the host OS actions).
The hypervisor is responsible for terminating the affected guest VM, if necessary.

In all cases, if a fatal error is detected the VMM error handler should log the error and reset the system. The VMM
error handler must ensure that guest VMs are not resumed after a fatal error is detected to ensure error contain-
ment is maintained.

33.4.3.4 MCA Virtualization

A more sophisticated approach for handling errors is to virtualize the MCA. This involves virtualizing the MCA hard-
ware and intercepting the MCA event in the VMM when a guest VM is interrupted by an MCA. After analyzing the
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error, the VMM error handler may then decide to inject an MCE abort into the guest VM for attempted guest VM
error recovery. This would enable the guest OS the opportunity to take recovery actions specific to that guest.

For MCA virtualization, the VMM must provide the guest physical address for memory errors instead of the system
physical address when reporting the errors to the guest VM. To compute the guest physical address, the VMM
needs to maintain a reverse mapping of system physical page addresses to guest physical page addresses.

When the MCE is injected into the guest VM, the guest OS MCA handler would be invoked. The guest OS imple-
ments the MCA handling guidelines and it could potentially terminate the interrupted thread of execution within the
guest instead of terminating the VM. The guest OS may also disable use of the affected page by the guest. When
disabling the page the VMM error handler may handle the case where a page is shared by the VMM and a guest or
by two guests. In these cases the page use must be disabled in both contexts to ensure no subsequent consump-
tion errors are generated.

33.4.3.5 Implementation Considerations for the MCA Virtualization Model

MCA virtualization may be done in either hosted VMMs or hypervisor-based VMMs. The error handling flow is
similar to the flow described in the basic handling case. The major difference is that the recovery action includes
injecting the MCE abort into the guest VM to enable recovery by the guest OS when the MCA interrupts the execu-
tion of a guest VM.

33.5 HANDLING ACTIVITY STATES BY VMM

A VMM might place a logic processor in the wait-for-SIPI activity state if supporting certain guest operating system
using the multi-processor (MP) start-up algorithm. A guest with direct access to the physical local APIC and using
the MP start-up algorithm sends an INIT-SIPI-SIPI IPIl sequence to start the application processor. In order to trap
the SIPIs, the VMM must start the logic processor which is the target of the SIPIs in wait-for-SIPl mode.
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CHAPTER 34
SYSTEM MANAGEMENT MODE

This chapter describes aspects of 1A-64 and 1A-32 architecture used in system management mode (SMM).

SMM provides an alternate operating environment that can be used to monitor and manage various system
resources for more efficient energy usage, to control system hardware, and/or to run proprietary code. It was
introduced into the 1A-32 architecture in the Intel386 SL processor (a mobile specialized version of the Intel386
processor). It is also available in the Pentium M, Pentium 4, Intel Xeon, P6 family, and Pentium and Intel486
processors (beginning with the enhanced versions of the Intel486 SL and Intel486 processors).

34.1 SYSTEM MANAGEMENT MODE OVERVIEW

SMM is a special-purpose operating mode provided for handling system-wide functions like power management,
system hardware control, or proprietary OEM-designed code. It is intended for use only by system firmware, not by
applications software or general-purpose systems software. The main benefit of SMM is that it offers a distinct and
easily isolated processor environment that operates transparently to the operating system or executive and soft-
ware applications.

When SMM is invoked through a system management interrupt (SMI), the processor saves the current state of the
processor (the processor’s context), then switches to a separate operating environment defined by a new address
space. The system management software executive (SMI handler) starts execution in that environment, and the
critical code and data of the SMI handler reside in a physical memory region (SMRAM) within that address space.
While in SMM, the processor executes SMI handler code to perform operations such as powering down unused disk
drives or monitors, executing proprietary code, or placing the whole system in a suspended state. When the SMI
handler has completed its operations, it executes a resume (RSM) instruction. This instruction causes the processor
to reload the saved context of the processor, switch back to protected or real mode, and resume executing the
interrupted application or operating-system program or task.

The following SMM mechanisms make it transparent to applications programs and operating systems:
® The only way to enter SMM is by means of an SMI.

® The processor executes SMM code in a separate address space that can be made inaccessible from the other
operating modes.

® Upon entering SMM, the processor saves the context of the interrupted program or task.
® All interrupts normally handled by the operating system are disabled upon entry into SMM.
® The RSM instruction can be executed only in SMM.

Section 34.3 describes transitions into and out of SMM. The execution environment after entering SMM is in real-
address mode with paging disabled (CRO.PE = CRO.PG = 0). In this initial execution environment, the SMI handler
can address up to 4 GBytes of memory and can execute all I/0 and system instructions. Section 34.5 describes in
detail the initial SMM execution environment for an SMI handler and operation within that environment. The SMI
handler may subsequently switch to other operating modes while remaining in SMM.

NOTES

Software developers should be aware that, even if a logical processor was using the physical-
address extension (PAE) mechanism (introduced in the P6 family processors) or was in 1A-32e
mode before an SMI, this will not be the case after the SMI is delivered. This is because delivery of
an SMI disables paging (see Table 34-4). (This does not apply if the dual-monitor treatment of SMIs
and SMM is active; see Section 34.15.)

34.1.1 System Management Mode and VMX Operation

Traditionally, SMM services system management interrupts and then resumes program execution (back to the soft-
ware stack consisting of executive and application software; see Section 34.2 through Section 34.13).
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A virtual machine monitor (VMM) using VMX can act as a host to multiple virtual machines and each virtual machine

can support its own software stack of executive and application software. On processors that support VMX, virtual-

machine extensions may use system-management interrupts (SMIs) and system-management mode (SMM) in one

of two ways:

¢ Default treatment. System firmware handles SMIs. The processor saves architectural states and critical
states relevant to VMX operation upon entering SMM. When the firmware completes servicing SMls, it uses
RSM to resume VMX operation.

¢ Dual-monitor treatment. Two VM monitors collaborate to control the servicing of SMIs: one VMM operates
outside of SMM to provide basic virtualization in support for guests; the other VMM operates inside SMM (while
in VMX operation) to support system-management functions. The former is referred to as executive monitor,
the latter SMM-transfer monitor (STM).1

The default treatment is described in Section 34.14, “Default Treatment of SMIs and SMM with VMX Operation and
SMX Operation”. Dual-monitor treatment of SMM is described in Section 34.15, “Dual-Monitor Treatment of SMIs
and SMM”.

34.2 SYSTEM MANAGEMENT INTERRUPT (SMI)

The only way to enter SMM is by signaling an SMI through the SMI# pin on the processor or through an SMI
message received through the APIC bus. The SMI is a nonmaskable external interrupt that operates independently
from the processor’s interrupt- and exception-handling mechanism and the local APIC. The SMI takes precedence
over an NMI and a maskable interrupt. SMM is non-reentrant; that is, the SMI is disabled while the processor is in
SMM.

NOTES

In the Pentium 4, Intel Xeon, and P6 family processors, when a processor that is designated as an
application processor during an MP initialization sequence is waiting for a startup IPI (SIPI), itisin
a mode where SMIs are masked. However if a SMI is received while an application processor is in

the wait for SIPI mode, the SMI will be pended. The processor then responds on receipt of a SIPI by
immediately servicing the pended SMI and going into SMM before handling the SIPI.

An SMI may be blocked for one instruction following execution of STI, MOV to SS, or POP into SS.

34.3 SWITCHING BETWEEN SMM AND THE OTHER
PROCESSOR OPERATING MODES

Figure 2-3 shows how the processor moves between SMM and the other processor operating modes (protected,
real-address, and virtual-8086). Signaling an SMI while the processor is in real-address, protected, or virtual-8086
modes always causes the processor to switch to SMM. Upon execution of the RSM instruction, the processor always
returns to the mode it was in when the SMI occurred.

34.3.1 Entering SMM

The processor always handles an SMI on an architecturally defined “interruptible” point in program execution
(which is commonly at an 1A-32 architecture instruction boundary). When the processor receives an SMI, it waits
for all instructions to retire and for all stores to complete. The processor then saves its current context in SMRAM
(see Section 34.4), enters SMM, and begins to execute the SMI handler.

Upon entering SMM, the processor signals external hardware that SMI handling has begun. The signaling mecha-
nism used is implementation dependent. For the P6 family processors, an SMI acknowledge transaction is gener-

1. The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability MSR
IA32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.
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ated on the system bus and the multiplexed status signal EXF4 is asserted each time a bus transaction is generated
while the processor is in SMM. For the Pentium and Intel486 processors, the SMIACT# pin is asserted.

An SMI has a greater priority than debug exceptions and external interrupts. Thus, if an NMI, maskable hardware
interrupt, or a debug exception occurs at an instruction boundary along with an SMI, only the SMI is handled.
Subsequent SMI requests are not acknowledged while the processor is in SMM. The first SMI interrupt request that
occurs while the processor is in SMM (that is, after SMM has been acknowledged to external hardware) is latched
and serviced when the processor exits SMM with the RSM instruction. The processor will latch only one SMI while
in SMM.

See Section 34.5 for a detailed description of the execution environment when in SMM.

34.3.2 Exiting From SMM

The only way to exit SMM is to execute the RSM instruction. The RSM instruction is only available to the SMI
handler; if the processor is not in SMM, attempts to execute the RSM instruction result in an invalid-opcode excep-
tion (#UD) being generated.

The RSM instruction restores the processor’s context by loading the state save image from SMRAM back into the
processor’s registers. The processor then returns an SMIACK transaction on the system bus and returns program
control back to the interrupted program.

Upon successful completion of the RSM instruction, the processor signals external hardware that SMM has been
exited. For the P6 family processors, an SMI acknowledge transaction is generated on the system bus and the
multiplexed status signal EXF4 is no longer generated on bus cycles. For the Pentium and Intel486 processors, the
SMIACT# pin is deserted.

If the processor detects invalid state information saved in the SMRAM, it enters the shutdown state and generates
a special bus cycle to indicate it has entered shutdown state. Shutdown happens only in the following situations:

® Avreserved bit in control register CR4 is set to 1 on a write to CR4. This error should not happen unless SMI
handler code modifies reserved areas of the SMRAM saved state map (see Section 34.4.1). CR4 is saved in the
state map in a reserved location and cannot be read or modified in its saved state.

® Anillegal combination of bits is written to control register CRO, in particular PG set to 1 and PE set to O, or NW
setto 1 and CD set to O.

® CR4.PCIDE would be set to 1 and IA32_EFER.LMA to O.

® (For the Pentium and Intel486 processors only.) If the address stored in the SMBASE register when an RSM
instruction is executed is not aligned on a 32-KByte boundary. This restriction does not apply to the P6 family
processors.

In the shutdown state, Intel processors stop executing instructions until a RESET#, INIT# or NMI# is asserted.
While Pentium family processors recognize the SMI# signal in shutdown state, P6 family and Intel486 processors
do not. Intel does not support using SMI# to recover from shutdown states for any processor family; the response
of processors in this circumstance is not well defined. On Pentium 4 and later processors, shutdown will inhibit
INTR and A20M but will not change any of the other inhibits. On these processors, NMIs will be inhibited if no action
is taken in the SMI handler to uninhibit them (see Section 34.8).

If the processor is in the HALT state when the SMI is received, the processor handles the return from SMM slightly
differently (see Section 34.10). Also, the SMBASE address can be changed on a return from SMM (see Section
34.11).

344 SMRAM

Upon entering SMM, the processor switches to a new address space. Because paging is disabled upon entering
SMM, this initial address space maps all memory accesses to the low 4 GBytes of the processor's physical address
space. The SMI handler's critical code and data reside in a memory region referred to as system-management RAM
(SMRAM). The processor uses a pre-defined region within SMRAM to save the processor's pre-SMI context. SMRAM
can also be used to store system management information (such as the system configuration and specific informa-
tion about powered-down devices) and OEM-specific information.
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The default SMRAM size is 64 KBytes beginning at a base physical address in physical memory called the SMBASE
(see Figure 34-1). The SMBASE default value following a hardware reset is 30000H. The processor looks for the
first instruction of the SMI handler at the address [SMBASE + 8000H]. It stores the processor’s state in the area
from [SMBASE + FEOOH] to [SMBASE + FFFFH]. See Section 34.4.1 for a description of the mapping of the state
save area.

The system logic is minimally required to decode the physical address range for the SMRAM from [SMBASE +
8000H] to [SMBASE + FFFFH]. A larger area can be decoded if needed. The size of this SMRAM can be between 32
KBytes and 4 GBytes.

The location of the SMRAM can be changed by changing the SMBASE value (see Section 34.11). It should be noted
that all processors in a multiple-processor system are initialized with the same SMBASE value (30000H). Initializa-
tion software must sequentially place each processor in SMM and change its SMBASE so that it does not overlap
those of other processors.

The actual physical location of the SMRAM can be in system memory or in a separate RAM memory. The processor
generates an SMI acknowledge transaction (P6 family processors) or asserts the SMIACT# pin (Pentium and
Intel486 processors) when the processor receives an SMI (see Section 34.3.1).

System logic can use the SMI acknowledge transaction or the assertion of the SMIACT# pin to decode accesses to
the SMRAM and redirect them (if desired) to specific SMRAM memory. If a separate RAM memory is used for
SMRAM, system logic should provide a programmable method of mapping the SMRAM into system memory space
when the processor is not in SMM. This mechanism will enable start-up procedures to initialize the SMRAM space
(that is, load the SMI handler) before executing the SMI handler during SMM.

344.1 SMRAM State Save Map

When an 1A-32 processor that does not support Intel 64 architecture initially enters SMM, it writes its state to the
state save area of the SMRAM. The state save area begins at [SMBASE + 8000H + 7FFFH] and extends down to
[SMBASE + 8000H + 7EOO0H]. Table 34-1 shows the state save map. The offset in column 1 is relative to the
SMBASE value plus 8000H. Reserved spaces should not be used by software.

Some of the registers in the SMRAM state save area (marked YES in column 3) may be read and changed by the
SMI handler, with the changed values restored to the processor registers by the RSM instruction. Some register
images are read-only, and must not be modified (modifying these registers will result in unpredictable behavior).
An SMI handler should not rely on any values stored in an area that is marked as reserved.

SMRAM

SMBASE + FFFFH
Start of State Save Area

SMI Handler Entry Point
SMBASE + 8000H

SMBASE

Figure 34-1. SMRAM Usage
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Table 34-1. SMRAM State Save Map

Offset Register Writable?
(Added to SMBASE + 8000H)
7FFCH CRO No
7FF8H CR3 No
7FF4H EFLAGS Yes
7FFOH EP Yes
7FECH DI Yes
7FE8H €Sl Yes
7FE4H EBP Yes
7FECH ESP Yes
7FDCH EBX Yes
7FD8H EDX Yes
7FD4H ECX Yes
7FDOH EAX Yes
7FCCH DR6 No
7FC8H DR7 No
7FC4H TRY No
7FCOH Reserved No
7FBCH Gst No
7FB8H Fst No
7FB4H pst No
7FBOH sst No
7FACH cst No
7FASH gst No
7FA4H I/0 State Field, see Section 34.7 No
7FACH 1/0 Memory Address Field, see Section 34.7 No
7F9FH-7F03H Reserved No
7F02H Auto HALT Restart Field (Word) Yes
7FO0H 1/0 Instruction Restart Field (Word) Yes
7EFCH SMM Revision Identifier Field (Doubleword) No
7EF8H SMBASE Field (Doubleword) Yes
7EF7H - 7EOOH Reserved No

NOTE:
1. The two most significant bytes are reserved.

The following registers are saved (but not readable) and restored upon exiting SMM:
® Control register CR4. (This register is cleared to all 0s when entering SMM).
® The hidden segment descriptor information stored in segment registers CS, DS, ES, FS, GS, and SS.

If an SMI request is issued for the purpose of powering down the processor, the values of all reserved locations in
the SMM state save must be saved to nonvolatile memory.

The following state is not automatically saved and restored following an SMI and the RSM instruction, respectively:
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® Debug registers DRO through DR3.
® The x87 FPU registers.

® The MTRRs.

® Control register CR2.

® The model-specific registers (for the P6 family and Pentium processors) or test registers TR3 through TR7 (for
the Pentium and Intel486 processors).

® The state of the trap controller.

® The machine-check architecture registers.

® The APIC internal interrupt state (ISR, IRR, etc.).
® The microcode update state.

If an SMI is used to power down the processor, a power-on reset will be required before returning to SMM, which
will reset much of this state back to its default values. So an SMI handler that is going to trigger power down should
first read these registers listed above directly, and save them (along with the rest of RAM) to nonvolatile storage.
After the power-on reset, the continuation of the SMI handler should restore these values, along with the rest of
the system's state. Anytime the SMI handler changes these registers in the processor, it must also save and restore
them.

NOTES

A small subset of the MSRs (such as, the time-stamp counter and performance-monitoring
counters) are not arbitrarily writable and therefore cannot be saved and restored. SMM-based
power-down and restoration should only be performed with operating systems that do not use or
rely on the values of these registers.

Operating system developers should be aware of this fact and insure that their operating-system
assisted power-down and restoration software is immune to unexpected changes in these register
values.

34.4.1.1 SMRAM State Save Map and Intel 64 Architecture

When the processor initially enters SMM, it writes its state to the state save area of the SMRAM. The state save area
on an Intel 64 processor at [SMBASE + 8000H + 7FFFH] and extends to [SMBASE + 8000H + 7COOH].

Support for Intel 64 architecture is reported by CPUID.80000001:EDX[29] = 1. The layout of the SMRAM state save
map is shown in Table 34-3.

Additionally, the SMRAM state save map shown in Table 34-3 also applies to processors with the following CPUID
signatures listed in Table 34-2, irrespective of the value in CPUID.80000001:EDX[29].

Table 34-2. Processor Signatures and 64-bit SMRAM State Save Map Format

DisplayFamily_DisplayModel | Processor Families/Processor Number Series

06_17H Intel Xeon Processor 5200, 5400 series, Intel Core 2 Quad processor Q9xxx, Intel Core 2 Duo
processors E8000, T9000,
06_0FH Intel Xeon Processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad, Intel Core 2 Extreme,

Intel Core 2 Duo processors, Intel Pentium dual-core processors

06_1CH 45 nm Intel® Atom™ processors
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Table 34-3. SMRAM State Save Map for Intel 64 Architecture

Offset Register Writable?
(Added to SMBASE + 8000H)
7FF8H CRO No
7FFOH CR3 No
7FESH RFLAGS Yes
7FEQOH IA32_EFER Yes
7FD8H RIP Yes
7FDOH DR6 No
7FC8H DR7 No
7FC4H TR seLt No
7FCOH LDTR seLt No
7FBCH GS SeLt No
7FB8H Fs SeLt No
7FB4H DS SeELt No
7FBOH ss selt No
7FACH cs selt No
7FABH es seLt No
7FA4H 10_MISC No
7F9CH I0_MEM_ADDR No
7F94H RDI Yes
7F8CH RSI Yes
7F84H RBP Yes
7F7CH RSP Yes
7F74H RBX Yes
7F6CH RDX Yes
7F64H RCX Yes
7F5CH RAX Yes
7F54H R8 Yes
7F4CH R9 Yes
7F44H R10 Yes
7F3CH R11 Yes
7F34H R12 Yes
7F2CH R13 Yes
7F24H R14 Yes
7F1CH R15 Yes
7F1BH-7F04H Reserved No
7F02H Auto HALT Restart Field (Word) Yes
7FO0H I/0 Instruction Restart Field (Word) Yes
7€FCH SMM Revision Identifier Field (Doubleword) No
7€EF8H SMBASE Field (Doubleword) Yes
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Table 34-3. SMRAM State Save Map for Intel 64 Architecture (Contd.)

Offset Register Writable?
(Added to SMBASE + 8000H)
7EF7H - 7EE4H Reserved No
7EEQH Setting of “enable EPT" VM-execution control No
7€ED8H Value of EPTP VM-execution control field No
7ED7H - 7EACH Reserved No
7€9CH LDT Base (lower 32 bits) No
7E98H Reserved No
7€94H IDT Base (lower 32 bits) No
7ESCH Reserved No
7€8CH GDT Base (lower 32 bits) No
7E8BH - 7€44H Reserved No
7E40H CR4 No
7E3FH - 7DFOH Reserved No
7DEBH IO_RIP Yes
7DE7H - 7DDCH Reserved No
7DD8H IDT Base (Upper 32 bits) No
7DD4H LDT Base (Upper 32 bits) No
7DDOH GDT Base (Upper 32 bits) No
7DCFH - 7COOH Reserved No

NOTE:

1. The two most significant bytes are reserved.

344.2 SMRAM Caching

An 1A-32 processor does not automatically write back and invalidate its caches before entering SMM or before

exiting SMM. Because of this behavior, care must be taken in the placement of the SMRAM in system memory and

in the caching of the SMRAM to prevent cache incoherence when switching back and forth between SMM and
protected mode operation. Either of the following three methods of locating the SMRAM in system memory will

guarantee cache coherency:

® Place the SRAM in a dedicated section of systemm memory that the operating system and applications are
prevented from accessing. Here, the SRAM can be designated as cacheable (WB, WT, or WC) for optimum

processor performance, without risking cache incoherence when entering or exiting SMM.

® Place the SRAM in a section of memory that overlaps an area used by the operating system (such as the video
memory), but designate the SMRAM as uncacheable (UC). This method prevents cache access when in SMM to

maintain cache coherency, but the use of uncacheable memory reduces the performance of SMM code.

® Place the SRAM in a section of systemm memory that overlaps an area used by the operating system and/or
application code, but explicitly flush (write back and invalidate) the caches upon entering and exiting SMM
mode. This method maintains cache coherency, but incurs the overhead of two complete cache flushes.

For Pentium 4, Intel Xeon, and P6 family processors, a combination of the first two methods of locating the SMRAM

is recommended. Here the SMRAM is split between an overlapping and a dedicated region of memory. Upon

entering SMM, the SMRAM space that is accessed overlaps video memory (typically located in low memory). This
SMRAM section is designated as UC memory. The initial SMM code then jumps to a second SMRAM section that is
located in a dedicated region of system memory (typically in high memory). This SMRAM section can be cached for
optimum processor performance.

34-8 Vol.3C




SYSTEM MANAGEMENT MODE

For systems that explicitly flush the caches upon entering SMM (the third method described above), the cache flush
can be accomplished by asserting the FLUSH# pin at the same time as the request to enter SMM (generally initi-
ated by asserting the SMI# pin). The priorities of the FLUSH# and SMI# pins are such that the FLUSH# is serviced
first. To guarantee this behavior, the processor requires that the following constraints on the interaction of FLUSH#
and SMI# be met. In a system where the FLUSH# and SMI# pins are synchronous and the set up and hold times
are met, then the FLUSH# and SMI# pins may be asserted in the same clock. In asynchronous systems, the
FLUSH# pin must be asserted at least one clock before the SMI# pin to guarantee that the FLUSH# pin is serviced
first.

Upon leaving SMM (for systems that explicitly flush the caches), the WBINVD instruction should be executed prior
to leaving SMM to flush the caches.

NOTES

In systems based on the Pentium processor that use the FLUSH# pin to write back and invalidate
cache contents before entering SMM, the processor will prefetch at least one cache line in between
when the Flush Acknowledge cycle is run and the subsequent recognition of SMI# and the assertion
of SMIACT#.

It is the obligation of the system to ensure that these lines are not cached by returning KEN#
inactive to the Pentium processor.

34.4.2.1 System Management Range Registers (SMRR)

SMI handler code and data stored by SMM code resides in SMRAM. The SMRR interface is an enhancement in Intel
64 architecture to limit cacheable reference of addresses in SMRAM to code running in SMM. The SMRR interface
can be configured only by code running in SMM. Details of SMRR is described in Section 11.11.2.4.

34.5 SMI HANDLER EXECUTION ENVIRONMENT

Section 34.5.1 describes the initial execution environment for an SMI handler. An SMI handler may re-configure its
execution environment to other supported operating modes. Section 34.5.2 discusses modifications an SMI
handler can make to its execution environment.

34.5.1 Initial SMM Execution Environment

After saving the current context of the processor, the processor initializes its core registers to the values shown in
Table 34-4. Upon entering SMM, the PE and PG flags in control register CRO are cleared, which places the processor
in an environment similar to real-address mode. The differences between the SMM execution environment and the
real-address mode execution environment are as follows:

® The addressable address space ranges from O to FFFFFFFFH (4 GBytes).
® The normal 64-KByte segment limit for real-address mode is increased to 4 GBytes.

® The default operand and address sizes are set to 16 bits, which restricts the addressable SMRAM address space
to the 1-MByte real-address mode limit for native real-address-mode code. However, operand-size and
address-size override prefixes can be used to access the address space beyond the 1-MByte.

Table 34-4. Processor Register Initialization in SMM

Register Contents

General-purpose registers Undefined

EFLAGS 00000002H

EIP 00008000H

CS selector SMM Base shifted right 4 bits (default 3000H)
CS base SMM Base (default 30000H)

DS, ES, FS, GS, SS Selectors 0000H
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Table 34-4. Processor Register Initialization in SMM

DS, ES, FS, GS, SS Bases 000000000H

DS, ES, FS, GS, SS Limits OFFFFFFFFH

CRO PE, EM, TS, and PG flags set to 0; others unmodified
CR4 Cleared to zero

DR6 Undefined

DR7 00000400H

® Near jumps and calls can be made to anywhere in the 4-GByte address space if a 32-bit operand-size override
prefix is used. Due to the real-address-mode style of base-address formation, a far call or jump cannot transfer
control to a segment with a base address of more than 20 bits (1 MByte). However, since the segment limit in
SMM is 4 GBytes, offsets into a segment that go beyond the 1-MByte limit are allowed when using 32-bit
operand-size override prefixes. Any program control transfer that does not have a 32-bit operand-size override
prefix truncates the EIP value to the 16 low-order bits.

® Data and the stack can be located anywhere in the 4-GByte address space, but can be accessed only with a 32-
bit address-size override if they are located above 1 MByte. As with the code segment, the base address for a
data or stack segment cannot be more than 20 bits.

The value in segment register CS is automatically set to the default of 30000H for the SMBASE shifted 4 bits to the
right; that is, 3000H. The EIP register is set to 8000H. When the EIP value is added to shifted CS value (the
SMBASE), the resulting linear address points to the first instruction of the SMI handler.

The other segment registers (DS, SS, ES, FS, and GS) are cleared to O and their segment limits are set to 4 GBytes.
In this state, the SMRAM address space may be treated as a single flat 4-GByte linear address space. If a segment
register is loaded with a 16-bit value, that value is then shifted left by 4 bits and loaded into the segment base
(hidden part of the segment register). The limits and attributes are not modified.

Maskable hardware interrupts, exceptions, NMI interrupts, SMI interrupts, A20M interrupts, single-step traps,
breakpoint traps, and INIT operations are inhibited when the processor enters SMM. Maskable hardware interrupts,
exceptions, single-step traps, and breakpoint traps can be enabled in SMM if the SMM execution environment
provides and initializes an interrupt table and the necessary interrupt and exception handlers (see Section 34.6).

34.5.2 SMI Handler Operating Mode Switching

Within SMM, an SMI handler may change the processor's operating mode (e.g., to enable PAE paging, enter 64-bit
mode, etc.) after it has made proper preparation and initialization to do so. For example, if switching to 32-bit
protected mode, the SMI handler should follow the guidelines provided in Chapter 9, “Processor Management and
Initialization”. If the SMI handler does wish to change operating mode, it is responsible for executing the appro-
priate mode-transition code after each SMI.

It is recommended that the SMI handler make use of all means available to protect the integrity of its critical code
and data. In particular, it should use the system-management range register (SMRR) interface if it is available (see
Section 11.11.2.4). The SMRR interface can protect only the first 4 GBytes of the physical address space. The SMI
handler should take that fact into account if it uses operating modes that allow access to physical addresses beyond
that 4-GByte limit (e.g. PAE paging or 64-bit mode).

Execution of the RSM instruction restores the pre-SMI processor state from the SMRAM state-state map (see
Section 34.4.1) into which it was stored when the processor entered SMM. (The SMBASE field in the SMRAM state-
save map does not determine the state following RSM but rather the initial environment following the next entry to
SMM.) Any required change to operating mode is performed by the RSM instruction; there is no need for the SMI
handler to change modes explicitly prior to executing RSM.

34.6 EXCEPTIONS AND INTERRUPTS WITHIN SMM

When the processor enters SMM, all hardware interrupts are disabled in the following manner:
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® The IF flag in the EFLAGS register is cleared, which inhibits maskable hardware interrupts from being
generated.

® The TF flag in the EFLAGS register is cleared, which disables single-step traps.

® Debug register DR7 is cleared, which disables breakpoint traps. (This action prevents a debugger from acciden-
tally breaking into an SMI handler if a debug breakpoint is set in normal address space that overlays code or
data in SMRAM.)

¢ NMI, SMI, and A20M interrupts are blocked by internal SMM logic. (See Section 34.8 for more information
about how NMls are handled in SMM.)

Software-invoked interrupts and exceptions can still occur, and maskable hardware interrupts can be enabled by
setting the IF flag. Intel recommends that SMM code be written in so that it does not invoke software interrupts
(with the INT n, INTO, INT 3, or BOUND instructions) or generate exceptions.

If the SMI handler requires interrupt and exception handling, an SMM interrupt table and the necessary exception
and interrupt handlers must be created and initialized from within SMM. Until the interrupt table is correctly initial-
ized (using the LIDT instruction), exceptions and software interrupts will result in unpredictable processor
behavior.

The following restrictions apply when designing SMM interrupt and exception-handling facilities:

® The interrupt table should be located at linear address 0O and must contain real-address mode style interrupt
vectors (4 bytes containing CS and IP).

® Due to the real-address mode style of base address formation, an interrupt or exception cannot transfer control
to a segment with a base address of more that 20 bits.

® An interrupt or exception cannot transfer control to a segment offset of more than 16 bits (64 KBytes).

® When an exception or interrupt occurs, only the 16 least-significant bits of the return address (EIP) are pushed
onto the stack. If the offset of the interrupted procedure is greater than 64 KBytes, it is not possible for the
interrupt/exception handler to return control to that procedure. (One solution to this problem is for a handler
to adjust the return address on the stack.)

® The SMBASE relocation feature affects the way the processor will return from an interrupt or exception
generated while the SMI handler is executing. For example, if the SMBASE is relocated to above 1 MByte, but
the exception handlers are below 1 MByte, a normal return to the SMI handler is not possible. One solution is
to provide the exception handler with a mechanism for calculating a return address above 1 MByte from the 16-
bit return address on the stack, then use a 32-bit far call to return to the interrupted procedure.

® If an SMI handler needs access to the debug trap facilities, it must insure that an SMM accessible debug handler
is available and save the current contents of debug registers DRO through DR3 (for later restoration). Debug
registers DRO through DR3 and DR7 must then be initialized with the appropriate values.

® If an SMI handler needs access to the single-step mechanism, it must insure that an SMM accessible single-
step handler is available, and then set the TF flag in the EFLAGS register.

® If the SMI design requires the processor to respond to maskable hardware interrupts or software-generated
interrupts while in SMM, it must ensure that SMM accessible interrupt handlers are available and then set the
IF flag in the EFLAGS register (using the STI instruction). Software interrupts are not blocked upon entry to
SMM, so they do not need to be enabled.

34.7 MANAGING SYNCHRONOUS AND ASYNCHRONOUS
SYSTEM MANAGEMENT INTERRUPTS

When coding for a multiprocessor system or a system with Intel HT Technology, it was not always possible for an
SMI handler to distinguish between a synchronous SMI (triggered during an 1/0 instruction) and an asynchronous
SMI. To facilitate the discrimination of these two events, incremental state information has been added to the SMM
state save map.

Processors that have an SMM revision ID of 30004H or higher have the incremental state information described
below.
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34.7.1 I/0 State Implementation

Within the extended SMM state save map, a bit (10_SMI) is provided that is set only when an SMI is either taken
immediately after a successful 1/0 instruction or is taken after a successful iteration of a REP 1/0 instruction (the
successful notion pertains to the processor point of view; not necessarily to the corresponding platform function).
When set, the 10_SMI bit provides a strong indication that the corresponding SMI was synchronous. In this case,
the SMM State Save Map also supplies the port address of the 1/0 operation. The 10_SMI bit and the 1/0 Port
Address may be used in conjunction with the information logged by the platform to confirm that the SMI was
indeed synchronous.

The 10_SMI bit by itself is a strong indication, not a guarantee, that the SMI is synchronous. This is because an
asynchronous SMI might coincidentally be taken after an 1/0 instruction. In such a case, the 10_SMI bit would still
be set in the SMM state save map.

Information characterizing the 1/0 instruction is saved in two locations in the SMM State Save Map (Table 34-5).
The 10_SMI bit also serves as a valid bit for the rest of the 1/0 information fields. The contents of these 1/0 infor-
mation fields are not defined when the 10_SMI bit is not set.

Table 34-5. 1/0 Instruction Information in the SMM State Save Map

State (SMM Rev. ID: 30004H or higher) Format
31 16 15 8 7 4 3 1 0
I/0 State Field S § S S |6
SMRAM offset 7FA4 S o < o 2
= é 3 é =
31 0
I/0 Memory Address Field I/0 Memory Address
SMRAM offset 7FAQ
When 10_SMI is set, the other fields may be interpreted as follows:
® |1/0 length:

* 001 - Byte
e 010 - Word
e 100 - Dword
® 1/0 instruction type (Table 34-6)

Table 34-6. 1/0 Instruction Type Encodings

Instruction Encoding
IN Immediate 1001
IN DX 0001
OUT Immediate 1000
OUT DX 0000
INS 0011
ouTS 0010
REP INS 0111
REP OUTS 0110
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34.8 NMI HANDLING WHILE IN SMM

NMI interrupts are blocked upon entry to the SMI handler. If an NMI request occurs during the SMI handler, it is
latched and serviced after the processor exits SMM. Only one NMI request will be latched during the SMI handler.
If an NMI request is pending when the processor executes the RSM instruction, the NMI is serviced before the next
instruction of the interrupted code sequence. This assumes that NMIs were not blocked before the SMI occurred. If
NMIs were blocked before the SMI occurred, they are blocked after execution of RSM.

Although NMI requests are blocked when the processor enters SMM, they may be enabled through software by
executing an IRET instruction. If the SMI handler requires the use of NMI interrupts, it should invoke a dummy
interrupt service routine for the purpose of executing an IRET instruction. Once an IRET instruction is executed,
NMI interrupt requests are serviced in the same “real mode” manner in which they are handled outside of SMM.

A special case can occur if an SMI handler nests inside an NMI handler and then another NMI occurs. During NMI
interrupt handling, NMI interrupts are disabled, so normally NMI interrupts are serviced and completed with an
IRET instruction one at a time. When the processor enters SMM while executing an NMI handler, the processor
saves the SMRAM state save map but does not save the attribute to keep NMI interrupts disabled. Potentially, an
NMI could be latched (while in SMM or upon exit) and serviced upon exit of SMM even though the previous NMI
handler has still not completed. One or more NMIs could thus be nested inside the first NMI handler. The NMI inter-
rupt handler should take this possibility into consideration.

Also, for the Pentium processor, exceptions that invoke a trap or fault handler will enable NMI interrupts from inside
of SMM. This behavior is implementation specific for the Pentium processor and is not part of the 1A-32 architec-
ture.

349 SMM REVISION IDENTIFIER

The SMM revision identifier field is used to indicate the version of SMM and the SMM extensions that are supported
by the processor (see Figure 34-2). The SMM revision identifier is written during SMM entry and can be examined
in SMRAM space at offset 7TEFCH. The lower word of the SMM revision identifier refers to the version of the base
SMM architecture.

Register Offset
7EFCH

31 1817 16 15 0

Reserved SMM Revision Identifier

SMBASE Relocation
1/0 Instruction Restart

Figure 34-2. SMM Revision Identifier

The upper word of the SMM revision identifier refers to the extensions available. If the 1/0 instruction restart flag
(bit 16) is set, the processor supports the 1/0 instruction restart (see Section 34.12); if the SMBASE relocation flag
(bit 17) is set, SMRAM base address relocation is supported (see Section 34.11).

34.10 AUTO HALT RESTART

If the processor is in a HALT state (due to the prior execution of a HLT instruction) when it receives an SMI, the
processor records the fact in the auto HALT restart flag in the saved processor state (see Figure 34-3). (This flag is
located at offset 7FO2H and bit O in the state save area of the SMRAM.)

If the processor sets the auto HALT restart flag upon entering SMM (indicating that the SMI occurred when the
processor was in the HALT state), the SMI handler has two options:
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® It can leave the auto HALT restart flag set, which instructs the RSM instruction to return program control to the
HLT instruction. This option in effect causes the processor to re-enter the HALT state after handling the SMI.
(This is the default operation.)

® It can clear the auto HALT restart flag, which instructs the RSM instruction to return program control to the
instruction following the HLT instruction.

15 10
Reserved

Register Offset
7FO2H

Auto HALT Restart J

Figure 34-3. Auto HALT Restart Field

These options are summarized in Table 34-7. If the processor was not in a HALT state when the SMI was received
(the auto HALT restart flag is cleared), setting the flag to 1 will cause unpredictable behavior when the RSM instruc-
tion is executed.

Table 34-7. Auto HALT Restart Flag Values

Value of Flag After | Value of Flag When Action of Processor When Exiting SMM

Entry to SMM Exiting SMM

0 0 Returns to next instruction in interrupted program or task.
0 1 Unpredictable.

1 0 Returns to next instruction after HLT instruction.

1 1 Returns to HALT state.

If the HLT instruction is restarted, the processor will generate a memory access to fetch the HLT instruction (if it is
not in the internal cache), and execute a HLT bus transaction. This behavior results in multiple HLT bus transactions
for the same HLT instruction.

34.10.1 Executing the HLT Instruction in SMM

The HLT instruction should not be executed during SMM, unless interrupts have been enabled by setting the IF flag
in the EFLAGS register. If the processor is halted in SMM, the only event that can remove the processor from this
state is a maskable hardware interrupt or a hardware reset.

34.11 SMBASE RELOCATION

The default base address for the SMRAM is 30000H. This value is contained in an internal processor register called
the SMBASE register. The operating system or executive can relocate the SMRAM by setting the SMBASE field in the
saved state map (at offset 7EF8H) to a new value (see Figure 34-4). The RSM instruction reloads the internal
SMBASE register with the value in the SMBASE field each time it exits SMM. All subsequent SMI requests will use
the new SMBASE value to find the starting address for the SMI handler (at SMBASE + 8000H) and the SMRAM state
save area (from SMBASE + FEOOH to SMBASE + FFFFH). (The processor resets the value in its internal SMBASE
register to 30000H on a RESET, but does not change it on an INIT.)
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31 0

Register Offset
SMM Base 7EE8H

Figure 34-4. SMBASE Relocation Field

In multiple-processor systems, initialization software must adjust the SMBASE value for each processor so that the
SMRAM state save areas for each processor do not overlap. (For Pentium and Intel486 processors, the SMBASE
values must be aligned on a 32-KByte boundary or the processor will enter shutdown state during the execution of
a RSM instruction.)

If the SMBASE relocation flag in the SMM revision identifier field is set, it indicates the ability to relocate the
SMBASE (see Section 34.9).

34.12 1/0 INSTRUCTION RESTART

If the 1/0 instruction restart flag in the SMM revision identifier field is set (see Section 34.9), the 1/0 instruction
restart mechanism is present on the processor. This mechanism allows an interrupted 1/0 instruction to be re-
executed upon returning from SMM mode. For example, if an 1/0 instruction is used to access a powered-down 1/0
device, a chip set supporting this device can intercept the access and respond by asserting SMI#. This action
invokes the SMI handler to power-up the device. Upon returning from the SMI handler, the 1/0 instruction restart
mechanism can be used to re-execute the 1/0 instruction that caused the SMI.

The 1/0 instruction restart field (at offset 7FOOH in the SMM state-save area, see Figure 34-5) controls 1/0 instruc-
tion restart. When an RSM instruction is executed, if this field contains the value FFH, then the EIP register is modi-
fied to point to the 1/0 instruction that received the SMI request. The processor will then automatically re-execute
the 1/0 instruction that the SMI trapped. (The processor saves the necessary machine state to insure that re-
execution of the instruction is handled coherently.)

15 0

Register Offset

1/0 Instruction Restart Field
7FO0H

Figure 34-5. 1/0 Instruction Restart Field

If the 1/0 instruction restart field contains the value OOH when the RSM instruction is executed, then the processor
begins program execution with the instruction following the 1/0 instruction. (When a repeat prefix is being used,
the next instruction may be the next 1/0 instruction in the repeat loop.) Not re-executing the interrupted 1/0
instruction is the default behavior; the processor automatically initializes the 1/0 instruction restart field to OOH
upon entering SMM. Table 34-8 summarizes the states of the 1/0 instruction restart field.

Table 34-8. 1/0 Instruction Restart Field Values

Value of Flag After Value of Flag When Action of Processor When Exiting SMM
Entry to SMM Exiting SMM

OOH OOH Does not re-execute trapped I/0 instruction.
OOH FFH Re-executes trapped I/0 instruction.

The 1/0 instruction restart mechanism does not indicate the cause of the SMI. It is the responsibility of the SMI
handler to examine the state of the processor to determine the cause of the SMI and to determine if an 1/0 instruc-
tion was interrupted and should be restarted upon exiting SMM. If an SMI interrupt is signaled on a non-1/0
instruction boundary, setting the 1/0 instruction restart field to FFH prior to executing the RSM instruction will likely
result in a program error.
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34.12.1 Back-to-Back SMI Interrupts When 1/0 Instruction Restart Is Being Used

If an SMI interrupt is signaled while the processor is servicing an SMI interrupt that occurred on an 1/0 instruction
boundary, the processor will service the new SMI request before restarting the originally interrupted 1/0 instruc-
tion. If the 1I/0 instruction restart field is set to FFH prior to returning from the second SMI handler, the EIP will point
to an address different from the originally interrupted 1/0 instruction, which will likely lead to a program error. To
avoid this situation, the SMI handler must be able to recognize the occurrence of back-to-back SMI interrupts when
1/0 instruction restart is being used and insure that the handler sets the 1/0 instruction restart field to OOH prior to
returning from the second invocation of the SMI handler.

34.13 SMM MULTIPLE-PROCESSOR CONSIDERATIONS

The following should be noted when designing multiple-processor systems:
® Any processor in a multiprocessor system can respond to an SMM.
® Each processor needs its own SMRAM space. This space can be in system memory or in a separate RAM.

® The SMRAMs for different processors can be overlapped in the same memory space. The only stipulation is that
each processor needs its own state save area and its own dynamic data storage area. (Also, for the Pentium
and Intel486 processors, the SMBASE address must be located on a 32-KByte boundary.) Code and static data
can be shared among processors. Overlapping SMRAM spaces can be done more efficiently with the P6 family
processors because they do not require that the SMBASE address be on a 32-KByte boundary.

® The SMI handler will need to initialize the SMBASE for each processor.

®  Processors can respond to local SMIs through their SMI# pins or to SMIs received through the APIC interface.
The APIC interface can distribute SMIs to different processors.

® Two or more processors can be executing in SMM at the same time.

®  When operating Pentium processors in dual processing (DP) mode, the SMIACT# pin is driven only by the MRM
processor and should be sampled with ADS#. For additional details, see Chapter 14 of the Pentium Processor
Family User’s Manual, Volume 1.

SMM is not re-entrant, because the SMRAM State Save Map is fixed relative to the SMBASE. If there is a need to
support two or more processors in SMM mode at the same time then each processor should have dedicated SMRAM
spaces. This can be done by using the SMBASE Relocation feature (see Section 34.11).

34.14 DEFAULT TREATMENT OF SMIS AND SMM WITH VMX OPERATION AND
SMX OPERATION

Under the default treatment, the interactions of SMIs and SMM with VMX operation are few. This section details
those interactions. It also explains how this treatment affects SMX operation.

34.14.1 Default Treatment of SMI Delivery

Ordinary SMI delivery saves processor state into SMRAM and then loads state based on architectural definitions.
Under the default treatment, processors that support VMX operation perform SMI delivery as follows:

enter SMM;
save the following internal to the processor:
CR4.VMXE
an indication of whether the logical processor was in VMX operation (root or non-root)
IF the logical processor is in VMX operation
THEN
save current VMCS pointer internal to the processor;
leave VMX operation;
save VMX-critical state defined below;
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Fl;
IF the logical processor supports SMX operation
THEN
save internal to the logical processor an indication of whether the Intel® TXT private space is locked;
IF the TXT private space is unlocked
THEN lock the TXT private space;
Fl;
Fl;
CR4.VMXE « O;
perform ordinary SMI delivery:
save processor state in SMRAM;
set processor state to standard SMM values;’
invalidate linear mappings and combined mappings associated with VPID 0000H (for all PCIDs); combined mappings for VPID 0000H
are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP; see Section 28.3);

The pseudocode above makes reference to the saving of VMX-critical state. This state consists of the following:
(1) SS.DPL (the current privilege level); (2) RFLAGS.VMZ; (3) the state of blocking by STI and by MOV SS (see
Table 24-3 in Section 24.4.2); (4) the state of virtual-NMI blocking (only if the processor is in VMX non-root oper-
ation and the “virtual NMIs” VM-execution control is 1); and (5) an indication of whether an MTF VM exit is pending
(see Section 25.5.2). These data may be saved internal to the processor or in the VMCS region of the current
VMCS. Processors that do not support SMI recognition while there is blocking by STI or by MOV SS need not save
the state of such blocking.

If the logical processor supports the 1-setting of the “enable EPT” VM-execution control and the logical processor
was in VMX non-root operation at the time of an SMI, it saves the value of that control into bit O of the 32-bit field
at offset SMBASE + 8000H + 7EEOH (SMBASE + FEEOH; see Table 34-3).2 If the logical processor was not in VMX
non-root operation at the time of the SMI, it saves 0 into that bit. If the logical processor saves 1 into that bit (it
was in VMX non-root operation and the “enable EPT” VM-execution control was 1), it saves the value of the EPT
pointer (EPTP) into the 64-bit field at offset SMBASE + 8000H + 7ED8H (SMBASE + FED8H).

Because SMI delivery causes a logical processor to leave VMX operation, all the controls associated with VMX non-
root operation are disabled in SMM and thus cannot cause VM exits while the logical processor in SMM.

34.14.2 Default Treatment of RSM

Ordinary execution of RSM restores processor state from SMRAM. Under the default treatment, processors that
support VMX operation perform RSM as follows:

IF VMXE = 1 in CR4 image in SMRAM
THEN fail and enter shutdown state;
ELSE
restore state normally from SMRAM,;
invalidate linear mappings and combined mappings associated with all VPIDs and all PCIDs; combined mappings are invalidated
for all EP4TA values (EPATA is the value of bits 51:12 of EPTP; see Section 28.3);
IF the logical processor supports SMX operation andthe Intel® TXT private space was unlocked at the time of the last SMI (as
saved)
THEN unlock the TXT private space;
FI;
CR4.VMXE « value stored internally;

1. This causes the logical processor to block INIT signals, NMls, and SMis.

2. Section 34.14 and Section 34.15 use the notation RAX, RIP, RSP, RFLAGS, etc. for processor registers because most processors that
support VMX operation also support Intel 64 architecture. For processors that do not support Intel 64 architecture, this notation
refers to the 32-bit forms of these registers (EAX, EIP, ESP, EFLAGS, etc.). In a few places, notation such as EAX is used to refer spe-
cifically to the lower 32 bits of the register.

3. "Enable EPT" is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution controls
is 0, SMI functions as the “enable EPT" VM-execution control were 0. See Section 24.6.2.
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IF internal storage indicates that the logical processor
had been in VMX operation (root or non-root)
THEN
enter VMX operation (root or non-root);
restore VMX-critical state as defined in Section 34.14.1;
set to their fixed values any bits in CRO and CR4 whose values must be fixed in VMX operation (see Section 23.8);
IF RFLAGS.VM = 0 AND (in VMX root operation OR the “unrestricted guest” VM-execution control is 0)2

THEN
CS.RPL « SS.DPL;
SS.RPL « SS.DPL;
Fl;
restore current VMCS pointer;
Fl;
leave SMM;

IF logical processor will be in VMX operation or in SMX operation after RSM
THEN block A20M and leave A20M mode;
Fl;
Fl;

RSM unblocks SMis. It restores the state of blocking by NMI (see Table 24-3 in Section 24.4.2) as follows:

® If the RSM is not to VMX non-root operation or if the “virtual NMIs” VM-execution control will be 0, the state of
NMI blocking is restored normally.

® If the RSM is to VMX non-root operation and the “virtual NMIs” VM-execution control will be 1, NMlIs are not
blocked after RSM. The state of virtual-NMI blocking is restored as part of VMX-critical state.

INIT signals are blocked after RSM if and only if the logical processor will be in VMX root operation.

If RSM returns a logical processor to VMX non-root operation, it re-establishes the controls associated with the
current VMCS. If the “interrupt-window exiting” VM-execution control is 1, a VM exit occurs immediately after RSM
if the enabling conditions apply. The same is true for the “NMI-window exiting” VM-execution control. Such

VM exits occur with their normal priority. See Section 25.2.

If an MTF VM exit was pending at the time of the previous SMI, an MTF VM exit is pending on the instruction
boundary following execution of RSM. The following items detail the treatment of MTF VM exits that may be
pending following RSM:

¢ System-management interrupts (SMIs), INIT signals, and higher priority events take priority over these MTF
VM exits. These MTF VM exits take priority over debug-trap exceptions and lower priority events.

® These MTF VM exits wake the logical processor if RSM caused the logical processor to enter the HLT state (see
Section 34.10). They do not occur if the logical processor just entered the shutdown state.

34.14.3 Protection of CR4.VMXE in SMM

Under the default treatment, CR4.VMXE is treated as a reserved bit while a logical processor is in SMM. Any
attempt by software running in SMM to set this bit causes a general-protection exception. In addition, software
cannot use VMX instructions or enter VMX operation while in SMM.

34.14.4 VMXOFF and SMI Unblocking

The VMXOFF instruction can be executed only with the default treatment (see Section 34.15.1) and only outside
SMM. If SMIs are blocked when VMXOFF is executed, VMXOFF unblocks them unless

1. If the RSMis to VMX non-root operation and both the “unrestricted guest” VM-execution control and bit 31 of the primary proces-
sor-based VM-execution controls will be 1, CRO.PE and CRO.PG retain the values that were loaded from SMRAM regardless of what is
reported in the capability MSR IA32_VMX_CRO_FIXEDO.

2. “Unrestricted guest” is a secondary processor-based VM-execution control. If bit 31 of the primary processor-based VM-execution
controls is 0, VM entry functions as if the “unrestricted guest” VM-execution control were 0. See Section 24.6.2.
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IA32_SMM_MONITOR_CTL[bit 2] is 1 (see Section 34.15.5 for details regarding this MSR).l Section 34.15.7 iden-
tifies a case in which SMIs may be blocked when VMXOFF is executed.

Not all processors allow this bit to be set to 1. Software should consult the VMX capability MSR 1A32_VMX_MISC
(see Appendix A.6) to determine whether this is allowed.

34.15 DUAL-MONITOR TREATMENT OF SMIs AND SMM

Dual-monitor treatment is activated through the cooperation of the executive monitor (the VMM that operates
outside of SMM to provide basic virtualization) and the SMM-transfer monitor (STM; the VMM that operates
inside SMM—while in VMX operation—to support system-management functions). Control is transferred to the STM
through VM exits; VM entries are used to return from SMM.

The dual-monitor treatment may not be supported by all processors. Software should consult the VMX capability
MSR 1A32_VMX_BASIC (see Appendix A.1) to determine whether it is supported.

34.15.1 Dual-Monitor Treatment Overview

The dual-monitor treatment uses an executive monitor and an SMM-transfer monitor (STM). Transitions from the
executive monitor or its guests to the STM are called SMM VM exits and are discussed in Section 34.15.2. SMM
VM exits are caused by SMIs as well as executions of VMCALL in VMX root operation. The latter allow the executive
monitor to call the STM for service.

The STM runs in VMX root operation and uses VMX instructions to establish a VMCS and perform VM entries to its
own guests. This is done all inside SMM (see Section 34.15.3). The STM returns from SMM, not by using the RSM
instruction, but by using a VM entry that returns from SMM. Such VM entries are described in Section 34.15.4.

Initially, there is no STM and the default treatment (Section 34.14) is used. The dual-monitor treatment is not used
until it is enabled and activated. The steps to do this are described in Section 34.15.5 and Section 34.15.6.

It is not possible to leave VMX operation under the dual-monitor treatment; VMXOFF will fail if executed. The dual-
monitor treatment must be deactivated first. The STM deactivates dual-monitor treatment using a VM entry that
returns from SMM with the “deactivate dual-monitor treatment” VM-entry control set to 1 (see Section 34.15.7).

The executive monitor configures any VMCS that it uses for VM exits to the executive monitor. SMM VM exits, which
transfer control to the STM, use a different VMCS. Under the dual-monitor treatment, each logical processor uses
a separate VMCS called the SMM-transfer VMCS. When the dual-monitor treatment is active, the logical
processor maintains another VMCS pointer called the SMM-transfer VMCS pointer. The SMM-transfer VMCS
pointer is established when the dual-monitor treatment is activated.

34.15.2 SMM VM Exits
An SMM VM exit is a VM exit that begins outside SMM and that ends in SMM.

Unlike other VM exits, SMM VM exits can begin in VMX root operation. SMM VM exits result from the arrival of an

SMI outside SMM or from execution of VMCALL in VMX root operation outside SMM. Execution of VMCALL in VMX

root operation causes an SMM VM exit only if the valid bit is set in the IA32_SMM_MONITOR_CTL MSR (see Section
34.15.5).

Execution of VMCALL in VMX root operation causes an SMM VM exit even under the default treatment. This SMM
VM exit activates the dual-monitor treatment (see Section 34.15.6).

Differences between SMM VM exits and other VM exits are detailed in Sections 34.15.2.1 through 34.15.2.5.
Differences between SMM VM exits that activate the dual-monitor treatment and other SMM VM exits are described
in Section 34.15.6.

1. Setting IA32_SMM_MONITOR_CTL[bit 2] to 1 prevents VMXOFF from unblocking SMis regardless of the value of the register’s valid
bit (bit 0).
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34.15.2.1 Architectural State Before a VM Exit

System-management interrupts (SMIs) that cause SMM VM exits always do so directly. They do not save state to
SMRAM as they do under the default treatment.

34.15.2.2 Updating the Current-VMCS and Executive-VMCS Pointers

SMM VM exits begin by performing the following steps:

1. The executive-VMCS pointer field in the SMM-transfer VMCS is loaded as follows:
— If the SMM VM exit commenced in VMX non-root operation, it receives the current-VMCS pointer.
— If the SMM VM exit commenced in VMX root operation, it receives the VMXON pointer.

2. The current-VMCS pointer is loaded with the value of the SMM-transfer VMCS pointer.

The last step ensures that the current VMCS is the SMM-transfer VMCS. VM-exit information is recorded in that
VMCS, and VM-entry control fields in that VMCS are updated. State is saved into the guest-state area of that VMCS.
The VM-exit controls and host-state area of that VMCS determine how the VM exit operates.

34.15.2.3 Recording VM-Exit Information

SMM VM exits differ from other VM exit with regard to the way they record VM-exit information. The differences
follow.

® Exit reason.

— Bits 15:0 of this field contain the basic exit reason. The field is loaded with the reason for the SMM VM exit:
1/0 SMI (an SMI arrived immediately after retirement of an 1/0 instruction), other SMI, or VMCALL. See
Appendix C, “VMX Basic Exit Reasons”.

— SMM VM exits are the only VM exits that may occur in VMX root operation. Because the SMM-transfer
monitor may need to know whether it was invoked from VMX root or VMX non-root operation, this
information is stored in bit 29 of the exit-reason field (see Table 24-14 in Section 24.9.1). The bit is set by
SMM VM exits from VMX root operation.

— If the SMM VM exit occurred in VMX non-root operation and an MTF VM exit was pending, bit 28 of the exit-
reason field is set; otherwise, it is cleared.

— Bits 27:16 and bits 31:30 are cleared.

® Exit qualification. For an SMM VM exit due an SMI that arrives immediately after the retirement of an 1/0
instruction, the exit qualification contains information about the 1/0 instruction that retired immediately before
the SMI. It has the format given in Table 34-9.

Table 34-9. Exit Qualification for SMIs That Arrive Immediately After the Retirement of an I/0 Instruction

Bit Position(s) Contents

2.0 Size of access:
0 = 1-byte
1 = 2-byte
3 =4-byte

Other values not used.

Direction of the attempted access (0 = OUT, 1 = IN)

String instruction (O = not string; 1 = string)

REP prefixed (0O = not REP; 1 = REP)

|| | W

Operand encoding (0 = DX, 1 = immediate)
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Table 34-9. Exit Qualification for SMIs That Arrive Inmediately After the Retirement of an 1/0 Instruction (Contd.)

Bit Position(s) Contents

157 Reserved (cleared to 0)

31:16 Port number (as specified in the I/0 instruction)

63:32 Reserved (cleared to 0). These bits exist only on processors
that support Intel 64 architecture.

® Guest linear address. This field is used for VM exits due to SMIs that arrive immediately after the retirement
of an INS or OUTS instruction for which the relevant segment (ES for INS; DS for OUTS unless overridden by
an instruction prefix) is usable. The field receives the value of the linear address generated by ES:(E)DI (for
INS) or segment:(E)SI (for OUTS; the default segment is DS but can be overridden by a segment override
prefix) at the time the instruction started. If the relevant segment is not usable, the value is undefined. On
processors that support Intel 64 architecture, bits 63:32 are clear if the logical processor was not in 64-bit
mode before the VM exit.

® 1/0RCX, IZ/ORSI, I/0 RDI, and 1/0 RIP. For an SMM VM exit due an SMI that arrives immediately after
the retirement of an 1/0 instruction, these fields receive the values that were in RCX, RSI, RDI, and RIP, respec-
tively, before the 1/0 instruction executed. Thus, the value saved for 1/0 RIP addresses the 1/0 instruction.

34.15.2.4 Saving Guest State
SMM VM exits save the contents of the SMBASE register into the corresponding field in the guest-state area.

The value of the VMX-preemption timer is saved into the corresponding field in the guest-state area if the “save
VMX-preemption timer value” VM-exit control is 1. That field becomes undefined if, in addition, either the SMM
VM exit is from VMX root operation or the SMM VM exit is from VMX non-root operation and the “activate VMX-
preemption timer” VM-execution control is O.

34.15.2.5 Updating Non-Register State

SMM VM exits affect the non-register state of a logical processor as follows:

¢ SMM VM exits cause non-maskable interrupts (NMIs) to be blocked; they may be unblocked through execution
of IRET or through a VM entry (depending on the value loaded for the interruptibility state and the setting of
the “virtual NMIs” VM-execution control).

¢ SMM VM exits cause SMIs to be blocked; they may be unblocked by a VM entry that returns from SMM (see
Section 34.15.4).

SMM VM exits invalidate linear mappings and combined mappings associated with VPID 0000H for all PCIDs.
Combined mappings for VPID O000H are invalidated for all EP4TA values (EP4TA is the value of bits 51:12 of EPTP;
see Section 28.3). (Ordinary VM exits are not required to perform such invalidation if the “enable VPID” VM-execu-
tion control is 1; see Section 27.5.5.)

34.15.3 Operation of the SMM-Transfer Monitor

Once invoked, the SMM-transfer monitor (STM) is in VMX root operation and can use VMX instructions to configure
VMCSs and to cause VM entries to virtual machines supported by those structures. As noted in Section 34.15.1, the
VMXOFF instruction cannot be used under the dual-monitor treatment and thus cannot be used by the STM.

The RSM instruction also cannot be used under the dual-monitor treatment. As noted in Section 25.1.3, it causes
a VM exit if executed in SMM in VMX non-root operation. If executed in VMX root operation, it causes an invalid-
opcode exception. The STM uses VM entries to return from SMM (see Section 34.15.4).
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34.15.4 VM Entries that Return from SMM

The SMM-transfer monitor (STM) returns from SMM using a VM entry with the “entry to SMM” VM-entry control
clear. VM entries that return from SMM reverse the effects of an SMM VM exit (see Section 34.15.2).

VM entries that return from SMM may differ from other VM entries in that they do not necessarily enter VMX non-
root operation. If the executive-VMCS pointer field in the current VMCS contains the VMXON pointer, the logical
processor remains in VMX root operation after VM entry.

For differences between VM entries that return from SMM and other VM entries see Sections 34.15.4.1 through
34.15.4.10.

34.15.4.1 Checks on the Executive-VMCS Pointer Field

VM entries that return from SMM perform the following checks on the executive-VMCS pointer field in the current
VMCS:

® Bits 11:0 must be 0.

® The pointer must not set any bits beyond the processor’s physical-address width.1+2

® The 32 bits located in memory referenced by the physical address in the pointer must contain the processor’s
VMCS revision identifier (see Section 24.2).

The checks above are performed before the checks described in Section 34.15.4.2 and before any of the following
checks:

® 'If the “deactivate dual-monitor treatment” VM-entry control is O and the executive-VMCS pointer field does not
contain the VMXON pointer, the launch state of the executive VMCS (the VMCS referenced by the executive-
VMCS pointer field) must be launched (see Section 24.11.3).

® If the “deactivate dual-monitor treatment” VM-entry control is 1, the executive-VMCS pointer field must
contain the VMXON pointer (see Section 34.15.7).3

34.15.4.2 Checks on VM-Execution Control Fields

VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-
execution control fields specified in Section 26.2.1.1. They do not apply the checks to the current VMCS. Instead,
VM-entry behavior depends on whether the executive-VMCS pointer field contains the VMXON pointer:

® If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),
the checks are not performed at all.

® If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root
operation), the checks are performed on the VM-execution control fields in the executive VMCS (the VMCS
referenced by the executive-VMCS pointer field in the current VMCS). These checks are performed after
checking the executive-VMCS pointer field itself (for proper alignment).

Other VM entries ensure that, if “activate VMX-preemption timer” VM-execution control is O, the “save VMX-
preemption timer value” VM-exit control is also 0. This check is not performed by VM entries that return from SMM.

34.15.4.3 Checks on VM-Entry Control Fields

VM entries that return from SMM differ from other VM entries with regard to the checks performed on the VM-entry
control fields specified in Section 26.2.1.3.

1. Software can determine a processor’s physical-address width by executing CPUID with 80000008H in EAX. The physical-address
width is returned in bits 7:0 of EAX.

2. IfIA32_VMX_BASIC[48] is read as 1, this pointer must not set any bits in the range 63:32; see Appendix A.1.

3. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit
that activates the dual-monitor treatment.
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Specifically, if the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root
operation), the VM-entry interruption-information field must not indicate injection of a pending MTF VM exit (see
Section 26.5.2). Specifically, the following cannot all be true for that field:

® the valid bit (bit 31) is 1
® the interruption type (bits 10:8) is 7 (other event); and
® the vector (bits 7:0) is O (pending MTF VM exit).

34.15.4.4 Checks on the Guest State Area

Section 26.3.1 specifies checks performed on fields in the guest-state area of the VMCS. Some of these checks are
conditioned on the settings of certain VM-execution controls (e.g., “virtual NMIs” or “unrestricted guest”).

VM entries that return from SMM modify these checks based on whether the executive-VMCS pointer field contains
the VMXON pointer:®

¢ If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),
the checks are performed as all relevant VM-execution controls were 0. (As a result, some checks may not be
performed at all.)

® If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root
operation), this check is performed based on the settings of the VM-execution controls in the executive VMCS
(the VMCS referenced by the executive-VMCS pointer field in the current VMCS).

For VM entries that return from SMM, the activity-state field must not indicate the wait-for-SIPI state if the execu-
tive-VMCS pointer field contains the VMXON pointer (the VM entry is to VMX root operation).

34.15.4.5 Loading Guest State
VM entries that return from SMM load the SMBASE register from the SMBASE field.

VM entries that return from SMM invalidate linear mappings and combined mappings associated with all VPIDs.
Combined mappings are invalidated for all EPATA values (EP4TA is the value of bits 51:12 of EPTP; see Section
28.3). (Ordinary VM entries are required to perform such invalidation only for VPID O000H and are not required to
do even that if the “enable VPID” VM-execution control is 1; see Section 26.3.2.5.)

34.15.4.6 VMX-Preemption Timer

A VM entry that returns from SMM activates the VMX-preemption timer only if the executive-VMCS pointer field
does not contain the VMXON pointer (the VM entry enters VMX non-root operation) and the “activate VMX-preemp-
tion timer” VM-execution control is 1 in the executive VMCS (the VMCS referenced by the executive-VMCS pointer
field). In this case, VM entry starts the VMX-preemption timer with the value in the VMX-preemption timer-value
field in the current VMCS.

34.15.4.7 Updating the Current-VMCS and SMM-Transfer VMCS Pointers

Successful VM entries (returning from SMM) load the SMM-transfer VMCS pointer with the current-VMCS pointer.
Following this, they load the current-VMCS pointer from a field in the current VMCS:

® If the executive-VMCS pointer field contains the VMXON pointer (the VM entry remains in VMX root operation),
the current-VMCS pointer is loaded from the VMCS-link pointer field.

® If the executive-VMCS pointer field does not contain the VMXON pointer (the VM entry enters VMX non-root
operation), the current-VMCS pointer is loaded with the value of the executive-VMCS pointer field.

If the VM entry successfully enters VMX non-root operation, the VM-execution controls in effect after the VM entry
are those from the new current VMCS. This includes any structures external to the VMCS referenced by VM-execu-
tion control fields.

1. The STM can determine the VMXON pointer by reading the executive-VMCS pointer field in the current VMCS after the SMM VM exit
that activates the dual-monitor treatment.
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The updating of these VMCS pointers occurs before event injection. Event injection is determined, however, by the
VM-entry control fields in the VMCS that was current when the VM entry commenced.

34.15.4.8 VM Exits Induced by VM Entry

Section 26.5.1.2 describes how the event-delivery process invoked by event injection may lead to a VM exit.
Section 26.6.3 to Section 26.6.7 describe other situations that may cause a VM exit to occur immediately after a
VM entry.

Whether these VM exits occur is determined by the VM-execution control fields in the current VMCS. For VM entries
that return from SMM, they can occur only if the executive-VMCS pointer field does not contain the VMXON pointer
(the VM entry enters VMX non-root operation).

In this case, determination is based on the VM-execution control fields in the VMCS that is current after the

VM entry. This is the VMCS referenced by the value of the executive-VMCS pointer field at the time of the VM entry
(see Section 34.15.4.7). This VMCS also controls the delivery of such VM exits. Thus, VM exits induced by a

VM entry returning from SMM are to the executive monitor and not to the STM.

34.15.4.9 SMI Blocking

VM entries that return from SMM determine the blocking of system-management interrupts (SMIs) as follows:

® If the “deactivate dual-monitor treatment” VM-entry control is 0, SMIs are blocked after VM entry if and only if
the bit 2 in the interruptibility-state field is 1.

® If the “deactivate dual-monitor treatment” VM-entry control is 1, the blocking of SMIs depends on whether the
logical processor is in SMX operation:®

— If the logical processor is in SMX operation, SMIs are blocked after VM entry.
— If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

VM entries that return from SMM and that do not deactivate the dual-monitor treatment may leave SMls blocked.
This feature exists to allow the STM to invoke functionality outside of SMM without unblocking SMls.

34.15.4.10 Failures of VM Entries That Return from SMM

Section 26.7 describes the treatment of VM entries that fail during or after loading guest state. Such failures record
information in the VM-exit information fields and load processor state as would be done on a VM exit. The VMCS
used is the one that was current before the VM entry commenced. Control is thus transferred to the STM and the
logical processor remains in SMM.

34.15.5 Enabling the Dual-Monitor Treatment

Code and data for the SMM-transfer monitor (STM) reside in a region of SMRAM called the monitor segment
(MSEG). Code running in SMM determines the location of MSEG and establishes its content. This code is also
responsible for enabling the dual-monitor treatment.

SMM code enables the dual-monitor treatment and specifies the location of MSEG by writing to the
1IA32_SMM_MONITOR_CTL MSR (index 9BH). The MSR has the following format:

® Bit O is the register’s valid bit. The STM may be invoked using VMCALL only if this bit is 1. Because VMCALL is
used to activate the dual-monitor treatment (see Section 34.15.6), the dual-monitor treatment cannot be
activated if the bit is 0. This bit is cleared when the logical processor is reset.

® Bit 1 is reserved.

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in the Intel® 64 and IA-32 Architectures Soft-
ware Developer’s Manual, Volume 2D.
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Bit 2 determines whether executions of VMXOFF unblock SMIs under the default treatment of SMIs and SMM.
Executions of VMXOFF unblock SMls unless bit 2 is 1 (the value of bit O is irrelevant). See Section 34.14.4.

Certain leaf functions of the GETSEC instruction clear this bit (see Chapter 6, “Safer Mode Extensions
Reference,” in Intel® 64 and IA-32 Architectures Software Developer’s Manual, Volume 2D).

Bits 11:3 are reserved.

Bits 31:12 contain a value that, when shifted left 12 bits, is the physical address of MSEG (the MSEG base
address).

Bits 63:32 are reserved.

The following items detail use of this MSR:

The 1A32_SMM_MONITOR_CTL MSR is supported only on processors that support the dual-monitor treatment.t
On other processors, accesses to the MSR using RDMSR or WRMSR generate a general-protection fault
(#GP(0)).

A write to the IA32_SMM_MONITOR_CTL MSR using WRMSR generates a general-protection fault (#GP(0)) if

executed outside of SMM or if an attempt is made to set any reserved bit. An attempt to write to the
IA32_SMM_MONITOR_CTL MSR fails if made as part of a VM exit that does not end in SMM or part of a
VM entry that does not begin in SMM.

® Reads from the 1A32_SMM_MONITOR_CTL MSR using RDMSR are allowed any time RDMSR is allowed. The
MSR may be read as part of any VM exit.

® The dual-monitor treatment can be activated only if the valid bit in the MSR is set to 1.

The 32 bytes located at the MSEG base address are called the MSEG header. The format of the MSEG header is
given in Table 34-10 (each field is 32 bits).

Table 34-10. Format of MSEG Header

Byte Offset Field

0 MSEG-header revision identifier
4 SMM-transfer monitor features
8 GDTR limit

12 GDTR base offset

16 CS selector

20 EIP offset

24 ESP offset

28 CR3 offset

To ensure proper behavior in VMX operation, software should maintain the MSEG header in writeback cacheable
memory. Future implementations may allow or require a different memory type.2 Software should consult the VMX
capability MSR I1A32_VMX_BASIC (see Appendix A.1).

SMM code should enable the dual-monitor treatment (by setting the valid bit in IA32_SMM_MONITOR_CTL MSR)
only after establishing the content of the MSEG header as follows:

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor
treatment is supported.

2. Alternatively, software may map the MSEG header with the UC memory type; this may be necessary, depending on how memory is
organized. Doing so is strongly discouraged unless necessary as it will cause the performance of transitions using those structures
to suffer significantly. In addition, the processor will continue to use the memory type reported in the VMX capability MSR
IA32_VMX_BASIC with exceptions noted in Appendix A.1.
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® Bytes 3:0 contain the MSEG revision identifier. Different processors may use different MSEG revision identi-
fiers. These identifiers enable software to avoid using an MSEG header formatted for one processor on a
processor that uses a different format. Software can discover the MSEG revision identifier that a processor uses
by reading the VMX capability MSR I1A32_VMX_MISC (see Appendix A.6).

® Bytes 7:4 contain the SMM-transfer monitor features field. Bits 31:1 of this field are reserved and must be
zero. Bit O of the field is the 1A-32e mode SMM feature bit. It indicates whether the logical processor will be
in 1A-32e mode after the STM is activated (see Section 34.15.6).

® Bytes 31:8 contain fields that determine how processor state is loaded when the STM is activated (see Section
34.15.6.5). SMM code should establish these fields so that activating of the STM invokes the STM’s initialization
code.

34.15.6 Activating the Dual-Monitor Treatment

The dual-monitor treatment may be enabled by SMM code as described in Section 34.15.5. The dual-monitor treat-
ment is activated only if it is enabled and only by the executive monitor. The executive monitor activates the dual-
monitor treatment by executing VMCALL in VMX root operation.

When VMCALL activates the dual-monitor treatment, it causes an SMM VM exit. Differences between this SMM
VM exit and other SMM VM exits are discussed in Sections 34.15.6.1 through 34.15.6.6. See also “VMCALL—Call to
VM Monitor” in Chapter 30.

34.15.6.1 Initial Checks

An execution of VMCALL attempts to activate the dual-monitor treatment if (1) the processor supports the dual-
monitor treatment; 1 (2) the logical processor is in VMX root operation; (3) the logical processor is outside SMM and
the valid bit is set in the IA32_SMM_MONITOR_CTL MSR; (4) the logical processor is not in virtual-8086 mode and
not in compatibility mode; (5) CPL = 0; and (6) the dual-monitor treatment is not active.

Such an execution of VMCALL begins with some initial checks. These checks are performed before updating the
current-VMCS pointer and the executive-VMCS pointer field (see Section 34.15.2.2).

The VMCS that manages SMM VM exit caused by this VMCALL is the current VMCS established by the executive
monitor. The VMCALL performs the following checks on the current VMCS in the order indicated:

1. There must be a current VMCS pointer.
2. The launch state of the current VMCS must be clear.

3. Reserved bits in the VM-exit controls in the current VMCS must be set properly. Software may consult the VMX
capability MSR 1A32_VMX_EXIT_CTLS to determine the proper settings (see Appendix A.4).

If any of these checks fail, subsequent checks are skipped and VMCALL fails. If all these checks succeed, the logical
processor uses the 1A32_SMM_MONITOR_CTL MSR to determine the base address of MSEG. The following checks
are performed in the order indicated:

1. The logical processor reads the 32 bits at the base of MSEG and compares them to the processor’s MSEG
revision identifier.

2. The logical processor reads the SMM-transfer monitor features field:

— Bit 0 of the field is the 1A-32e mode SMM feature bit, and it indicates whether the logical processor will be
in 1A-32e mode after the SMM-transfer monitor (STM) is activated.

* If the VMCALL is executed on a processor that does not support Intel 64 architecture, the 1A-32e mode
SMM feature bit must be 0.

* |If the VMCALL is executed in 64-bit mode, the 1A-32e mode SMM feature bit must be 1.
— Bits 31:1 of this field are currently reserved and must be zero.

If any of these checks fail, subsequent checks are skipped and the VMCALL fails.

1. Software should consult the VMX capability MSR IA32_VMX_BASIC (see Appendix A.1) to determine whether the dual-monitor
treatment is supported.
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34.15.6.2 Updating the Current-VMCS and Executive-VMCS Pointers

Before performing the steps in Section 34.15.2.2, SMM VM exits that activate the dual-monitor treatment begin by
loading the SMM-transfer VMCS pointer with the value of the current-VMCS pointer.

34.15.6.3 Saving Guest State

As noted in Section 34.15.2.4, SMM VM exits save the contents of the SMBASE register into the corresponding field
in the guest-state area. While this is true also for SMM VM exits that activate the dual-monitor treatment, the
VMCS used for those VM exits exists outside SMRAM.

The SMM-transfer monitor (STM) can also discover the current value of the SMBASE register by using the RDMSR
instruction to read the 1A32_SMBASE MSR (MSR address 9EH). The following items detail use of this MSR:

® The MSR is supported only if IA32_VMX_MISC[15] = 1 (see Appendix A.6).

® A write to the IA32_SMBASE MSR using WRMSR generates a general-protection fault (#GP(0)). An attempt to
write to the 1A32_SMBASE MSR fails if made as part of a VM exit or part of a VM entry.

® Aread from the 1A32_SMBASE MSR using RDMSR generates a general-protection fault (#GP(0)) if executed
outside of SMM. An attempt to read from the 1A32_SMBASE MSR fails if made as part of a VM exit that does not
end in SMM.

34.15.6.4 Saving MSRs

The VM-exit MSR-store area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
saved into that area.

34.15.6.5 Loading Host State

The VMCS that is current during an SMM VM exit that activates the dual-monitor treatment was established by the
executive monitor. It does not contain the VM-exit controls and host state required to initialize the STM. For this
reason, such SMM VM exits do not load processor state as described in Section 27.5. Instead, state is set to fixed
values or loaded based on the content of the MSEG header (see Table 34-10):

® CRO is set to as follows:
— PG, NE, ET, MP, and PE are all set to 1.
— CD and NW are left unchanged.
— All other bits are cleared to O.
® CRS3is set as follows:
— Bits 63:32 are cleared on processors that support 1A-32e mode.

— Bits 31:12 are set to bits 31:12 of the sum of the MSEG base address and the CR3-offset field in the MSEG
header.

— Bits 11:5 and bits 2:0 are cleared (the corresponding bits in the CR3-offset field in the MSEG header are
ignored).

— Bits 4:3 are set to bits 4:3 of the CR3-offset field in the MSEG header.
® CR4is set as follows:

— MCE, PGE, and PCIDE are cleared.

— PAE is set to the value of the 1A-32e mode SMM feature bit.

— If the 1A-32e mode SMM feature bit is clear, PSE is set to 1 if supported by the processor; if the bit is set,
PSE is cleared.

— All other bits are unchanged.
® DR7 is set to 400H.
® The IA32_DEBUGCTL MSR is cleared to 00000000_00000000H.
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® The registers CS, SS, DS, ES, FS, and GS are loaded as follows:
— All registers are usable.

— CS.selector is loaded from the corresponding field in the MSEG header (the high 16 bits are ignored), with
bits 2:0 cleared to O. If the result is OO00H, CS.selector is set to 0008H.

— The selectors for SS, DS, ES, FS, and GS are set to CS.selector+0008H. If the result is 0000H (if the CS
selector was FFF8H), these selectors are instead set to O008H.

— The base addresses of all registers are cleared to zero.
— The segment limits for all registers are set to FFFFFFFFH.
— The AR bytes for the registers are set as follows:
® CS.Typeis set to 11 (execute/read, accessed, non-conforming code segment).
®* For SS, DS, ES, FS, and GS, the Type is set to 3 (read/write, accessed, expand-up data segment).
®* The S bits for all registers are set to 1.
® The DPL for each register is set to O.
®* The P bits for all registers are set to 1.

®* On processors that support Intel 64 architecture, CS.L is loaded with the value of the I1A-32e mode SMM
feature bit.

® (CS.D is loaded with the inverse of the value of the I1A-32e mode SMM feature bit.
®* For each of SS, DS, ES, FS, and GS, the D/B bit is set to 1.
®* The G bits for all registers are set to 1.

¢ LDTRis unusable. The LDTR selector is cleared to O000H, and the register is otherwise undefined (although the
base address is always canonical)

® GDTR.base is set to the sum of the MSEG base address and the GDTR base-offset field in the MSEG header
(bits 63:32 are always cleared on processors that support 1A-32e mode). GDTR.limit is set to the corre-
sponding field in the MSEG header (the high 16 bits are ignored).

® IDTR.base is unchanged. IDTR.limit is cleared to OOO0OH.

® RIP is set to the sum of the MSEG base address and the value of the RIP-offset field in the MSEG header
(bits 63:32 are always cleared on logical processors that support 1A-32e mode).

® RSP is set to the sum of the MSEG base address and the value of the RSP-offset field in the MSEG header
(bits 63:32 are always cleared on logical processor that supports 1A-32e mode).

® RFLAGS is cleared, except bit 1, which is always set.
® The logical processor is left in the active state.
® Event blocking after the SMM VM exit is as follows:
— There is no blocking by STI or by MOV SS.
— There is blocking by non-maskable interrupts (NMIs) and by SMis.
® There are no pending debug exceptions after the SMM VM exit.

®  For processors that support 1A-32e mode, the I1A32_EFER MSR is modified so that LME and LMA both contain
the value of the 1A-32e mode SMM feature bit.

If any of CR3[63:5], CR4.PAE, CR4.PSE, or IA32_EFER.LMA is changing, the TLBs are updated so that, after

VM exit, the logical processor does not use translations that were cached before the transition. This is not neces-
sary for changes that would not affect paging due to the settings of other bits (for example, changes to CR4.PSE if
IA32_EFER.LMA was 1 before and after the transition).

34.15.6.6 Loading MSRs

The VM-exit MSR-load area is not used by SMM VM exits that activate the dual-monitor treatment. No MSRs are
loaded from that area.
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34.15.7 Deactivating the Dual-Monitor Treatment

The SMM-transfer monitor may deactivate the dual-monitor treatment and return the processor to default treat-
ment of SMIs and SMM (see Section 34.14). It does this by executing a VM entry with the “deactivate dual-monitor
treatment” VM-entry control set to 1.

As noted in Section 26.2.1.3 and Section 34.15.4.1, an attempt to deactivate the dual-monitor treatment fails in
the following situations: (1) the processor is not in SMM; (2) the “entry to SMM” VM-entry control is 1; or (3) the
executive-VMCS pointer does not contain the VMXON pointer (the VM entry is to VMX non-root operation).

As noted in Section 34.15.4.9, VM entries that deactivate the dual-monitor treatment ignore the SMI bit in the
interruptibility-state field of the guest-state area. Instead, the blocking of SMIs following such a VM entry depends
on whether the logical processor is in SMX operation:t

® If the logical processor is in SMX operation, SMIs are blocked after VM entry. SMIs may later be unblocked by
the VMXOFF instruction (see Section 34.14.4) or by certain leaf functions of the GETSEC instruction (see
Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and I1A-32 Architectures Software Developer’s
Manual, Volume 2D).

® If the logical processor is outside SMX operation, SMIs are unblocked after VM entry.

34.16 SMI AND PROCESSOR EXTENDED STATE MANAGEMENT

On processors that support processor extended states using XSAVE/XRSTOR (see Chapter 13, “Managing State
Using the XSAVE Feature Set” of the Intel® 64 and 1A-32 Architectures Software Developer’s Manual, Volume 1),
the processor does not save any XSAVE/XRSTOR related state on an SMI. It is the responsibility of the SMI handler
code to properly preserve the state information (including CR4.0SXSAVE, XCRO, and possibly processor extended
states using XSAVE/XRSTOR). Therefore, the SMI handler must follow the rules described in Chapter 13,
“Managing State Using the XSAVE Feature Set” of the Intel® 64 and 1A-32 Architectures Software Developer’s
Manual, Volume 1.

34.17 MODEL-SPECIFIC SYSTEM MANAGEMENT ENHANCEMENT

This section describes enhancement of system management features that apply only to the 4th generation Intel
Core processors. These features are model-specific. BIOS and SMM handler must use CPUID to enumerate
DisplayFamily_DisplayModel signhature when programming with these interfaces.

34.17.1 SMM Handler Code Access Control

The BIOS may choose to restrict the address ranges of code that SMM handler executes. When SMM handler code
execution check is enabled, an attempt by the SMM handler to execute outside the ranges specified by SMRR (see
Section 34.4.2.1) will cause the assertion of an unrecoverable machine check exception (MCE).

The interface to enable SMM handler code access check resides in a per-package scope model-specific register
MSR_SMM_FEATURE_CONTROL at address 4EOH. An attempt to access MSR_SMM_FEATURE_CONTROL outside of
SMM will cause a #GP. Writes to MSR_SMM_FEATURE_CONTROL is further protected by configuration interface of
MSR_SMM_MCA_CAP at address 17DH.

Details of the interface of MSR_SMM_FEATURE_CONTROL and MSR_SMM_MCA_CAP are described in Table 35-27.

1. Alogical processor is in SMX operation if GETSEC[SEXIT] has not been executed since the last execution of GETSEC[SENTER]. A logi-
cal processor is outside SMX operation if GETSEC[SENTER] has not been executed or if GETSEC[SEXIT] was executed after the last
execution of GETSEC[SENTER]. See Chapter 6, “Safer Mode Extensions Reference,” in Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 2B.
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34.17.2 SMIl Delivery Delay Reporting

Entry into the system management mode occurs at instruction boundary. In situations where a logical processor is
executing an instruction involving a long flow of internal operations, servicing an SMI by that logical processor will
be delayed. Delayed servicing of SMI of each logical processor due to executing long flows of internal operation in
a physical processor can be queried via a package-scope register MSR_SMM_DELAYED at address 4E2H.

The interface to enable reporting of SMI delivery delay due to long internal flows resides in a per-package scope
model-specific register MSR_SMM_DELAYED. An attempt to access MSR_SMM_DELAYED outside of SMM will cause
a #GP. Availability to MSR_SMM_DELAYED is protected by configuration interface of MSR_SMM_MCA_CAP at
address 17DH.

Details of the interface of MSR_SMM_DELAYED and MSR_SMM_MCA_CAP are described in Table 35-27.

34.17.3 Blocked SMI Reporting

A logical processor may have entered into a state and blocked from servicing other interrupts (including SMI).
Logical processors in a physical processor that are blocked in serving SMI can be queried in a package-scope
register MSR_SMM_BLOCKED at address 4E3H. An attempt to access MSR_SMM_BLOCKED outside of SMM wiill
cause a #GP.

Details of the interface of MSR_SMM_BLOCKED is described in Table 35-27.
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CHAPTER 35
MODEL-SPECIFIC REGISTERS (MSRS)

This chapter lists MSRs across Intel processor families. All MSRs listed can be read with the RDMSR and written with

the WRMSR instructions.

Register addresses are given in both hexadecimal and decimal. The register name is the mnemonic register name
and the bit description describes individual bits in registers.

Model specific registers and its bit-fields may be supported for a finite range of processor families/models. To
distinguish between different processor family and/or models, software must use CPUID.01H leaf function to query
the combination of DisplayFamily and DisplayModel to determine model-specific availability of MSRs (see CPUID
instruction in Chapter 3, “Instruction Set Reference, A-L” in the Intel® 64 and 1A-32 Architectures Software Devel-
oper’s Manual, Volume 2A). Table 35-1 lists the signature values of DisplayFamily and DisplayModel for various
processor families or processor number series.

Table 35-1. CPUID Signature Values of DisplayFamily_DisplayModel

DisplayFamily_DisplayModel

Processor Families/Processor Number Series

06_57H

Intel® Xeon Phi™ Processor 3200, 5200, 7200 Series

06_85H Future Intel® Xeon Phi™ Processor
06_8€H, 06_9€EH 7th generation Intel® Core™ processors based on Kaby Lake microarchitecture
06_55H Future Intel® Xeon® Processors

06_4€H, 06_5€EH

6th generation Intel Core processors and Intel Xeon processor €3-1500m v5 product family and €3-
1200 v5 product family based on Skylake microarchitecture

06_56H Intel Xeon processor D-1500 product family based on Broadwell microarchitecture

06_4FH Intel Xeon processor E5 v4 Family based on Broadwell microarchitecture, Intel Xeon processor €7 v4
Family, Intel Core i7-69xx Processor Extreme Edition

06_47H 5th generation Intel Core processors, Intel Xeon processor €3-1200 v4 product family based on
Broadwell microarchitecture

06_3DH Intel Core M-5xxx Processor, 5th generation Intel Core processors based on Broadwell
microarchitecture

06_3FH Intel Xeon processor E5-4600/2600/1600 v3 product families, Intel Xeon processor €7 v3 product

families based on Haswell-E microarchitecture, Intel Core i7-59xx Processor Extreme Edition

06_3CH, 06_45H, 06_46H

4th Generation Intel Core processor and Intel Xeon processor €3-1200 v3 product family based on
Haswell microarchitecture

06_3€EH Intel Xeon processor €7-8800/4800/2800 v2 product families based on lvy Bridge-E
microarchitecture

06_3€H Intel Xeon processor €5-2600/1600 v2 product families and Intel Xeon processor €5-2400 v2
product family based on Ivy Bridge-E microarchitecture, Intel Core i7-49xx Processor Extreme Edition

06_3AH 3rd Generation Intel Core Processor and Intel Xeon processor £3-1200 v2 product family based on lvy
Bridge microarchitecture

06_2DH Intel Xeon processor E5 Family based on Intel microarchitecture code name Sandy Bridge, Intel Core
i7-39xx Processor Extreme Edition

06_2FH Intel Xeon Processor €7 Family

06_2AH Intel Xeon processor E3-1200 product family; 2nd Generation Intel Core i7, i5, i3 Processors 2xxx
Series

06_2€EH Intel Xeon processor 7500, 6500 series

06_25H, 06_2CH

Intel Xeon processors 3600, 5600 series, Intel Core i7, i5 and i3 Processors
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Table 35-1. CPUID Signature (Contd.)Values of DisplayFamily_DisplayModel (Contd.)

DisplayFamily_DisplayModel

Processor Families/Processor Number Series

06_1€H, 06_1FH

Intel Core i7 and i5 Processors

06_1AH Intel Core i7 Processor, Intel Xeon processor 3400, 3500, 5500 series

06_1DH Intel Xeon processor MP 7400 series

06_17H Intel Xeon processor 3100, 3300, 5200, 5400 series, Intel Core 2 Quad processors 8000, 9000
series

06_OFH Intel Xeon processor 3000, 3200, 5100, 5300, 7300 series, Intel Core 2 Quad processor 6000 series,
Intel Core 2 Extreme 6000 series, Intel Core 2 Duo 4000, 5000, 6000, 7000 series processors, Intel
Pentium dual-core processors

06_0EH Intel Core Duo, Intel Core Solo processors

06_0DH Intel Pentium M processor

06_5FH Future Intel® Atom™ processors based on Goldmont Microarchitecture (code name Denverton)

06_5CH Next Generation Intel Atom processors based on Goldmont Microarchitecture

06_4CH Intel Atom processor X7-Z8000 and X5-Z8000 series based on Airmont Microarchitecture

06_5DH Intel Atom processor X3-C3000 based on Silvermont Microarchitecture

06_5AH Intel Atom processor Z3500 series

06_4AH Intel Atom processor 23400 series

06_37H Intel Atom processor E3000 series, Z3600 series, Z3700 series

06_4DH Intel Atom processor C2000 series

06_36H Intel Atom processor S1000 Series

06_1CH, 06_26H, 06_27H,
06_35H, 06_36H

Intel Atom processor family, Intel Atom processor D2000, N2000, E2000, 22000, C1000 series

OF_O6H

Intel Xeon processor 7100, 5000 Series, Intel Xeon Processor MP, Intel Pentium 4, Pentium D
processors

OF_03H, OF_04H

Intel Xeon processor, Intel Xeon processor MP, Intel Pentium 4, Pentium D processors

06_09H

Intel Pentium M processor

OF_02H

Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

OF_OH, OF_01H

Intel Xeon Processor, Intel Xeon processor MP, Intel Pentium 4 processors

06_7H, 06_08H, 06_0AH,
06_0BH

Intel Pentium 111 Xeon processor, Intel Pentium 111 processor

06_03H, 06_05H

Intel Pentium Il Xeon processor, Intel Pentium Il processor

06_01H

Intel Pentium Pro processor

05_01H, 05_02H, 05_04H

Intel Pentium processor, Intel Pentium processor with MMX Technology

The Intel® Quark™ SoC X1000 processor can be identified by the signature of DisplayFamily_DisplayModel = 05_09H and

SteppinglD = 0

35.1

ARCHITECTURAL MSRS

Many MSRs have carried over from one generation of 1A-32 processors to the next and to Intel 64 processors. A
subset of MSRs and associated bit fields, which do not change on future processor generations, are now considered
architectural MSRs. For historical reasons (beginning with the Pentium 4 processor), these “architectural MSRs”
were given the prefix “IA32_". Table 35-2 lists the architectural MSRs, their addresses, their current names, their
names in previous IA-32 processors, and bit fields that are considered architectural. MSR addresses outside Table
35-2 and certain bit fields in an MSR address that may overlap with architectural MSR addresses are model-
specific. Code that accesses a machine specified MSR and that is executed on a processor that does not support
that MSR will generate an exception.
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MODEL-SPECIFIC REGISTERS (MSRS)

Architectural MSR or individual bit fields in an architectural MSR may be introduced or transitioned at the granu-
larity of certain processor family/model or the presence of certain CPUID feature flags. The right-most column of
Table 35-2 provides information on the introduction of each architectural MSR or its individual fields. This informa-
tion is expressed either as signature values of “DF_DM” (see Table 35-1) or via CPUID flags.

Certain bit field position may be related to the maximum physical address width, the value of which is expressed
as “MAXPHYADDR” in Table 35-2. “MAXPHYADDR” is reported by CPUID.8000_0008H leaf.

MSR address range between 40000000H - 400000FFH is marked as a specially reserved range. All existing and
future processors will not implement any features using any MSR in this range.

Table 35-2. IA-32 Architectural MSRs

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
OH 0 IA32_P5_MC_ADDR (P5_MC_ADDR) See Section 35.22, “MSRs in Pentium Pentium Processor
Processors.” (05_01H)
TH 1 IA32_P5_MC_TYPE (P5_MC_TYPE) See Section 35.22, “MSRs in Pentium DF_DM=05_01H
Processors.”
6H 6 IA32_MONITOR_FILTER_SIZE See Section 8.10.5, "Monitor/Mwait OF_03H
Address Range Determination.”
10H 16 IA32_TIME_STAMP_ See Section 17.15, “Time-Stamp Counter.” | 05_O1H
COUNTER (TSC)
17H 23 IA32_PLATFORM_ID Platform ID (RO) 06_01H
(MSR_PLATFORM_ID) The operating system can use this MSR to
determine “slot” information for the
processor and the proper microcode update
to load.
490 Reserved.
52:50 Platform Id (RO)
Contains information concerning the
intended platform for the processor.
52 51 50
0 O O ProcessorFlag0
0 O 1 ProcessorFlag1
0 1 0 ProcessorFlag2
0 1 1 ProcessorFlag3
1 0 O ProcessorFlag4
1 0 1 ProcessorFlag5
1 1 0 ProcessorFlag6
1 1 1 ProcessorFlag7
63:53 Reserved.
1BH 27 IA32_APIC_BASE (APIC_BASE) 06_0TH
7.0 Reserved
8 BSP flag (R/W)
9 Reserved
10 Enable x2APIC mode 06_1AH
11 APIC Global Enable (R/W)
(MAXPHYADDR - 1):12 APIC Base (R/W)
63: MAXPHYADDR Reserved
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
3AH 58 IA32_FEATURE_CONTROL Control Features in Intel 64 Processor If any one enumeration

(R/W)

condition for defined bit
field holds

Lock bit (R/WO): (1 = locked). When set,
locks this MSR from being written, writes
to this bit will result in GP(0).

Note: Once the Lock bit is set, the contents
of this register cannot be modified.
Therefore the lock bit must be set after
configuring support for Intel Virtualization
Technology and prior to transferring control
to an option ROM or the OS. Hence, once
the Lock bit is set, the entire
IA32_FEATURE_CONTROL contents are
preserved across RESET when PWRGOOD is
not deasserted.

If any one enumeration
condition for defined bit
field position greater than
bit 0 holds

Enable VMX inside SMX operation (R/WL):
This bit enables a system executive to use
VMX in conjunction with SMX to support
Intel® Trusted Execution Technology.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag and
SMX feature flag set (ECX bits 5 and 6
respectively).

If CPUID.OTH:ECX[5] = 1
&8& CPUID.0TH:ECX[6] = 1

Enable VMX outside SMX operation (R/WL):
This bit enables VMX for system executive
that do not require SMX.

BIOS must set this bit only when the CPUID
function 1 returns VMX feature flag set
(ECX bit 5).

If CPUID.0TH:ECX[5] = 1

73

Reserved

14:8

SENTER Local Function Enables (R/WL):
When set, each bit in the field represents
an enable control for a corresponding
SENTER function. This bit is supported only
if CPUID.1:ECX.[bit 6] is set

If CPUID.0TH:ECX[6] = 1

15

SENTER Global Enable (R/WL): This bit must
be set to enable SENTER leaf functions.
This bit is supported only if
CPUID.T:ECX.[bit 6] is set

If CPUID.0TH:ECX[6] = 1

16

Reserved

17

SGX Launch Control Enable (R/WL): This bit
must be set to enable runtime
reconfiguration of SGX Launch Control via
IA32_SGXLEPUBKEYHASHN MSR.

If CPUID.(EAX=07H,
ECX=0H): ECX[30] = 1

18

SGX Global Enable (R/WL): This bit must be
set to enable SGX leaf functions.

If CPUID.(EAX=07H,
ECX=0H): EBX[2] = 1

19

Reserved
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register
Address

Hex

Decimal

Architectural MSR Name and bit
fields
(Former MSR Name)

MSR/Bit Description

Comment

20

LMCE On (R/WL): When set, system
software can program the MSRs associated
with LMCE to configure delivery of some
machine check exceptions to a single logical
processor.

If IA32_MCG_CAP[27] = 1

63:21

Reserved

3BH

59

IA32_TSC_ADJUST

Per Logical Processor TSC Adjust (R/Write
to clear)

If CPUID.(EAX=07H,
ECX=0H): EBX[1] = 1

63:0

THREAD_ADJUST:

Local offset value of the IA32_TSC for a
logical processor. Reset value is Zero. A
write to IA32_TSC will modify the local
offset in IA32_TSC_ADJUST and the
content of IA32_TSC, but does not affect
the internal invariant TSC hardware.

79H

121

IA32_BIOS_UPDT_TRIG
(BIOS_UPDT_TRIG)

BIOS Update Trigger (W)

Executing a WRMSR instruction to this MSR
causes a microcode update to be loaded
into the processor. See Section 9.11.6,
“Microcode Update Loader.”

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

8BH

139

IA32_BIOS_SIGN_ID
(BIOS_SIGN/BBL_CR_D3)

BIOS Update Signature (RO)

Returns the microcode update signature
following the execution of CPUID.OTH.

A processor may prevent writing to this
MSR when loading guest states on VM
entries or saving guest states on VM exits.

06_01H

31.0

Reserved

63:32

It is recommended that this field be pre-
loaded with O prior to executing CPUID.

If the field remains O following the
execution of CPUID; this indicates that no
microcode update is loaded. Any non-zero
value is the microcode update signature.

8CH

140

IA32_SGXLEPUBKEYHASHO

IA32_SGXLEPUBKEYHASH[63:0] (R/W)

Bits 63:0 of the SHA256 digest of the
SIGSTRUCT.MODULUS for SGX Launch
Enclave. On reset, the default value is the
digest of Intel's signing key.

Read permitted If
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1,

Write permitted if
CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
171=18&&
IA32_FEATURE_CONTROL[
0]1=1
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
8DH 141 IA32_SGXLEPUBKEYHASH1 IA32_SGXLEPUBKEYHASH[127:64] (R/W) | Read permitted If
Bits 127:64 of the SHA256 digest of the | CPUID.(EAX=12H,ECX=0H):
SIGSTRUCT.MODULUS for SGX Launch EAX[O)=1.
Enclave. On reset, the default value is the | Write permitted if
digest of Intel's signing key. CPUID.(EAX=12H,ECX=0H):
EAX[0]=1 &&
IA32_FEATURE_CONTROL[
171=18&&
IA32_FEATURE_CONTROL[
0]=1
8EH 142 IA32_SGXLEPUBKEYHASH?2 IA32_SGXLEPUBKEYHASH[191:128] (R/W) | Read permitted If
Bits 191:128 of the SHA256 digest of the | CPUID.(EAX=12H,ECX=0H).
SIGSTRUCT.MODULUS for SGX Launch EAX[O]=1,
Enclave. On reset, the default value is the | Write permitted if
digest of Intel's signing key. CPUID.(EAX=12H,ECX=0H):
. EAX[0]=1 &&
8FH 143 IA32_SGXLEPUBKEYHASH3 IA32_SGXLEPUBKEYHASH[25§.1 92] (R/W) IA32_FEATURE_CONTROL[
Bits 255:192 of the SHA256 digest of the 17]=18&
SIGSTRUCT.MODULUS for SGX Launch IA32_FEATURE_CONTROL[
Enclave. On reset, the default value is the | gj =1 -
digest of Intel's signing key.
9BH 155 IA32_SMM_MONITOR_CTL SMM Monitor Configuration (R/W) If CPUID.OTH: ECX[51=1 ||
CPUID.OTH: ECX[B] = 1
0 Valid (R/W)
1 Reserved
2 Controls SMI unblocking by VMXOFF (see If IA32_VMX_MIS([28]
Section 34.14.4)
11:3 Reserved
31:12 MSEG Base (R/W)
63:32 Reserved
9€EH 158 IA32_SMBASE Base address of the logical processor’s If IA32_VMX_MIS([15]
SMRAM image (RO, SMM only)
C1H 193 IA32_PMCO (PERFCTRO) General Performance Counter O (R/W) If CPUID.OAH: EAX[15:8] >
0
C2H 194 IA32_PMC1 (PERFCTRT) General Performance Counter 1 (R/W) If CPUID.OAH: EAX[15:8] >
1
C3H 195 IA32_PMC2 General Performance Counter 2 (R/W) If CPUID.OAH: EAX[15:8] >
2
C4H 196 IA32_PM(3 General Performance Counter 3 (R/W) If CPUID.OAH: EAX[15:8] >
3
C5H 197 IA32_PMC4 General Performance Counter 4 (R/W) If CPUID.OAH: EAX[15:8] >
4
C6H 198 IA32_PMC5 General Performance Counter 5 (R/W) If CPUID.OAH: EAX[15:8] >
5
C7H 199 IA32_PMC6 General Performance Counter 6 (R/W) If CPUID.OAH: EAX[15:8] >
6
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
C8H 200 IA32_PMC7 General Performance Counter 7 (R/W) If CPUID.OAH: EAX[15:8] >
7
E7H 231 IA32_MPERF TSC Frequency Clock Counter (R/Write to If CPUID.O6H: ECX[0] =1
clear)
63.0 CO_MCNT: CO TSC Frequency Clock Count
Increments at fixed interval (relative to TSC
freq.) when the logical processor is in CO.
Cleared upon overflow / wrap-around of
IA32_APERF.
E8H 232 IA32_APERF Actual Performance Clock Counter (R/Write | If CPUID.O6H: ECX[0] = 1
to clear).
63:.0 CO_ACNT: CO Actual Frequency Clock
Count
Accumulates core clock counts at the
coordinated clock frequency, when the
logical processor is in CO.
Cleared upon overflow / wrap-around of
IA32_MPERF.
FEH 254 IA32_MTRRCAP (MTRRcap) MTRR Capability (RO) Section 11.11.2.1, 06_01H
“IA32_MTRR_DEF_TYPE MSR."
7.0 VCNT: The number of variable memory
type ranges in the processor.
8 Fixed range MTRRs are supported when
set.
9 Reserved.
10 WC Supported when set.
11 SMRR Supported when set.
63:12 Reserved.
174H | 372 IA32_SYSENTER_CS SYSENTER_CS_MSR (R/W) 06_01H
15.0 CS Selector
63:16 Reserved.
175H | 373 IA32_SYSENTER_ESP SYSENTER_ESP_MSR (R/W) 06_01H
176H | 374 IA32_SYSENTER_EIP SYSENTER_EIP_MSR (R/W) 06_01H
179H | 377 IA32_MCG_CAP (MCG_CAP) Global Machine Check Capability (RO) 06_01H
7.0 Count: Number of reporting banks.
8 MCG_CTL_P: IA32_MCG_CTU is present if
this bit is set
9 MCG_EXT_P: Extended machine check
state registers are present if this bit is set
10 MCP_CMCI_P: Support for corrected MC 06_01H
error event is present.
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
11 MCG_TES_P: Threshold-based error status
register are present if this bit is set.
1512 Reserved
23:16 MCG_EXT_CNT: Number of extended
machine check state registers present.
24 MCG_SER_P: The processor supports
software error recovery if this bit is set.
25 Reserved.
26 MCG_ELOG_P: Indicates that the processor | 06_3EH
allows platform firmware to be invoked
when an error is detected so that it may
provide additional platform specific
information in an ACPI format “Generic
Error Data Entry” that augments the data
included in machine check bank registers.
27 MCG_LMCE_P: Indicates that the processor | 06_3EH
support extended state in
IA32_MCG_STATUS and associated
MSR necessary to configure Local
Machine Check Exception (LMCE).
63:28 Reserved.
17AH | 378 IA32_MCG_STATUS (MCG_STATUS) Global Machine Check Status (R/W0) 06_0TH
0 RIPV. Restart IP valid 06_0TH
1 EIPV. Error IP valid 06_0TH
2 MCIP. Machine check in progress 06_01H
3 LMCE_S. If
IA32_MCG_CAP.LMCE_P[2
71=1
63:4 Reserved.
17BH | 379 IA32_MCG_CTL (MCG_CTL) Global Machine Check Control (R/W) IfIA32_MCG_CAP.CTL_P[8]
=1
180H- | 384- Reserved 06_0€H!
185H |389
186H | 390 IA32_PERFEVTSELO (PERFEVTSELO) | Performance Event Select Register O (R/W) | If CPUID.OAH: EAX[15:8] >
0
7.0 Event Select: Selects a performance event
logic unit.
15:8 UMask: Qualifies the microarchitectural
condition to detect on the selected event
logic.
16 USR: Counts while in privilege level is not
ring 0.
17 0S: Counts while in privilege level is ring 0.
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
18 Edge: Enables edge detection if set.
19 PC: enables pin control.
20 INT: enables interrupt on counter overflow.
21 AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.
22 EN: enables the corresponding performance
counter to commence counting when this
bit is set.
23 INV: invert the CMASK.
31:24 CMASK: When CMASK is not zero, the
corresponding performance counter
increments each cycle if the event count is
greater than or equal to the CMASK.
63:32 Reserved.
187H | 391 IA32_PERFEVTSEL1 (PERFEVTSEL1T) | Performance Event Select Register 1 (R/W) | If CPUID.OAH: EAX[15:8] >
1
188H | 392 IA32_PERFEVTSEL2 Performance Event Select Register 2 (R/W) | If CPUID.OAH: EAX[15:8] >
2
189H | 393 IA32_PERFEVTSEL3 Performance Event Select Register 3 (R/W) | If CPUID.OAH: EAX[15:8] >
3
18AH- | 394- | Reserved 06_0EH?
197H | 407
198H | 408 IA32_PERF_STATUS (RO) OF_O3H
15:.0 Current performance State Value
63:16 Reserved.
199H | 409 IA32_PERF_CTL (R/W) OF_O3H
15:.0 Target performance State Value
31:16 Reserved.
32 IDA Engage. (R/W) 06_0FH (Mobile only)
When set to 1: disengages IDA
63:33 Reserved.
19AH |[410 IA32_CLOCK_MODULATION Clock Modulation Control (R/W) If CPUID.OTH:EDX[22] = 1
See Section 14.7.3, "Software Controlled
Clock Modulation.”
0 Extended On-Demand Clock Modulation If CPUID.O6H:EAX[5] = 1
Duty Cycle:
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
3:1 On-Demand Clock Modulation Duty Cycle: If CPUID.OTH:EDX[22] = 1
Specific encoded values for target duty
cycle modulation.
4 On-Demand Clock Modulation Enable: Set 1 | If CPUID.OTH:EDX[22] = 1
to enable modulation.
63:5 Reserved.
19BH | 411 IA32_THERM_INTERRUPT Thermal Interrupt Control (R/W) If CPUID.OTH:EDX[22] = 1
Enables and disables the generation of an
interrupt on temperature transitions
detected with the processor’s thermal
sensors and thermal monitor.
See Section 14.7.2, “Thermal Monitor.”
0 High-Temperature Interrupt Enable If CPUID.OTH:EDX[22] =1
1 Low-Temperature Interrupt Enable If CPUID.OTH:EDX[22] = 1
2 PROCHOT# Interrupt Enable If CPUID.OTH:EDX[22] = 1
3 FORCEPR# Interrupt Enable If CPUID.OTH:EDX[22] = 1
4 Critical Temperature Interrupt Enable If CPUID.OTH:EDX[22] = 1
7:5 Reserved.
14:8 Threshold #1 Value If CPUID.OTH:EDX[22] = 1
15 Threshold #1 Interrupt Enable If CPUID.OTH:EDX[22] = 1
22:16 Threshold #2 Value If CPUID.OTH:EDX[22] = 1
23 Threshold #2 Interrupt Enable If CPUID.OTH:EDX[22] = 1
24 Power Limit Notification Enable If CPUID.O6H:EAX[4] = 1
63:25 Reserved.
19CH | 412 IA32_THERM_STATUS Thermal Status Information (RO) If CPUID.OTH:EDX[22] = 1
Contains status information about the
processor's thermal sensor and automatic
thermal monitoring facilities.
See Section 14.7.2, “Thermal Monitor”
0 Thermal Status (RO): If CPUID.OTH:EDX[22] = 1
1 Thermal Status Log (R/W): If CPUID.OTH:EDX[22] = 1
2 PROCHOT # or FORCEPR# event (RO) If CPUID.OTH:EDX[22] = 1
3 PROCHOT # or FORCEPR# log (R/WCQ) If CPUID.OTH:EDX[22] = 1
4 Critical Temperature Status (RO) If CPUID.OTH:EDX[22] = 1
5 Critical Temperature Status log (R/WCO) If CPUID.OTH:EDX[22] = 1
6 Thermal Threshold #1 Status (RO) If CPUID.OTH:ECX[8] = 1
7 Thermal Threshold #1 log (R/WCO) If CPUID.OTH:ECX[8] = 1
8 Thermal Threshold #2 Status (RO) If CPUID.OTH:ECX[8] = 1
9 Thermal Threshold #2 log (R/WCO) If CPUID.OTH:ECX[8] = 1
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
10 Power Limitation Status (RO) If CPUID.O6H:EAX[4] = 1
11 Power Limitation log (R/WCO) If CPUID.O6H:EAX[4] = 1
12 Current Limit Status (RO) If CPUID.O6H:EAX[7] =1
13 Current Limit log (R/WCO) If CPUID.O6H:EAX[7] = 1
14 Cross Domain Limit Status (RO) If CPUID.O6H:EAX[7] =1
15 Cross Domain Limit log (R/WCO) If CPUID.OBH:EAX[7] = 1
22:16 Digital Readout (RO) If CPUID.O6H:EAX[O] = 1
26:23 Reserved.
30:27 Resolution in Degrees Celsius (RO) If CPUID.O6H:EAX[0] = 1
31 Reading Valid (RO) If CPUID.O6H:EAX[O] = 1
63:32 Reserved.
1AOH | 416 IA32_MISC_ENABLE Enable Misc. Processor Features (R/W)

Allows a variety of processor functions to
be enabled and disabled.

0 Fast-Strings Enable OF_OH

When set, the fast-strings feature (for REP
MOVS and REP STORS) is enabled (default);
when clear, fast-strings are disabled.

2:1 Reserved.
3 Automatic Thermal Control Circuit Enable | OF_OH
(R/W)

1= Setting this bit enables the thermal
control circuit (TCC) portion of the
Intel Thermal Monitor feature. This
allows the processor to automatically
reduce power consumption in
response to TCC activation.

0= Disabled.

Note: In some products clearing this bit
might be ignored in critical thermal

conditions, and TM1, TM2 and adaptive
thermal throttling will still be activated.

The default value of this field varies with
product . See respective tables where
default value is listed.

6:4 Reserved

Performance Monitoring Available (R) OF_OH
1= Performance monitoring enabled
0= Performance monitoring disabled

10:8 Reserved.
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register
Address

Hex

Decimal

Architectural MSR Name and bit
fields
(Former MSR Name)

MSR/Bit Description

Comment

11

Branch Trace Storage Unavailable (RO)

1= Processor doesn't support branch
trace storage (BTS)

0= BTSis supported

OF_OH

12

Processor Event Based Sampling (PEBS)
Unavailable (RO)

1= PEBS is not supported;
0= PEBS is supported.

06_0FH

15113

Reserved.

16

Enhanced Intel SpeedStep Technology

Enable (R/W)

0= Enhanced Intel SpeedStep
Technology disabled

1= Enhanced Intel SpeedStep
Technology enabled

If CPUID.OTH: ECX[7] =1

17

Reserved.

18

ENABLE MONITOR FSM (R/W)

When this bit is set to 0, the MONITOR
feature flag is not set (CPUID.0TH:ECX[bit
3] = 0). This indicates that
MONITOR/MWAIT are not supported.

Software attempts to execute
MONITOR/MWAIT will cause #UD when this
bitis 0.

When this bit is set to 1 (default),
MONITOR/MWAIT are supported
(CPUID.OTH:ECX[bit 3] = 1).

If the SSE3 feature flag ECX[0] is not set
(CPUID.OTH:ECX[bit O] = 0), the OS must
not attempt to alter this bit. BIOS must
leave it in the default state. Writing this bit
when the SSE3 feature flag is set to 0 may
generate a #GP exception.

OF_O3H

21:19

Reserved.
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register
Address

Hex

Decimal

Architectural MSR Name and bit
fields
(Former MSR Name)

MSR/Bit Description

Comment

22

Limit CPUID Maxval (R/W)

When this bit is set to 1, CPUID.OOH returns
a maximum value in EAX[7:0] of 2.

BIOS should contain a setup question that
allows users to specify when the installed
0S does not support CPUID functions
greater than 2.

Before setting this bit, BIOS must execute
the CPUID.OH and examine the maximum
value returned in EAX[7:0]. If the maximum
value is greater than 2, this bit is
supported.

Otherwise, this bit is not supported. Setting
this bit when the maximum value is not
greater than 2 may generate a #GP
exception.

Setting this bit may cause unexpected
behavior in software that depends on the
availability of CPUID leaves greater than 2.

OF_O3H

23

XTPR Message Disable (R/W)

When set to 1, XTPR messages are
disabled. xTPR messages are optional
messages that allow the processor to
inform the chipset of its priority.

if CPUID.

OTHECX[14] = 1

33:.24

Reserved.

34

XD Bit Disable (R/W)

When set to 1, the Execute Disable Bit
feature (XD Bit) is disabled and the XD Bit
extended feature flag will be clear
(CPUID.B0000001H: EDX[20]=0).

When set to a O (default), the Execute
Disable Bit feature (if available) allows the
0S to enable PAE paging and take
advantage of data only pages.

BIOS must not alter the contents of this bit
location, if XD bit is not supported. Writing
this bit to 1 when the XD Bit extended
feature flag is set to O may generate a #GP
exception.

if

CPUID.8000000TH:EDX[2

0]=1

63:35

Reserved.

1BOH

432

IA32_ENERGY_PERF_BIAS

Performance Energy Bias Hint (R/W)

if CPUID

GHECX[3] = 1

3.0

Power Policy Preference:

0 indicates preference to highest
performance.

15 indicates preference to maximize
energy saving.

634

Reserved.
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Table 35-2. I1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
1B1H | 433 IA32_PACKAGE_THERM_STATUS Package Thermal Status Information (RO) If CPUID.O6H: EAX[6] =1

Contains status information about the
package's thermal sensor.
See Section 14.8, “Package Level Thermal
Management.”

0 Pkg Thermal Status (RO):

1 Pkg Thermal Status Log (R/W):

2 Pkg PROCHOT # event (RO)

3 Pkg PROCHOT # log (R/WCO)

4 Pkg Critical Temperature Status (RO)

5 Pkg Critical Temperature Status log
(R/wWCO)

6 Pkg Thermal Threshold #1 Status (RO)

7 Pkg Thermal Threshold #1 log (R/WCQ)

8 Pkg Thermal Threshold #2 Status (RO)

9 Pkg Thermal Threshold #1 log (R/WCQ)

10 Pkg Power Limitation Status (RO)

11 Pkg Power Limitation log (R/WCO)

15:12 Reserved.

22:16 Pkg Digital Readout (RO)

63:23 Reserved.

1B2H |434 IA32_PACKAGE_THERM_INTERRUPT | Pkg Thermal Interrupt Control (R/W) If CPUID.O6H: EAX[6] =1

Enables and disables the generation of an
interrupt on temperature transitions
detected with the package’s thermal
Sensor.

See Section 14.8, “Package Level Thermal
Management.”

0 Pkg High-Temperature Interrupt Enable
1 Pkg Low-Temperature Interrupt Enable
2 Pkg PROCHOT# Interrupt Enable

3 Reserved.

4 Pkg Overheat Interrupt Enable

7:5 Reserved.

14.8 Pkg Threshold #1 Value

15 Pkg Threshold #1 Interrupt Enable
22:16 Pkg Threshold #2 Value

23 Pkg Threshold #2 Interrupt Enable

24 Pkg Power Limit Notification Enable
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MODEL-SPECIFIC REGISTERS (MSRS)

Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
63:25 Reserved.
1D9H | 473 IA32_DEBUGCTL (MSR_DEBUGCTLA, | Trace/Profile Resource Control (R/W) 06_0EH
MSR_DEBUGCTLB)
0 LBR: Setting this bit to 1 enables the 06_01H
processor to record a running trace of the
most recent branches taken by the
processor in the LBR stack.
1 BTF: Setting this bit to 1 enables the 06_01H
processor to treat EFLAGS.TF as single-step
on branches instead of single-step on
instructions.
5:2 Reserved.
6 TR: Setting this bit to 1 enables branch 06_0€EH
trace messages to be sent.
7 BTS: Setting this bit enables branch trace 06_0€EH
messages (BTMs) to be logged in a BTS
buffer.
8 BTINT: When clear, BTMs are logged in a 06_0€EH
BTS buffer in circular fashion. When this bit
is set, an interrupt is generated by the BTS
facility when the BTS buffer is full.
9 1: BTS_OFF_OS: When set, BTS or BTMis | 06_0FH
skipped if CPL = 0.
10 BTS_OFF_USR: When set, BTS or BTM is 06_0FH
skipped if CPL > O.
11 FREEZE_LBRS_ON_PMI: When set, the LBR | If CPUID.OTH: ECX[15] = 1
stack is frozen on a PMI request. && CPUID.OAH: EAX[7:0] >
1
12 FREEZE_PERFMON_ON_PMI: When set, If CPUID.OTH: ECX[15] =1
each ENABLE bit of the global counter && CPUID.OAH: EAX[7:0] >
control MSR are frozen (address 38FH)ona | 1
PMI request
13 ENABLE_UNCORE_PMI: When set, enables | 06_1AH
the logical processor to receive and
generate PMI on behalf of the uncore.
14 FREEZE_WHILE_SMM: When set, freezes If
perfmon and trace messages while in SMM. | IA32_PERF_CAPABILITIES]
12]=1
15 RTM_DEBUG: When set, enables DR7 debug | If (CPUID.(EAX=07H,
bit on XBEGIN ECX=0)EBX[11]=1)
63:16 Reserved.
1F2H | 498 IA32_SMRR_PHYSBASE SMRR Base Address (Writeable only in If
SMM) IA32_MTRRCAP.SMRR[11]
Base address of SMM memory range. =1
7.0 Type. Specifies memory type of the range.
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MODEL-SPECIFIC REGISTERS (MSRS)

Table 35-2. I1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
11:8 Reserved.
31:12 PhysBase.
SMRR physical Base Address.
63:32 Reserved.
1F3H | 499 IA32_SMRR_PHYSMASK SMRR Range Mask. (Writeable only in If IA32_MTRRCAP[SMRR]
SMM) =1
Range Mask of SMM memory range.
10:0 Reserved.
11 Valid
Enable range mask.
31:12 PhysMask
SMRR address range mask.
63:32 Reserved.
1F8H | 504 IA32_PLATFORM_DCA_CAP DCA Capability (R) If CPUID.OTH: ECX[18] =1
1F9H | 505 IA32_CPU_DCA_CAP If set, CPU supports Prefetch-Hint type. If CPUID.OTH: ECX[18] =1
1FAH | 506 IA32_DCA_O_CAP DCA type 0 Status and Control register. If CPUID.OTH: ECX[18] =1
0 DCA_ACTIVE: Set by HW when DCA is fuse-
enabled and no defeatures are set.
2:1 TRANSACTION
6:3 DCA_TYPE
10:7 DCA_QUEUE_SIZE
12:11 Reserved.
1613 DCA_DELAY: Writes will update the register
but have no HW side-effect.
23:17 Reserved.
24 SW_BLOCK: SW can request DCA block by
setting this bit.
25 Reserved.
26 HW_BLOCK: Set when DCA is blocked by
HW (e.g. CRO.CD = 1).
31:27 Reserved.
200H |[512 IA32_MTRR_PHYSBASEO See Section 11.11.2.3, “Variable Range If CPUID.OTH:
(MTRRphysBase0) MTRRs." EDXMTRR[12] =1
201H | 513 IA32_MTRR_PHYSMASKO MTRRphysMask0 If CPUID.OTH:
EDX.MTRR[12] =1
202H |[514 IA32_MTRR_PHYSBASE1 MTRRphysBase1 If CPUID.OTH:
EDX.MTRR[12] =1
203H | 515 IA32_MTRR_PHYSMASK1 MTRRphysMask1 If CPUID.OTH:
EDX.MTRR[12] =1
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MODEL-SPECIFIC REGISTERS (MSRS)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
204H | 516 IA32_MTRR_PHYSBASE?2 MTRRphysBase2 If CPUID.OTH:
EDX.MTRR[12] =1
205H |[517 IA32_MTRR_PHYSMASK?2 MTRRphysMask?2 If CPUID.OTH:
EDX.MTRR[12] =1
206H |518 IA32_MTRR_PHYSBASE3 MTRRphysBase3 If CPUID.OTH:
EDX.MTRR[12] =1
207H | 519 IA32_MTRR_PHYSMASK3 MTRRphysMask3 If CPUID.OTH:
EDX.MTRR[12] =1
208H |520 IA32_MTRR_PHYSBASE4 MTRRphysBase4 If CPUID.OTH:
EDX.MTRR[12] =1
209H | 521 IA32_MTRR_PHYSMASK4 MTRRphysMask4 If CPUID.OTH:
EDX.MTRR[12] =1
20AH | 522 IA32_MTRR_PHYSBASES MTRRphysBase5 If CPUID.OTH:
EDX.MTRR[12] =1
20BH | 523 IA32_MTRR_PHYSMASK5 MTRRphysMask5 If CPUID.OTH:
EDX.MTRR[12] =1
20CH |524 IA32_MTRR_PHYSBASE6 MTRRphysBase6 If CPUID.OTH:
EDX.MTRR[12] =1
20DH |525 IA32_MTRR_PHYSMASK6 MTRRphysMask6 If CPUID.OTH:
EDX.MTRR[12] =1
20EH |526 IA32_MTRR_PHYSBASE7 MTRRphysBase7 If CPUID.OTH:
EDX.MTRR[12] =1
20FH | 527 IA32_MTRR_PHYSMASK?7 MTRRphysMask7 If CPUID.OTH:
EDX.MTRR[12] =1
210H |528 IA32_MTRR_PHYSBASES8 MTRRphysBase8 if IA32_MTRRCAP[7:0] > 8
211H | 529 IA32_MTRR_PHYSMASKS MTRRphysMask8 if IA32_MTRRCAP[7:0] > 8
212H | 530 IA32_MTRR_PHYSBASE9 MTRRphysBase9 if IA32_MTRRCAP[7:0] > 9
213H | 531 IA32_MTRR_PHYSMASK9 MTRRphysMask9 if IA32_MTRRCAP[7:0] > 9
250H | 592 IA32_MTRR_FIX64K_00000 MTRRfix64K_00000 If CPUID.OTH:
EDX.MTRR[12] =1
258H | 600 IA32_MTRR_FIX16K_80000 MTRRfix16K_80000 If CPUID.OTH:
EDX.MTRR[12] =1
259H | 601 IA32_MTRR_FIX16K_A0000 MTRRfix16K_A0000 If CPUID.OTH:
EDX.MTRR[12] =1
268H | 616 IA32_MTRR_FIX4K_C0000 See Section 11.11.2.2, “Fixed Range If CPUID.OTH:
(MTRRfix4K_C0000 ) MTRRs." EDX.MTRR[12] =1
269H | 617 IA32_MTRR_FIX4K_C8000 MTRRfix4K_C8000 If CPUID.OTH:
EDX.MTRR[12] =1
26AH | 618 IA32_MTRR_FIX4K_D0O000 MTRRfix4K_D0000 If CPUID.OTH:
EDX.MTRR[12] =1
26BH | 619 IA32_MTRR_FIX4K_D8000 MTRRfix4K_D8000 If CPUID.OTH:
EDX.MTRR[12] =1
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MODEL-SPECIFIC REGISTERS (MSRS)

Table 35-2. I1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
26CH | 620 IA32_MTRR_FIX4K_EOO0O MTRRfix4K_EO00O If CPUID.OTH:
EDX.MTRR[12] =1
26DH | 621 IA32_MTRR_FIX4K_E8000 MTRRfix4K_E8000 If CPUID.OTH:
EDXMTRR[12] =1
26EH | 622 IA32_MTRR_FIX4K_FO000 MTRRfix4K_F0000 If CPUID.OTH:
EDX.MTRR[12] =1
26FH | 623 IA32_MTRR_FIX4K_F8000 MTRRfix4K_F8000 If CPUID.OTH:
EDXMTRR[12] =1
277H | 631 IA32_PAT IA32_PAT (R/W) If CPUID.OTH:
EDX.MTRR[16] =1
2.0 PAO
73 Reserved.
10:8 PA1
15:11 Reserved.
18:16 PA2
23:19 Reserved.
26:24 PA3
31:27 Reserved.
34:32 PA4
39:35 Reserved.
42:40 PA5
4743 Reserved.
50:48 PAG
55:51 Reserved.
58:56 PA7
63:59 Reserved.
280H | 640 IA32_MCO_CTLZ2 (R/W) If IA32_MCG_CAP[10] =1
&& IA32_MCG_CAP[7:0] >
0
14:.0 Corrected error count threshold.
29:15 Reserved.
30 CMCI_EN
63:31 Reserved.
281H | 641 IA32_MC1_CTL2 (R/W) same fields as IA32_MCO_CTLZ2. If IA32_MCG_CAP[10] =1
&& I1A32_MCG_CAP[7:0] >
1
282H | 642 IA32_MC2_CTL2 (R/W) same fields as IA32_MCO_CTL2. If IA32_MCG_CAP[10] =1
&& IA32_MCG_CAP[7:0] >
2
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

MODEL-SPECIFIC REGISTERS (MSRS)

Register
Address

Hex | Decimal

Architectural MSR Name and bit
fields
(Former MSR Name)

MSR/Bit Description

Comment

283H | 643

IA32_MC3_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&8& IA32_MCG_CAP[7:0] >
3

284H | 644

IA32_MC4_CTLZ

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] =1
&& IA32_MCG_CAP[7:0] >
4

285H | 645

IA32_MC5_CTLZ

(R/W) same fields as IA32_MCO_CTL2.

If 1A32_MCG_CAP[10] = 1
&& 1A32_MCG_CAP[7:0] >
5

286H | 646

IA32_MC6_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
6

287H | 647

IA32_MC7_CTLZ

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& 1A32_MCG_CAP[7:0] >
7

288H | 648

IA32_MC8_CTLZ2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
8

289H | 649

IA32_MC9_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
9

28AH | 650

IA32_MC10_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& 1A32_MCG_CAP[7:0] >
10

28BH | 651

IA32_MC11_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If 1A32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
1

28CH | 652

IA32_MC12_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
12

28DH | 653

IA32_MC13_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& 1A32_MCG_CAP[7:0] >
13

28EH | 654

IA32_MC14_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
14

28FH | 655

IA32_MC15_CTLZ

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
15

290H | 656

IA32_MC16_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] = 1
&& 1A32_MCG_CAP[7:0] >
16

291H | 657

IA32_MC17_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
17
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(Former MSR Name)
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Comment

292H | 658

IA32_MC18_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] = 1
&8& IA32_MCG_CAP[7:0] >
18

293H | 659

IA32_MC19_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
19

294H | 660

IA32_MC20_CTLZ

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
20

295H | 661

IA32_MC21_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
21

296H | 662

IA32_MC22_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
22

297H | 663

IA32_MC23_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
23

298H | 664

IA32_MC24_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
24

299H | 665

IA32_MC25_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
25

29AH | 666

IA32_MC26_CTLZ

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
26

29BH | 667

IA32_MC27_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
27

29CH | 668

IA32_MC28_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
28

29DH | 669

IA32_MC29_CTLZ

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
29

29EH | 670

IA32_MC30_CTL2

(R/W) same fields as IA32_MCO_CTLZ2.

If IA32_MCG_CAP[10] = 1
&& IA32_MCG_CAP[7:0] >
30

29FH | 671

[A32_MC31_CTL2

(R/W) same fields as IA32_MCO_CTL2.

If IA32_MCG_CAP[10] =1
&& 1A32_MCG_CAP[7:0] >
31

2FFH | 767

IA32_MTRR_DEF_TYPE

MTRRdefType (R/W)

If CPUID.OTH:
EDX.MTRR[12] =1

2.0

Default Memory Type

93

Reserved.
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Table 35-2. 1A-32 Architectural MSRs (Contd.)

Register Architectural MSR Name and bit Comment
Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description

10 Fixed Range MTRR Enable
11 MTRR Enable
63:12 Reserved.

309H | 777 IA32_FIXED_CTRO Fixed-Function Performance Counter O If CPUID.OAH: EDX[4:0] > O
(MSR_PERF_FIXED_CTRO) (R/W): Counts Instr_Retired.Any.

30AH | 778 IA32_FIXED_CTR1 Fixed-Function Performance Counter 1 If CPUID.OAH: EDX[4:0] > 1
(MSR_PERF_FIXED_CTRT) (R/W): Counts CPU_CLK_Unhalted.Core

30BH | 779 IA32_FIXED_CTRZ2 Fixed-Function Performance Counter 2 If CPUID.OAH: EDX[4:0] > 2
(MSR_PERF_FIXED_CTRZ2) (R/W): Counts CPU_CLK_Unhalted.Ref

345H | 837 IA32_PERF_CAPABILITIES RO If CPUID.OTH: ECX[15] =1
5.0 LBR format
6 PEBS Trap
7 PEBSSaveArchRegs
11:8 PEBS Record Format
12 1: Freeze while SMM is supported.
13 1: Full width of counter writable via

IA32_A_PMCx.

63:14 Reserved.

38DH | 909 IA32_FIXED_CTR_CTRL Fixed-Function Performance Counter If CPUID.OAH: EAX[7:0] > 1

Control (R/W)

Counter increments while the results of
ANDing respective enable bit in
IA32_PERF_GLOBAL_CTRL with the
corresponding OS or USR bits in this MSR is
true.

ENO_OS: Enable Fixed Counter O to count
while CPL = 0.

ENO_Usr: Enable Fixed Counter O to count
while CPL > 0.

AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.OAH:
EAX[7:0] > 2

ENO_PMI: Enable PMI when fixed counter O
overflows.

EN1_0OS: Enable Fixed Counter 1to count
while CPL = 0.

EN1_Usr: Enable Fixed Counter 1to count
while CPL > 0.
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Hex | Decimal
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(Former MSR Name)

MSR/Bit Description

Comment

AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to 0, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.OAH:
EAX[7:0] > 2

EN1_PMI: Enable PMI when fixed counter 1
overflows.

ENZ2_OS: Enable Fixed Counter 2 to count
while CPL = 0.

ENZ_Usr: Enable Fixed Counter 2 to count
while CPL > 0.

10

AnyThread: When set to 1, it enables
counting the associated event conditions
occurring across all logical processors
sharing a processor core. When set to O, the
counter only increments the associated
event conditions occurring in the logical
processor which programmed the MSR.

If CPUID.OAH:
EAX[7:0] > 2

11

ENZ2_PMI: Enable PMI when fixed counter 2
overflows.

63:12

Reserved.

38EH | 910

IA32_PERF_GLOBAL_STATUS

Global Performance Counter Status (RO)

If CPUID.OAH: EAX[7:0] > O

0 Ovf_PMCO: Overflow status of IA32_PMCO. | If CPUID.OAH: EAX[15:8] >
0
1 Ovf_PMC1: Overflow status of IA32_PMC1. | If CPUID.OAH: EAX[15:8] >
1
2 Ovf_PMC2: Overflow status of IA32_PMC2. | If CPUID.OAH: EAX[15:8] >
2
3 Ovf_PMC(3: Overflow status of IA32_PMC(3. | If CPUID.OAH: EAX[15:8] >
3
31:4 Reserved.
32 Ovf_FixedCtrO: Overflow status of If CPUID.OAH: EAX[7:0] > 1
IA32_FIXED_CTRO.
33 Ovf_FixedCtr1: Overflow status of If CPUID.OAH: EAX[7:0] > 1
IA32_FIXED_CTRI.
34 Ovf_FixedCtr2: Overflow status of If CPUID.OAH: EAX[7:0] > 1
IA32_FIXED_CTR2.
54:35 Reserved.
55 Trace_ToPA_PMI: A PMl occurred due toa | If (CPUID.(EAX=07H,
ToPA entry memory buffer was completely | ECX=0).EBX[25] = 1) &&
filled. IA32_RTIT_CTL.ToPA =1
57:56 Reserved.
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Address fields
Hex | Decimal (Former MSR Name) MSR/Bit Description
58 LBR_Frz: LBRs are frozen due to If CPUID.OAH: EAX[7:0] > 3
= |A32_DEBUGCTL.FREEZE_LBR_ON_PMI=1,
= The LBR stack overflowed
59 CTR_Frz: Performance counters in the core | If CPUID.OAH: EAX[7:0] > 3
PMU are frozen due to
» |A32_DEBUGCTL.FREEZE_PERFMON_ON_
PMI=1,
= one or more core PMU counters
overflowed.
60 ASCI: Data in the performance countersin | If CPUID.(EAX=07H,
the core PMU may include contributions ECX=0):EBX[2] = 1
from the direct or indirect operation intel
SGX to protect an enclave.
61 Ovf_Uncore: Uncore counter overflow If CPUID.OAH: EAX[7:0] > 2
status.
62 OvfBuf; DS SAVE area Buffer overflow If CPUID.OAH: EAX[7:0]1> 0
status.
63 CondChgd: status bits of this register has | If CPUID.OAH: EAX[7:0] > O
changed.
38FH | 911 IA32_PERF_GLOBAL_CTRL Global Performance Counter Control (R/W) | If CPUID.OAH: EAX[7:0] > O
Counter increments while the result of
ANDing respective enable bit in this MSR
with the corresponding OS or USR bits in
the general-purpose or fixed counter
control MSR is true.
0 EN_PMCO If CPUID.OAH: EAX[15:8] >
0
1 EN_PMC1 If CPUID.OAH: EAX[15:8] >
1
2 EN_PMC2 If CPUID.OAH: EAX[15:8] >
2
n EN_PMCn If CPUID.OAH: EAX[15:8] >
n
31:n+1 Reserved.
32 EN_FIXED_CTRO If CPUID.OAH: EDX[4:0] > O
33 EN_FIXED_CTR1 If CPUID.OAH: EDX[4:0] > 1
34 EN_FIXED_CTR2 If CPUID.OAH: EDX[4:0] > 2
63:35 Reserved.
390H |912 IA32_PERF_GLOBAL_OVF_CTRL Global Performance Counter Overflow If CPUID.OAH: EAX[7:0] >0
Control (R/W) && CPUID.OAH: EAX[7:0]
<=3
0 Set 1 to Clear Ovf_PMCO bit. If CPUID.OAH: EAX[15:8] >
0
1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.OAH: EAX[15:8] >
1
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2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.OAH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.OAH: EAX[15:8] >
n

31:n Reserved.

32 Set 1 to Clear Ovf_FIXED_CTRO bit. If CPUID.OAH: EDX[4:0] > O

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.OAH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTRRZ bit. If CPUID.OAH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0):EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA =1

60:56 Reserved.

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf; bit. If CPUID.OAH: EAX[7:0]1 >0

63 Set to 1to clear CondChgd: bit. If CPUID.OAH: EAX[7:0]1> 0

390H | 912 IA32_PERF_GLOBAL_STATUS_RESET | Global Performance Counter Overflow If CPUID.OAH: EAX[7:0] > 3

Reset Control (R/W)

0 Set 1 to Clear Ovf_PMCO bit. If CPUID.OAH: EAX[15:8] >
0

1 Set 1 to Clear Ovf_PMC1 bit. If CPUID.OAH: EAX[15:8] >
1

2 Set 1 to Clear Ovf_PMC2 bit. If CPUID.OAH: EAX[15:8] >
2

n Set 1 to Clear Ovf_PMCn bit. If CPUID.OAH: EAX[15:8] >
n

31in Reserved.

32 Set 1 to Clear Ovf_FIXED_CTRO bit. If CPUID.OAH: EDX[4:0] > O

33 Set 1 to Clear Ovf_FIXED_CTR1 bit. If CPUID.OAH: EDX[4:0] > 1

34 Set 1 to Clear Ovf_FIXED_CTRRZ bit. If CPUID.OAH: EDX[4:0] > 2

54:35 Reserved.

55 Set 1 to Clear Trace_ToPA_PMI bit. If (CPUID.(EAX=07H,
ECX=0).EBX[25] = 1) &&
IA32_RTIT_CTL.ToPA[8] =
1

57:56 Reserved.

58 Set 1 to Clear LBR_Frz bit. If CPUID.OAH: EAX[7:0] > 3

59 Set 1 to Clear CTR_Frz bit. If CPUID.OAH: EAX[7:0] > 3

58 Set 1 to Clear ASCI bit. If CPUID.OAH: EAX[7:0]> 3

61 Set 1 to Clear Ovf_Uncore bit. 06_2EH

62 Set 1 to Clear OvfBuf: bit. If CPUID.OAH: EAX[7:0]1> 0
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63 Set to 1to clear CondChgd: bit. If CPUID.OAH: EAX[7:0]1> 0
391TH | 913 IA32_PERF_GLOBAL_STATUS_SET Global Performance Counter Overflow Set | If CPUID.OAH: EAX[7:0] > 3
Control (R/W)
0 Set 1 to cause Ovf_PMCO = 1. If CPUID.OAH: EAX[7:0] > 3
1 Set 1 to cause Ovf_PMC1 =1 If CPUID.OAH: EAX[15:8] >
1
2 Set 1 to cause Ovf_PMC2 =1 If CPUID.OAH: EAX[15:8] >
2
n Set 1 to cause Ovf_PMCn =1 If CPUID.OAH: EAX[15:8] >
n
31:n Reserved.
32 Set 1 to cause Ovf_FIXED_CTRO = 1. If CPUID.OAH: EAX[7:0] > 3
33 Set 1 to cause Ovf_FIXED_CTR1 = 1. If CPUID.OAH: EAX[7:0] > 3
34 Set 1 to cause Ovf_FIXED_CTR2 = 1. If CPUID.OAH: EAX[7:0] > 3
54:35 Reserved.
55 Set 1 to cause Trace_ToPA_PMI = 1. If CPUID.OAH: EAX[7:0] > 3
57:56 Reserved.
58 Set 1 to cause LBR_Frz = 1. If CPUID.OAH: EAX[7:0] > 3
59 Set 1 to cause CTR_Frz = 1. If CPUID.OAH: EAX[7:0] > 3
58 Set 1 to cause ASCI = 1. If CPUID.OAH: EAX[7:0] > 3
61 Set 1 to cause Ovf_Uncore = 1. If CPUID.OAH: EAX[7:0] > 3
62 Set 1 to cause OvfBuf = 1. If CPUID.OAH: EAX[7:0] > 3
63 Reserved
392H | 914 IA32_PERF_GLOBAL_INUSE Indicator of core perfmon interface isinuse | If CPUID.OAH: EAX[7:0] > 3
(RO)
0 IA32_PERFEVTSELOQ in use
1 IA32_PERFEVTSELT1 in use If CPUID.OAH: EAX[15:8] >
1
2 IA32_PERFEVTSELZ in use If CPUID.OAH: EAX[15:8] >
2
n IA32_PERFEVTSELN in use If CPUID.OAH: EAX[15:8] >
n
31:n Reserved.
32 IA32_FIXED_CTRO in use
33 IA32_FIXED_CTR1 in use
34 IA32_FIXED_CTRZ in use
62:35 Reserved or Model specific.
63 PMIin use.
3F1H | 1009 IA32_PEBS_ENABLE PEBS Control (R/W)
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0 Enable PEBS on IA32_PMCO. 06_0FH

3:1 Reserved or Model specific.

31:4 Reserved.

35:32 Reserved or Model specific.

63:36 Reserved.
400H | 1024 IA32_MCO_CTL MCO_CTL If IA32_MCG_CAPCNT >0
401H | 1025 IA32_MCO_STATUS MCO_STATUS If IA32_MCG_CAPCNT >0
402H | 1026 IA32_MCO_ADDR? MCO_ADDR If IA32_MCG_CAPCNT >0
403H | 1027 IA32_MCO_MISC MCO_MISC If IA32_MCG_CAPCNT >0
404H | 1028 IA32_MC1_CTL MC1_CTL If IA32_MCG_CAP.CNT >1
405H | 1029 IA32_MC1_STATUS MC1_STATUS If IA32_MCG_CAP.CNT >1
406H | 1030 IA32_MC1_ADDR? MC1_ADDR If IA32_MCG_CAP.CNT >1
407H | 1031 IA32_MC1_MISC MC1_MISC If IA32_MCG_CAP.CNT >1
408H | 1032 IA32_MC2_CTL MC2_CTL If IA32_MCG_CAP.CNT >2
409H | 1033 IA32_MC2_STATUS MC2_STATUS If IA32_MCG_CAPCNT >2
40AH | 1034 IA32_MC2_ADDR? MC2_ADDR If IA32_MCG_CAP.CNT >2
40BH | 1035 IA32_MC2_MISC MC2_MISC If IA32_MCG_CAP.CNT >2
40CH | 1036 IA32_MC3_CTL MC3_CTL If IA32_MCG_CAP.CNT >3
40DH | 1037 IA32_MC3_STATUS MC3_STATUS If IA32_MCG_CAPCNT >3
40eEH | 1038 IA32_MC3_ADDR? MC3_ADDR If IA32_MCG_CAP.CNT >3
40FH | 1039 IA32_MC3_MISC MC3_MISC If IA32_MCG_CAPCNT >3
410H | 1040 IA32_MC4_CTL MC4_CTL If IA32_MCG_CAPCNT >4
411H | 1041 IA32_MC4_STATUS MC4_STATUS If IA32_MCG_CAPCNT >4
412H | 1042 IA32_MC4_ADDR? MC4_ADDR If IA32_MCG_CAPCNT >4
413H | 1043 IA32_MC4_MISC MC4_MISC If IA32_MCG_CAPCNT >4
414H | 1044 IA32_MC5_CTL MC5_CTL If IA32_MCG_CAP.CNT >5
415H | 1045 IA32_MC5_STATUS MC5_STATUS If IA32_MCG_CAPCNT >5
416H | 1046 IA32_MC5_ADDR? MC5_ADDR If IA32_MCG_CAP.CNT >5
417H | 1047 IA32_MC5_MISC MC5_MISC If IA32_MCG_CAP.CNT >5
418H | 1048 IA32_MC6_CTL MC6_CTL If IA32_MCG_CAPCNT >6
419H | 1049 IA32_MC6_STATUS MC6_STATUS If IA32_MCG_CAPCNT >6
41AH | 1050 IA32_MC6_ADDR? MC6_ADDR If IA32_MCG_CAP.CNT >6
41BH | 1051 IA32_MC6_MISC MC6_MISC If IA32_MCG_CAPCNT >6
41CH | 1052 IA32_MC7_CTL MC7_CTL If IA32_MCG_CAPCNT >7
41DH | 1053 IA32_MC7_STATUS MC7_STATUS If IA32_MCG_CAPCNT >7
41EH | 1054 IA32_MC7_ADDR? MC7_ADDR If IA32_MCG_CAP.CNT >7
41FH | 1055 IA32_MC7_MISC MC7_MISC If IA32_MCG_CAPCNT >7
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420H | 1056 IA32_MC8_CTL MC8_CTL If IA32_MCG_CAP.CNT >8

421H | 1057 IA32_MC8_STATUS MC8_STATUS If IA32_MCG_CAP.CNT >8

422H | 1058 IA32_MC8_ADDR? MC8_ADDR If IA32_MCG_CAP.CNT >8

423H | 1059 IA32_MC8_MISC MC8_MISC If IA32_MCG_CAP.CNT >8

424H | 1060 IA32_MC9_CTL MC9_CTL If IA32_MCG_CAP.CNT >9

425H | 1061 IA32_MC9_STATUS MC9_STATUS If IA32_MCG_CAP.CNT >9

426H | 1062 IA32_MC9_ADDR? MC9_ADDR If IA32_MCG_CAP.CNT >9

427H | 1063 IA32_MC9_MISC MC9_MISC If IA32_MCG_CAP.CNT >9

428H | 1064 IA32_MC10_CTL MC10_CTL If IA32_MCG_CAPCNT >10
429H | 1065 IA32_MC10_STATUS MC10_STATUS If IA32_MCG_CAP.CNT >10
42AH | 1066 IA32_MC10_ADDR? MC10_ADDR If IA32_MCG_CAP.CNT >10
42BH | 1067 IA32_MC10_MISC MC10_MISC If IA32_MCG_CAP.CNT >10
42CH | 1068 IA32_MC11_CTL MC11_CTL If IA32_MCG_CAP.CNT >11
42DH | 1069 IA32_MC11_STATUS MC11_STATUS If IA32_MCG_CAPCNT >11
42EH | 1070 IA32_MC11_ADDR? MC11_ADDR If IA32_MCG_CAPCNT >11
42FH | 1071 IA32_MC11_MISC MC11_MISC If IA32_MCG_CAP.CNT >11
430H | 1072 IA32_MC12_CTL MC12_CTL If IA32_MCG_CAPCNT >12
431H | 1073 IA32_MC12_STATUS MC12_STATUS If IA32_MCG_CAPCNT >12
432H | 1074 IA32_MC12_ADDR? MC12_ADDR If IA32_MCG_CAPCNT >12
433H | 1075 IA32_MC12_MISC MC12_MISC If IA32_MCG_CAPCNT >12
434H | 1076 IA32_MC13_CTL MC13_CTL If IA32_MCG_CAPCNT >13
435H | 1077 IA32_MC13_STATUS MC13_STATUS If IA32_MCG_CAP.CNT >13
436H | 1078 IA32_MC13_ADDR? MC13_ADDR If IA32_MCG_CAP.CNT >13
437H | 1079 IA32_MC13_MISC MC13_MISC If IA32_MCG_CAPCNT >13
438H | 1080 IA32_MC14_CTL MC14_CTL If IA32_MCG_CAPCNT >14
439H | 1081 IA32_MC14_STATUS MC14_STATUS If IA32_MCG_CAPCNT >14
43AH | 1082 IA32_MC14_ADDR? MC14_ADDR If IA32_MCG_CAPCNT >14
43BH | 1083 IA32_MC14_MISC MC14_MISC If IA32_MCG_CAPCNT >14
43CH | 1084 IA32_MC15_CTL MC15_CTL If IA32_MCG_CAPCNT >15
43DH | 1085 IA32_MC15_STATUS MC15_STATUS If IA32_MCG_CAPCNT >15
43EH | 1086 IA32_MC15_ADDR? MC15_ADDR If IA32_MCG_CAP.CNT >15
43FH | 1087 IA32_MC15_MISC MC15_MISC If IA32_MCG_CAPCNT >15
440H | 1088 IA32_MC16_CTL MC16_CTL If IA32_MCG_CAPCNT >16
441H | 1089 IA32_MC16_STATUS MC16_STATUS If IA32_MCG_CAP.CNT >16
442H | 1090 IA32_MC16_ADDR? MC16_ADDR If IA32_MCG_CAPCNT >16
443H | 1091 IA32_MC16_MISC MC16_MISC If IA32_MCG_CAP.CNT >16
444H | 1092 IA32_MC17_CTL MC17_CTL If IA32_MCG_CAPCNT >17
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445H | 1093 IA32_MC17_STATUS MC17_STATUS If IA32_MCG_CAPCNT >17
446H | 1094 IA32_MC17_ADDR? MC17_ADDR If IA32_MCG_CAPCNT >17
447H | 1095 IA32_MC17_MISC MC17_MISC If IA32_MCG_CAPCNT >17
448H | 1096 IA32_MC18_CTL MC18_CTL If IA32_MCG_CAPCNT >18
449H | 1097 IA32_MC18_STATUS MC18_STATUS If IA32_MCG_CAPCNT >18
44AH | 1098 IA32_MC18_ADDR? MC18_ADDR If IA32_MCG_CAPCNT >18
44BH | 1099 IA32_MC18_MISC MC18_MISC If IA32_MCG_CAPCNT >18
44CH |1100 IA32_MC19_CTL MC19_CTL If IA32_MCG_CAPCNT >19
44DH | 1101 IA32_MC19_STATUS MC19_STATUS If IA32_MCG_CAPCNT >19
44EH | 1102 IA32_MC19_ADDR? MC19_ADDR If IA32_MCG_CAPCNT >19
44FH | 1103 IA32_MC19_MISC MC19_MISC If IA32_MCG_CAP.CNT >19
450H | 1104 IA32_MC20_CTL MC20_CTL If IA32_MCG_CAPCNT >20
451H | 1105 IA32_MC20_STATUS MC20_STATUS If IA32_MCG_CAPCNT >20
452H | 1106 IA32_MC20_ADDR? MC20_ADDR If IA32_MCG_CAP.CNT >20
453H | 1107 IA32_MC20_MISC MC20_MISC If IA32_MCG_CAPCNT >20
454H | 1108 IA32_MC21_CTL MC21_CTL If 1A32_MCG_CAP.CNT >21
455H [ 1109 IA32_MC21_STATUS MC21_STATUS If IA32_MCG_CAP.CNT >21
456H [ 1110 IA32_MC21_ADDR? MC21_ADDR If IA32_MCG_CAP.CNT >21
457H | 1111 IA32_MC21_MISC MC21_MISC If 1A32_MCG_CAP.CNT >21
458H IA32_MC22_CTL MC22_CTL If IA32_MCG_CAPCNT >22
459H IA32_MC22_STATUS MC22_STATUS If 1A32_MCG_CAPCNT >22
45AH IA32_MC22_ADDR? MC22_ADDR If IA32_MCG_CAP.CNT >22
45BH IA32_MC22_MISC MC22_MISC If IA32_MCG_CAP.CNT >22
45CH IA32_MC23_CTL MC23_CTL If 1A32_MCG_CAPCNT >23
45DH IA32_MC23_STATUS MC23_STATUS If IA32_MCG_CAP.CNT >23
45€EH IA32_MC23_ADDR? MC23_ADDR If IA32_MCG_CAP.CNT >23
45FH IA32_MC23_MISC MC23_MISC If IA32_MCG_CAP.CNT >23
460H IA32_MC24_CTL MC24_CTL If IA32_MCG_CAPCNT >24
461H IA32_MC24_STATUS MC24_STATUS If IA32_MCG_CAPCNT >24
462H IA32_MC24_ADDR? MC24_ADDR If IA32_MCG_CAPCNT >24
463H IA32_MC24_MISC MC24_MISC If IA32_MCG_CAPCNT >24
464H IA32_MC25_CTL MC25_CTL If IA32_MCG_CAPCNT >25
465H IA32_MC25_STATUS MC25_STATUS If IA32_MCG_CAP.CNT >25
466H IA32_MC25_ADDR? MC25_ADDR If IA32_MCG_CAP.CNT >25
467H IA32_MC25_MISC MC25_MISC If IA32_MCG_CAPCNT >25
468H IA32_MC26_CTL MC26_CTL If IA32_MCG_CAPCNT >26
469H IA32_MC26_STATUS MC26_STATUS If IA32_MCG_CAP.CNT >26
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46AH IA32_MC26_ADDR? MC26_ADDR If IA32_MCG_CAPCNT >26
46BH IA32_MC26_MISC MC26_MISC If IA32_MCG_CAPCNT >26
46CH IA32_MC27_CTL MC27_CTL If IA32_MCG_CAP.CNT >27
46DH IA32_MC27_STATUS MC27_STATUS If IA32_MCG_CAP.CNT >27
46€EH IA32_MC27_ADDR MC27_ADDR If IA32_MCG_CAPCNT >27
46FH IA32_MC27_MISC MC27_MISC If IA32_MCG_CAP.CNT >27
470H IA32_MC28_CTL MC28_CTL If IA32_MCG_CAP.CNT >28
471H IA32_MC(C28_STATUS MC28_STATUS If IA32_MCG_CAP.CNT >28
472H IA32_MC28_ADDR? MC28_ADDR If IA32_MCG_CAPCNT >28
473H IA32_MC28_MISC MC28_MISC If IA32_MCG_CAP.CNT >28
480H | 1152 IA32_VMX_BASIC Reporting Register of Basic VMX If CPUID.OTH:ECX.[5] =1
Capabilities (R/0)
See Appendix A.1, “Basic VMX Information.”
481H | 1153 IA32_VMX_PINBASED_CTLS Capability Reporting Register of Pin- If CPUID.OTH:ECX.[5] =1
based VM-execution Controls (R/0)
See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”
482H | 1154 IA32_VMX_PROCBASED_CTLS Capability Reporting Register of Primary | If CPUID.OTH:ECX.[5] = 1
Processor-based VM-execution Controls
(R/0)
See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”
483H | 1155 IA32_VMX_EXIT_CTLS Capability Reporting Register of VM-exit | If CPUID.OTH:ECX.[5] = 1
Controls (R/0)
See Appendix A.4, “VM-Exit Controls.”
484H | 1156 IA32_VMX_ENTRY_CTLS Capability Reporting Register of VM- If CPUID.OTH:ECX.[5] =1
entry Controls (R/0)
See Appendix A.5, “VM-Entry Controls.”
485H | 1157 IA32_VMX_MISC Reporting Register of Miscellaneous If CPUID.OTH:ECX.[5] =1
VMX Capabilities (R/0)
See Appendix A.6, “Miscellaneous Data.”
486H | 1158 IA32_VMX_CRO_FIXEDO Capability Reporting Register of CRO Bits | If CPUID.OTH:ECX.[5] =1
Fixed to 0 (R/0)
See Appendix A.7, “"VMX-Fixed Bits in CRO."
487H | 1159 IA32_VMX_CRO_FIXED1 Capability Reporting Register of CRO Bits | If CPUID.OTH:ECX.[5] = 1
Fixed to 1 (R/0)
See Appendix A.7, “VMX-Fixed Bits in CRO."
488H | 1160 IA32_VMX_CR4_FIXEDO Capability Reporting Register of CR4 Bits | If CPUID.OTH:ECX.[5] = 1
Fixed to 0 (R/0)
See Appendix A.8, “VMX-Fixed Bits in CR4."
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489H | 1161 IA32_VMX_CR4_FIXED1 Capability Reporting Register of CR4 Bits | If CPUID.OTH:ECX.[5] = 1
Fixed to 1 (R/0)
See Appendix A.8, “VMX-Fixed Bits in CR4."
48AH | 1162 IA32_VMX_VMCS_ENUM Capability Reporting Register of VMCS If CPUID.OTH:ECX.[5] =1
Field Enumeration (R/0)
See Appendix A.9, “VMCS Enumeration.”
48BH | 1163 IA32_VMX_PROCBASED_CTLS?2 Capability Reporting Register of If (CPUID.OTH:ECX.[5] &&
Secondary Processor-based IA32_VMX_PROCBASED_C
VM-execution Controls (R/0) TLS[63])
See Appendix A.3.3, “Secondary Processor-
Based VM-Execution Controls.”
48CH | 1164 IA32_VMX_EPT_VPID_CAP Capability Reporting Register of EPT and | If (CPUID.OTH:ECX.[5] &&
VPID (R/0) IA32_VMX_PROCBASED_C
See Appendix A.10, “VPID and EPT TLS[63] && (
Capabilities.” I1A32_VMX_PROCBASED_C
TLS2[33] ]|
IA32_VMX_PROCBASED_C
TLS2[37]))
48DH | 1165 IA32_VMX_TRUE_PINBASED_CTLS Capability Reporting Register of Pin- If (CPUID.OTH:ECX.[5] =1
based VM-execution Flex Controls (R/0) | && IA32_VMX_BASIC[55])
See Appendix A.3.1, “Pin-Based VM-
Execution Controls.”
48EH | 1166 IA32_VMX_TRUE_PROCBASED_CTLS | Capability Reporting Register of Primary | If( CPUID.OTH:ECX.[5] =1
Processor-based VM-execution Flex && IA32_VMX_BASIC[55])
Controls (R/0)
See Appendix A.3.2, “Primary Processor-
Based VM-Execution Controls.”
48FH | 1167 IA32_VMX_TRUE_EXIT_CTLS Capability Reporting Register of VM-exit | If( CPUID.OTH:ECX.[5] = 1
Flex Controls (R/0) && 1A32_VMX_BASIC[55])
See Appendix A.4, “VM-Exit Controls.”
490H | 1168 IA32_VMX_TRUE_ENTRY_CTLS Capability Reporting Register of VM- If( CPUID.OTH:ECX.[5] = 1
entry Flex Controls (R/0) && IA32_VMX_BASIC[55] )
See Appendix A.5, “VM-Entry Controls.”
491H | 1169 IA32_VMX_VMFUNC Capability Reporting Register of VM- If( CPUID.OTH:ECX.[5] = 1
function Controls (R/0) && IA32_VMX_BASIC[55])
4CTH 1217 IA32_A_PMCO Full Width Writable IA32_PMCO Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
0) &&
IA32_PERF_CAPABILITIES[
13]=1
4C2H | 1218 IA32_A_PMC1 Full Width Writable IA32_PMC1 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
1) &&
IA32_PERF_CAPABILITIES[
13]=1
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4C3H | 1219 IA32_A_PMC2 Full Width Writable IA32_PMC2 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
2) &&
IA32_PERF_CAPABILITIES[
13]1=1
4C4H | 1220 IA32_A_PMC3 Full Width Writable IA32_PMC(3 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
3) &&
IA32_PERF_CAPABILITIES[
13]=1
4C5H | 1221 IA32_A_PMC4 Full Width Writable IA32_PMC4 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
4) &
IA32_PERF_CAPABILITIES[
13]1=1
4C6H | 1222 IA32_A_PMC5 Full Width Writable IA32_PMC5 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
5) &&
IA32_PERF_CAPABILITIES[
13]1=1
4C7H | 1223 IA32_A_PMC6 Full Width Writable IA32_PMC6 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
6) &&
IA32_PERF_CAPABILITIES[
13]=1
4C8H | 1224 IA32_A_PMC7 Full Width Writable IA32_PMC7 Alias (R/W) | (If CPUID.OAH: EAX[15:8] >
7) &&
IA32_PERF_CAPABILITIES[
13]1=1
4DOH | 1232 IA32_MCG_EXT_CTL (R/W) If IA32_MCG_CAP.LMCE_P
=1
0 LMCE_EN.
63:1 Reserved.
500H | 1280 IA32_SGX_SVN_STATUS Status and SVN Threshold of SGX Support | If CPUID.(EAX=07H,
for ACM (RO). ECX=0H): EBX[2] = 1
0 Lock. See Section 42.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)".
15:1 Reserved.
23:16 SGX_SVN_SINIT. See Section 42.11.3,
“Interactions with
Authenticated Code
Modules (ACMs)".
63:24 Reserved.
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560H | 1376 IA32_RTIT_OUTPUT_BASE Trace Output Base Register (R/W) If (CPUID.(EAX=07H,
ECX=0).EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[01 =Nl
(CPUID.(EAX=14H,ECX=0):
ECX[2]1=1)))
6.0 Reserved
MAXPHYADDR3-1:7 Base physical address
63:MAXPHYADDR Reserved.
561H | 1377 IA32_RTIT_OUTPUT_MASK_PTRS Trace Output Mask Pointers Register If (CPUID.(EAX=07H,
(R/W) ECX=0).EBX[25] = 1) && (
(CPUID.(EAX=14H,ECX=0):
ECX[O] =Nl
(CPUID.(EAX=14H,ECX=0):
ECX[2]1=1)))
6.0 Reserved
317 MaskOrTableOffset
63:32 Output Offset.
570H | 1392 IA32_RTIT_CTL Trace Control Register (R/W) If (CPUID.(EAX=07H,
ECX=0):eBX[25] = 1)
0 TraceEn
CYCEn If (CPUID.(EAX=07H,
ECX=0).eBX[1]=1)
0s
3 User
5:4 Reserved,
FabricEn If (CPUID.(EAX=07H,
ECX=0):ECX[3]1=1)
CR3 filter
ToPA
MTCEn If (CPUID.(EAX=07H,
ECX=0)EBX[3]=1)
10 TSCEn
11 DisRETC
12 Reserved, MBZ
13 BranchEn
17:14 MTCFreq If (CPUID.(EAX=07H,
ECX=0).EBX[3]1=1)
18 Reserved, MBZ
22:19 CYCThresh If (CPUID.(EAX=07H,
ECX=0).EBX[1]1=1)
23 Reserved, MBZ
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27:24 PSBFreq If (CPUID.(EAX=07H,
ECX=0).EBX[1]=1)
31:28 Reserved, MBZ
35:32 ADDRO_CFG If (CPUID.(EAX=07H,
ECX=1).EAX[2:0] > 0)
39:36 ADDR1_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)
43:40 ADDR2_CFG If (CPUID.(EAX=07H,
ECX=1).EAX[2:0] > 2)
4744 ADDR3_CFG If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 3)
63:48 Reserved, MBZ.
571H | 1393 IA32_RTIT_STATUS Tracing Status Register (R/W) If (CPUID.(EAX=07H,
ECX=0):eBX[25] = 1)
0 FilterEn, (writes ignored) If (CPUID.(EAX=07H,
ECX=0).eBX[2] = 1)
1 ContexEn, (writes ignored)
2 Trigger€n, (writes ignored)
3 Reserved
4 Error
5 Stopped
31:6 Reserved, MBZ
48:32 PacketByteCnt If (CPUID.(EAX=07H,
ECX=0):eBX[1] > 3)
63:49 Reserved.
572H | 1394 IA32_RTIT_CR3_MATCH Trace Filter CR3 Match Register (R/W) If (CPUID.(EAX=07H,
ECX=0):eBX[25] = 1)
4.0 Reserved
63:5 CR3[63:5] value to match
580H | 1408 IA32_RTIT_ADDRO_A Region O Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1).EAX[2:0] > 0)
47.0 Virtual Address
63:48 Signext_VA
581H | 1409 IA32_RTIT_ADDRO_B Region 0 End Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 0)
470 Virtual Address
63:48 Signext_VA
582H | 1410 IA32_RTIT_ADDR1_A Region 1 Start Address (R/W) If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)
470 Virtual Address
63:48 SignExt_VA
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583H | 1411 IA32_RTIT_ADDR1_B

Region 1 End Address (R/W)

If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 1)

47:.0

Virtual Address

63:48

Signeéxt_VA

584H | 1412 IA32_RTIT_ADDRZ2_A

Region 2 Start Address (R/W)

If (CPUID.(EAX=07H,
ECX=1)EAX[2:0] > 2)

47:.0

Virtual Address

63:48

Signext_VA

585H | 1413 IA32_RTIT_ADDRZ2_B

Region 2 End Address (R/W)

If (CPUID.(EAX=07H,
ECX=1):EAX[2:0] > 2)

47:.0

Virtual Address

63:48

Signext_VA

586H | 1414 IA32_RTIT_ADDR3_A

Region 3 Start Address (R/W)

If (CPUID.(EAX=07H,
ECX=1)EAX[2:0] > 3)

47.0

Virtual Address

63:48

Signext_VA

587H | 1415 IA32_RTIT_ADDR3_B

Region 3 End Address (R/W)

If (CPUID.(EAX=07H,
ECX=1)EAX[2:0] > 3)

47.0 Virtual Address
6348 SignExt_VA
600H | 1536 IA32_DS_AREA DS Save Area (R/W) If( CPUID.OTH:EDX.DS[21]

Points to the linear address of the first
byte of the DS buffer management area,
which is used to manage the BTS and PEBS
buffers.

See Section 18.15.4, “Debug Store (DS)
Mechanism.”

=1

63:0

The linear address of the first byte of the
DS buffer management area, if IA-32e
mode is active.

310

The linear address of the first byte of the
DS buffer management area, if not in 1A-
32e mode.

63:32

Reserved if not in IA-32e mode.

6EOH | 1760 IA32_TSC_DEADLINE

TSC Target of Local APIC's TSC Deadline
Mode (R/W)

If CPUID.OTH:ECX.[24] = 1

770H | 1904 IA32_PM_ENABLE

Enable/disable HWP (R/W)

If CPUID.O6H:EAX.[7] =1

0 HWP_ENABLE (R/W1-Once). If CPUID.OGH:EAX[7] =1
See Section 14.4.2, “Enabling HWP”
63:1 Reserved.

771H | 1905 IA32_HWP_CAPABILITIES

HWP Performance Range Enumeration
(RO)

If CPUID.0GH:EAX[7] = 1
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7.0 Highest_Performance If CPUID.OGH:EAX[7] =1
See Section 14.4.3, "HWP Performance
Range and Dynamic Capabilities”
15:8 Guaranteed_Performance If CPUID.O6H:EAX.[7] =1
See Section 14.4.3, "HWP Performance
Range and Dynamic Capabilities”
23:16 Most_Efficient_Performance If CPUID.O6H:EAX.[7]1 =1
See Section 14.4.3, "HWP Performance
Range and Dynamic Capabilities”
31:24 Lowest_Performance If CPUID.O6H:EAX[7] =1
See Section 14.4.3, "HWP Performance
Range and Dynamic Capabilities”
63:32 Reserved.
772H | 1906 IA32_HWP_REQUEST_PKG Power Management Control Hints for All | If CPUID.O6H:EAX.[11] =1
Logical Processors in a Package (R/W)
7.0 Minimum_Performance If CPUID.OGH:EAX.[11]=1
See Section 14.4.4, “Managing HWP"
15:8 Maximum_Performance If CPUID.OGH:EAX.[11]=1
See Section 14.4.4, “Managing HWP"
23:16 Desired_Performance If CPUID.OGH:EAX.[11]=1
See Section 14.4.4, “Managing HWP"
31:24 Energy_Performance_Preference If CPUID.OGH:EAX[11] =1
See Section 14.4.4, “Managing HWP" &&
CPUID.OBH:EAX[10] =1
41:32 Activity_Window If CPUID.OBH:EAX.[11]=1
See Section 14.4.4, “Managing HWP” &&
CPUID.O6H:EAX.[9] = 1
63:42 Reserved.
773H | 1907 IA32_HWP_INTERRUPT Control HWP Native Interrupts (R/W) If CPUID.OGH:EAX.[8] = 1
0 EN_Guaranteed_Performance_Change. If CPUID.O6H:EAX.[8] = 1
See Section 14.4.6, "HWP Notifications”
1 EN_Excursion_Minimum. If CPUID.O6H:EAX.[8] = 1
See Section 14.4.6, "HWP Notifications”
63:2 Reserved.
774H | 1908 IA32_HWP_REQUEST Power Management Control Hints to a If CPUID.OGH:EAX[7] =1
Logical Processor (R/W)
7.0 Minimum_Performance If CPUID.O6H:EAX.[7] =1
See Section 14.4.4, “Managing HWP"
158 Maximum_Performance If CPUID.O6H:EAX.[7] =1
See Section 14.4.4, “Managing HWP"
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23:16 Desired_Performance If CPUID.OGH:EAX[7] =1
See Section 14.4.4, “Managing HWP"
31:24 Energy_Performance_Preference If CPUID.OGH:EAX.[7] =1
See Section 14.4.4, "Managing HWP” %& CPUID.OGH:EAX.[10] =
41:32 Activity_Window If CPUID.O6H:EAX.[7] =1
See Section 14.4.4, “Managing HWP" && CPUID.OGHEAX.[9] = 1
42 Package_Control If CPUID.O6H:EAX.[7] =1
See Section 14.4.4, “Managing HWP” 1121& CPUID.OGH:EAX.[11] =
63:43 Reserved.
777H | 1911 IA32_HWP_STATUS Log bits indicating changes to If CPUID.OGH:EAX.[7] =1
Guaranteed & excursions to Minimum
(R/W)
0 Guaranteed_Performance_Change If CPUID.O6H:EAX.[7] =1
(R/WCO).
See Section 14.4.5, "HWP Feedback”
1 Reserved.
2 Excursion_To_Minimum (R/WCO). If CPUID.O6H:EAX.[7] =1
See Section 14.4.5, "HWP Feedback”
63:3 Reserved.
802H | 2050 IA32_X2APIC_APICID X2APIC ID Register (R/0) If CPUID.OTH:ECX[21] = 1
See x2APIC Specification %81‘ IA32_APIC_BASE[10]
803H | 2051 IA32_X2APIC_VERSION X2APIC Version Register (R/0) If CPUID.OTH:ECX[21] =1
&& IA32_APIC_BASE.[10]
=1
808H | 2056 IA32_X2APIC_TPR X2APIC Task Priority Register (R/W) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE.[10]
=1
80AH | 2058 IA32_X2APIC_PPR X2APIC Processor Priority Register (R/0) | If CPCUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE.[10]
=1
80BH | 2059 IA32_X2APIC_EOI X2APIC EOI Register (W/0) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE.[10]
=1
80DH | 2061 IA32_X2APIC_LDR X2APIC Logical Destination Register If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE.[10]
=1
80FH | 2063 IA32_X2APIC_SIVR X2APIC Spurious Interrupt Vector If CPUID.OTH:ECX[21] =1
Register (R/W) && IA32_APIC_BASE.[10]
=1
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810H | 2064 IA32_X2APIC_ISRO X2APIC In-Service Register Bits 31:0 If CPUID.OTH:ECX.[21] =1
(R/0) && 1A32_APIC_BASE.[10]
=1
811H | 2065 IA32_X2APIC_ISR1 X2APIC In-Service Register Bits 63:32 If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
812H | 2066 IA32_X2APIC_ISR2 X2APIC In-Service Register Bits 95:64 If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
813H | 2067 IA32_X2APIC_ISR3 X2APIC In-Service Register Bits 127:96 | If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
814H | 2068 IA32_X2APIC_ISR4 X2APIC In-Service Register Bits 159:128 | If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
815H | 2069 IA32_X2APIC_ISR5 X2APIC In-Service Register Bits 191:160 | If CPUID.OTH:ECX.[21] = 1
(R/0) && IA32_APIC_BASE[10]
=1
816H | 2070 IA32_X2APIC_ISR6 Xx2APIC In-Service Register Bits 223:192 | If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
817H | 2071 IA32_X2APIC_ISR7 X2APIC In-Service Register Bits 255:224 | If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
818H | 2072 IA32_X2APIC_TMRO X2APIC Trigger Mode Register Bits 31:0 | If CPUID.OTH:ECX.[21] = 1
(R/0) && IA32_APIC_BASE[10]
=1
819H | 2073 IA32_X2APIC_TMR1 X2APIC Trigger Mode Register Bits 63:32 | If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
81AH | 2074 IA32_X2APIC_TMR2 X2APIC Trigger Mode Register Bits 95:64 | If CPUID.OTH:ECX.[21] =1
(R/0) && IA32_APIC_BASE[10]
=1
81BH | 2075 IA32_X2APIC_TMR3 X2APIC Trigger Mode Register Bits If CPUID.OTH:ECX.[21] =1
127:96 (R/0) && IA32_APIC_BASE[10]
=1
81CH | 2076 IA32_X2APIC_TMR4 X2APIC Trigger Mode Register Bits If CPUID.OTH:ECX[21] =1
159:128 (R/0) && IA32_APIC_BASE[10]
=1
81DH | 2077 IA32_X2APIC_TMR5 X2APIC Trigger Mode Register Bits If CPUID.OTH:ECX.[21] =1
191:160 (R/0) && IA32_APIC_BASE[10]
=1
81EH | 2078 IA32_X2APIC_TMR6 X2APIC Trigger Mode Register Bits If (CPUID.OTH:ECX.[21]=1
223:192 (R/0) && IA32_APIC_BASE[10]
= 'I)
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81FH | 2079 IA32_X2APIC_TMR7 X2APIC Trigger Mode Register Bits If CPUID.OTH:ECX[21] =1
255:224 (R/0) && IA32_APIC_BASE.[10]

=1
820H | 2080 IA32_X2APIC_IRRO x2APIC Interrupt Request Register Bits | If CPUID.OTH:ECX.[21] =1
31:0 (R/0) && IA32_APIC_BASE[10]

=1
821H | 2081 IA32_X2APIC_IRR1 x2APIC Interrupt Request Register Bits | If CPUID.OTH:ECX.[21] =1
63:32 (R/0) && IA32_APIC_BASE[10]

=1
822H | 2082 IA32_X2APIC_IRR2 X2APIC Interrupt Request Register Bits | If CPCUID.OTH:ECX.[21] =1
95:64 (R/0) && IA32_APIC_BASE[10]

=1
823H | 2083 IA32_X2APIC_IRR3 x2APIC Interrupt Request Register Bits | If CPUID.0OTH:ECX.[21] =1
127:96 (R/0) && IA32_APIC_BASE[10]

=1
824H | 2084 IA32_X2APIC_IRR4 x2APIC Interrupt Request Register Bits | If CPUID.OTH:ECX.[21] =1
159:128 (R/0) && IA32_APIC_BASE[10]

=1
825H | 2085 IA32_X2APIC_IRR5 X2APIC Interrupt Request Register Bits | If CPCUID.OTH:ECX.[21] =1
191:160 (R/0) && IA32_APIC_BASE[10]

=1
826H | 2086 IA32_X2APIC_IRR6 x2APIC Interrupt Request Register Bits | If CPUID.OTH:ECX.[21] =1
223:192 (R/0) && IA32_APIC_BASE[10]

=1
827H | 2087 IA32_X2APIC_IRR7 x2APIC Interrupt Request Register Bits | If CPUID.OTH:ECX.[21] =1
255:224 (R/0) && IA32_APIC_BASE[10]

=1
828H | 2088 IA32_X2APIC_ESR Xx2APIC Error Status Register (R/W) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE[10]

=1
82FH | 2095 IA32_X2APIC_LVT_CMCI Xx2APIC LVT Corrected Machine Check If CPUID.OTH:ECX.[21] =1
Interrupt Register (R/W) && IA32_APIC_BASE.[10]

=1
830H | 2096 IA32_X2APIC_ICR x2APIC Interrupt Command Register If CPUID.OTH:ECX.[21] =1
(R/W) && IA32_APIC_BASE[10]

=1
832H | 2098 IA32_X2APIC_LVT_TIMER X2APIC LVT Timer Interrupt Register If CPUID.OTH:ECX[21] =1
(R/W) && IA32_APIC_BASE[10]

=1
833H | 2099 IA32_X2APIC_LVT_THERMAL Xx2APIC LVT Thermal Sensor Interrupt If CPUID.OTH:ECX.[21] =1
Register (R/W) && IA32_APIC_BASE[10]

=1
834H | 2100 IA32_X2APIC_LVT_PMI Xx2APIC LVT Performance Monitor If CPUID.OTH:ECX.[21] =1
Interrupt Register (R/W) && IA32_APIC_BASE.[10]

=1
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835H | 2101 IA32_X2APIC_LVT_LINTO x2APIC LVT LINTO Register (R/W) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE[10]
=1
836H | 2102 IA32_X2APIC_LVT_LINT1 X2APIC LVT LINT1 Register (R/W) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE[10]
=1
837H | 2103 IA32_X2APIC_LVT_ERROR X2APIC LVT Error Register (R/W) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE[10]
=1
838H | 2104 IA32_X2APIC_INIT_COUNT x2APIC Initial Count Register (R/W) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE.[10]
=1
839H | 2105 IA32_X2APIC_CUR_COUNT X2APIC Current Count Register (R/0) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE[10]
=1
83EH | 2110 IA32_X2APIC_DIV_CONF X2APIC Divide Configuration Register If CPUID.OTH:ECX.[21] =1
(R/W) && IA32_APIC_BASE[10]
=1
83FH | 2111 IA32_X2APIC_SELF_IPI X2APIC Self IPI Register (W/0) If CPUID.OTH:ECX.[21] =1
&& IA32_APIC_BASE.[10]
=1
C80H | 3200 IA32_DEBUG_INTERFACE Silicon Debug Feature Control (R/W) If CPUID.OTH:ECX.[11] =1
0 Enable (R/W) If CPUID.OTH:ECX.[11]=1
BIOS set 1 to enable Silicon debug features.
Defaultis O
29:1 Reserved.
30 Lock (R/W): If 1, locks any further change | If CPUID.OTH:ECX.[11]=1
to the MSR. The lock bit is set automatically
on the first SMI assertion even if not
explicitly set by BIOS. Default is 0.
31 Debug Occurred (R/0): This “sticky bit"is | If CPUID.OTH:ECX.[11]=1
set by hardware to indicate the status of
bit 0. Default is 0.
63:32 Reserved.
C81H | 3201 IA32_L3_QO0S_CFG L3 QOS Configuration (R/W) If (CPUID.(EAX=10H,
ECX=1)ECX[2]=1)
0 Enable (R/W)
Set 1 to enable L3 CAT masks and COS to
operate in Code and Data Prioritization
(CDP) mode
63:1 Reserved.
C8DH | 3213 IA32_QM_EVTSEL Monitoring Event Select Register (R/W) | If ( CPUID.(EAX=07H,
ECX=0):EBX.[12]=1)
7.0 Event ID: ID of a supported monitoring
event to report via IA32_QM_CTR.
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31:8 Reserved.
N+31:32 Resource Monitoring ID: ID for monitoring | N = Ceil (Log, (
hardware to report monitored data via CPUID.(EAX= OFH,
IA32_QM_CTR. ECX=0H).EBX[31:0] +1))
63:N+32 Reserved.
C8EH | 3214 IA32_QM_CTR Monitoring Counter Register (R/0) If (CPUID.(EAX=07H,
ECX=0):EBX.[12]1=1)
61:.0 Resource Monitored Data
62 Unavailable: If 1, indicates data for this
RMID is not available or not monitored for
this resource or RMID.
63 Error: If 1, indicates and unsupported RMID
or event type was written to
IA32_PQR_QM_EVTSEL.
C8FH | 3215 IA32_PQR_ASSOC Resource Association Register (R/W) If ((CPUID.(EAX=07H,
ECX=0).eBX[12] =1) or
(CPUID.(EAX=07H,
ECX=0).eBX[15]=1) )
N-1:0 Resource Monitoring ID (R/W): ID for N = Ceil (Log; (
monitoring hardware to track internal CPUID.(EAX= OFH,
operation, e.g. memory access. ECX=0H).EBX[31:0] +1))
31N Reserved
63:32 COS (R/W). The class of service If (CPUID.(EAX=07H,
(COS) to enforce (on writes); ECX=0)EBX[15]=1)
returns the current COS when
read.
C90H - Reserved MSR Address Space for CAT | See Section 17.17.3.1, “Enumeration and
D8FH Mask Registers Detection Support of Cache Allocation
Technology”
C90H | 3216 IA32_L3_MASK_0 L3 CAT Mask for COSO (R/W) If (CPUID.(EAX=10H,
ECX=0H):EBX[1]!= 0)
31:.0 Capacity Bit Mask (R/W)
63:32 Reserved.
C90H+ | 3216+n | IA32_L3_MASK_n L3 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
n ECX=TH):EDX[15:0]
31:.0 Capacity Bit Mask (R/W)
63:32 Reserved.
D10H- Reserved MSR Address Space for L2 | See Section 17.17.3.1, “Enumeration and
D4FH CAT Mask Registers Detection Support of Cache Allocation
Technology”
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DIOH | 3344 IA32_L2_MASK_0 L2 CAT Mask for COSO (R/W) If (CPUID.(EAX=10H,
ECX=0H).EBX[2] = 0)
31.0 Capacity Bit Mask (R/W)
63:32 Reserved.
D10H+ | 3344+n | IA32_L2_MASK_n L2 CAT Mask for COSn (R/W) n = CPUID.(EAX=10H,
n ECX=2H).EDX[15:0]
31:.0 Capacity Bit Mask (R/W)
63:32 Reserved.
D90OH | 3472 IA32_BNDCFGS Supervisor State of MPX Configuration. | If (CPUID.(EAX=07H,
(R/W) ECX=0H).EBX[14] = 1)
0 EN: Enable Intel MPX in supervisor mode
1 BNDPRESERVE: Preserve the bounds
registers for near branch instructions in the
absence of the BND prefix
11:2 Reserved, must be 0
63:12 Base Address of Bound Directory.
DAOH | 3488 IA32_XSS Extended Supervisor State Mask (R/W) | If( CPUID.(ODH, 1):EAX.[3]
=1
7.0 Reserved
8 Trace Packet Configuration State (R/W)
63:9 Reserved.
DBOH | 3504 IA32_PKG_HDC_CTL Package Level Enable/disable HDC (R/W) | If CPUID.O6H:EAX.[13] =1
0 HDC_Pkg_Enable (R/W) If CPUID.OGH:EAX.[13] =1
Force HDC idling or wake up HDC-idled
logical processors in the package. See
Section 14.5.2, “Package level Enabling
HDC”
63:1 Reserved.
DB1H | 3505 IA32_PM_CTL1 Enable/disable HWP (R/W) If CPUID.O6H:EAX.[13] =1
0 HDC_Allow_Block (R/W) If CPUID.OBH:EAX.[13] =1
Allow/Block this logical processor for
package level HDC control. See Section
1453
63:1 Reserved.
DB2H | 3506 IA32_THREAD_STALL Per-Logical_Processor HDC Idle If CPUID.OGH:EAX[13] =1
Residency (R/0)
63:0 Stall_Cycle_Cnt (R/W) If CPUID.OBH:EAX.[13] =1
Stalled cycles due to HDC forced idle on this
logical processor. See Section 14.5.4.1
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4000_ Reserved MSR Address Space All existing and future processors will
0000H not implement MSR in this range.
4000_
O0OFFH
C000_ IA32_EFER Extended Feature Enables If (
0080H CPUID.8000000TH:EDX.[2
011l
CPUID.BOOO000TH:EDX.[2
9]
0 SYSCALL Enable: IA32_EFER.SCE (R/W)
Enables SYSCALL/SYSRET instructions in
64-bit mode.
7:1 Reserved.
8 IA-32e Mode Enable: IA32_EFER.LME
(R/W)
Enables IA-32e mode operation.
9 Reserved.
10 IA-32e Mode Active: IA32_EFER.LMA (R)
Indicates IA-32e mode is active when set.
11 Execute Disable Bit Enable:
IA32_EFER.NXE (R/W)
63:12 Reserved.
C000_ IA32_STAR System Call Target Address (R/W) If
0081H CPUID.B0000001:EDX.[29]
=1
C000_ IA32_LSTAR IA-32e Mode System Call Target Address | If
0082H (R/W) CPUID.B80000001:EDX.[29]
=1
C000_ IA32_FMASK System Call Flag Mask (R/W) If
0084H CPUID.80000001:EDX.[29]
=1
C000_ IA32_FS_BASE Map of BASE Address of FS (R/W) If
0100H CPUID.B0000001:EDX.[29]
=1
C000_ IA32_GS_BASE Map of BASE Address of GS (R/W) If
0101H CPUID.80000001:EDX.[29]
=1
C000_ IA32_KERNEL_GS_BASE Swap Target of BASE Address of GS If
0102H (R/W) CPUID.80000001:EDX.[29]
=1
C000_ IA32_TSC_AUX Auxiliary TSC (RW) If CPUID.8000000TH:
0103H EDX[27] =1
31:.0 AUX: Auxiliary signature of TSC
63:32 Reserved.
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NOTES:

1. In processors based on Intel NetBurst® microarchitecture, MSR addresses 180H-197H are supported, software must treat them as
model-specific. Starting with Intel Core Duo processors, MSR addresses 180H-185H, 188H-197H are reserved.

2. The *_ADDR MSRs may or may not be present; this depends on flag settings in IA32_MCi_STATUS. See Section 15.3.2.3 and Section
15.3.2.4 for more information.

3. MAXPHYADDR is reported by CPUID.80000008H:EAX[7:0].

35.2 MSRSIN THE INTEL® CORE™ 2 PROCESSOR FAMILY

Table 35-3 lists model-specific registers (MSRs) for Intel Core 2 processor family and for Intel Xeon processors
based on Intel Core microarchitecture, architectural MSR addresses are also included in Table 35-3. These proces-
sors have a CPUID signature with DisplayFamily_DisplayModel of 06_OFH, see Table 35-1.

MSRs listed in Table 35-2 and Table 35-3 are also supported by processors based on the Enhanced Intel Core
microarchitecture. Processors based on the Enhanced Intel Core microarchitecture have the CPUID signature
DisplayFamily_DisplayModel of 06_17H.

The column “Shared/Unique” applies to multi-core processors based on Intel Core microarchitecture. “Unique”
means each processor core has a separate MSR, or a bit field in an MSR governs only a core independently.
“Shared” means the MSR or the bit field in an MSR address governs the operation of both processor cores.

Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
OH 0 IA32_P5_MC_ADDR Unique See Section 35.22, “MSRs in Pentium Processors.”
1H 1 IA32_P5_MC_TYPE Unique See Section 35.22, “MSRs in Pentium Processors.”
6H 6 IA32_MONITOR_FILTER_SIZ | Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
€ andTable 35-2.
10H 16 IA32_TIME_STAMP_COUNT | Unique See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.
ER
17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.
17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)
7.0 Reserved.
12:8 Maximum Qualified Ratio (R)
The maximum allowed bus ratio.
4913 Reserved.
52:50 See Table 35-2.
63:53 Reserved.
1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location.” and
Table 35-2.
2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W)
Enables and disables processor features; (R) indicates current
processor configuration.
0 Reserved.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
1 Data Error Checking Enable (R/W)
1 = Enabled; O = Disabled
Note: Not all processor implements R/W.
2 Response Error Checking Enable (R/W)

1 = Enabled; O = Disabled
Note: Not all processor implements R/W.

3 MCERR# Drive Enable (R/W)
1 = Enabled; O = Disabled
Note: Not all processor implements R/W.

4 Address Parity Enable (R/W)
1 = Enabled; 0 = Disabled
Note: Not all processor implements R/W.

Reserved.

Reserved.

BINIT# Driver Enable (R/W)
1 = Enabled; O = Disabled
Note: Not all processor implements R/W.

8 Output Tri-state Enabled (R/0)
1 = Enabled; O = Disabled
9 Execute BIST (R/0)
1 = Enabled; O = Disabled
10 MCERR# Observation Enabled (R/0)
1 = Enabled; O = Disabled
11 Intel TXT Capable Chipset. (R/0)
1 = Present; 0 = Not Present
12 BINIT# Observation Enabled (R/0)
1 = Enabled; O = Disabled
13 Reserved.
14 1 MByte Power on Reset Vector (R/0)
1 =1 MByte; 0 = 4 GBytes
15 Reserved.
17:16 APIC Cluster ID (R/0)
18 N/2 Non-Integer Bus Ratio (R/0)
0 = Integer ratio; 1 = Non-integer ratio
19 Reserved.
21:20 Symmetric Arbitration ID (R/0)
26:22 Integer Bus Frequency Ratio (R/0)
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description

Hex Dec

3AH 58 MSR_FEATURE_CONTROL Unique Control Features in Intel 64Processor (R/W)
See Table 35-2.

3 Unique SMRR Enable (R/WL)

When this bit is set and the lock bit is set makes the
SMRR_PHYS_BASE and SMRR_PHYS_MASK registers read visible
and writeable while in SMM.

40H 64 MSR_ Unique Last Branch Record O From IP (R/W)

LASTBRANCH_O_FROM_IP One of four pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction. See also:
= Last Branch Record Stack TOS at 1C9H
= Section 17.5

41H 65 MSR_ Unique Last Branch Record 1 From IP (R/W)

LASTBRANCH_1_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.

42H 66 MSR_ Unique Last Branch Record 2 From IP (R/W)

LASTBRANCH_2_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.

43H 67 MSR_ Unique Last Branch Record 3 From IP (R/W)

LASTBRANCH_3_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.

60H 96 MSR_ Unique Last Branch Record 0 To IP (R/W)

LASTBRANCH_O_TO_IP One of four pairs of last branch record registers on the last branch
record stack. This To_IP part of the stack contains pointers to the
destination instruction.

61H 97 MSR_ Unique Last Branch Record 1 To IP (R/W)

LASTBRANCH_1_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.

62H 98 MSR_ Unique Last Branch Record 2 To IP (R/W)

LASTBRANCH_2_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.

63H 99 MSR_ Unique Last Branch Record 3 To IP (R/W)

LASTBRANCH_3_TO_IP See description of MSR_LASTBRANCH_0_TO_IP.

79H 121 | IA32_BIOS_UPDT_TRIG Unique BIOS Update Trigger Register (W)

See Table 35-2.

8BH 139 | IA32_BIOS_SIGN_ID Unique BIOS Update Signature ID (RO)
See Table 35-2.

AOH 160 | MSR_SMRR_PHYSBASE Unique System Management Mode Base Address register (WO in SMM)
Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

11.0 Reserved.

31:12 PhysBase. SMRR physical Base Address.

63:32 Reserved.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address

Hex Dec

Register Name

Shared/
Unique

Bit Description

AlH 161

MSR_SMRR_PHYSMASK

Unigue

System Management Mode Physical Address Mask register
(WO in SMM)

Model-specific implementation of SMRR-like interface, read visible
and write only in SMM.

10:.0

Reserved.

1

Valid. Physical address base and range mask are valid.

31:12

PhysMask. SMRR physical address range mask.

63:32

Reserved.

C1H 193

IA32_PMCO

Unique

Performance Counter Register
See Table 35-2.

C2H 194

IA32_PMC1

Unique

Performance Counter Register
See Table 35-2.

CDH 205

MSR_FSB_FREQ

Shared

Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Core microarchitecture:

2.0

101B: 100 MHz (FSB 400)
001B: 133 MHz (FSB 533)
011B: 167 MHz (FSB 667)
0108B: 200 MHz (FSB 800)
000B: 267 MHz (FSB 1067)
100B: 333 MHz (FSB 1333)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 000B.

333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 100B.

63:3

Reserved.

CDH 205

MSR_FSB_FREQ

Shared

Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Enhanced Intel Core microarchitecture:

2.0

101B: 100 MHz (FSB 400)
001B: 133 MHz (FSB 533)
011B: 167 MHz (FSB 667)
010B: 200 MHz (FSB 800)
000B: 267 MHz (FSB 1067)
100B: 333 MHz (FSB 1333)
110B: 400 MHz (FSB 1600)

PR
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.
166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.
266.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 110B.
333.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 111B.
63:3 Reserved.
E7H 231 IA32_MPERF Unique Maximum Performance Frequency Clock Count (RW)
See Table 35-2.
E8H 232 | IA32_APERF Unique Actual Performance Frequency Clock Count (RW)
See Table 35-2.
FEH 254 | IA32_MTRRCAP Unique See Table 35-2.
11 Unique SMRR Capability Using MSR OAOH and OA1TH (R)
11€H 281 | MSR_BBL_CR_CTL3 Shared
0 L2 Hardware Enabled (RO)
1= If the L2 is hardware-enabled
0 = Indicates if the L2 is hardware-disabled
7:1 Reserved.
L2 Enabled (R/W)
1= L2 cache has been initialized
0 = Disabled (default)
Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.
229 Reserved.
23 L2 Not Present (RO)
0= L2 Present
1= L2 Not Present
63:24 Reserved.
174H 372 | IA32_SYSENTER_CS Unique See Table 35-2.
175H 373 | IA32_SYSENTER_ESP Unique See Table 35-2.
176H 374 | IA32_SYSENTER_EIP Unique See Table 35-2.
179H 377 | 1A32_MCG_CAP Unique See Table 35-2.
17AH 378 | IA32_MCG_STATUS Unique
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
0 RIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted.
1 EIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.
2 MCIP
When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to O after processing a machine check exception.
63:3 Reserved.
186H 390 | IA32_PERFEVTSELO Unique See Table 35-2.
187H 391 | IA32_PERFEVTSEL1 Unique See Table 35-2.
198H 408 | IA32_PERF_STATUS Shared See Table 35-2.
198H 408 | MSR_PERF_STATUS Shared
15:.0 Current Performance State Value.
30:16 Reserved.
31 XE Operation (R/0).
If set, XE operation is enabled. Default is cleared.
39:32 Reserved.
44:40 Maximum Bus Ratio (R/0)
Indicates maximum bus ratio configured for the processor.
45 Reserved.
46 Non-Integer Bus Ratio (R/0)
Indicates non-integer bus ratio is enabled. Applies processors
based on Enhanced Intel Core microarchitecture.
63:47 Reserved.
199H 409 |[IA32_PERF_CTL Unique See Table 35-2.
19AH 410 |IA32_CLOCK_MODULATION | Unique Clock Modulation (R/W)
See Table 35-2.
IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.
19BH 411 | IA32_THERM_INTERRUPT | Unique Thermal Interrupt Control (R/W)
See Table 35-2.
19CH 412 | IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)
See Table 35-2.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

19DH

413

MSR_THERMZ_CTL

Unique

15:.0

Reserved.

16

TM_SELECT (R/W)

Mode of automatic thermal monitor:

0= Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1= Thermal Monitor 2 (thermally-initiated frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:16

Reserved.

1AOH

416

IA32_MISC_ENABLE

Enable Misc. Processor Features (R/W)
Allows a variety of processor functions to be enabled and disabled.

Fast-Strings Enable
See Table 35-2.

Reserved.

Unique

Automatic Thermal Control Circuit Enable (R/W)
See Table 35-2.

Reserved.

Shared

Performance Monitoring Available (R)
See Table 35-2.

Reserved.

Hardware Prefetcher Disable (R/W)

When set, disables the hardware prefetcher operation on streams
of data. When clear (default), enables the prefetch queue.

Disabling of the hardware prefetcher may impact processor
performance.

10

Shared

FERR# Multiplexing Enable (R/W)

1= FERR# asserted by the processor to indicate a pending break
event within the processor

0= Indicates compatible FERR# signaling behavior
This bit must be set to 1 to support XAPIC interrupt model usage.

11

Shared

Branch Trace Storage Unavailable (RO)
See Table 35-2.

12

Shared

Processor Event Based Sampling Unavailable (RO)
See Table 35-2.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec

13 Shared TM2 Enable (R/W)
When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERMZ2_CTL bits 15:0.
When this bit is clear (0, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.
The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TMZ2 bit location.
The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.

15:14 Reserved.

16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)
See Table 35-2.

18 Shared ENABLE MONITOR FSM (R/W)
See Table 35-2.

19 Shared Adjacent Cache Line Prefetch Disable (R/W)

When set to 1, the processor fetches the cache line that contains
data currently required by the processor. When set to O, the
processor fetches cache lines that comprise a cache line pair (128
bytes).

Single processor platforms should not set this bit. Server platforms
should set or clear this bit based on platform performance
observed in validation and testing.

BIOS may contain a setup option that controls the setting of this
bit.

20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WQ)
When set, this bit causes the following bits to become read-only:
= Enhanced Intel SpeedStep Technology Select Lock (this bit),
= Enhanced Intel SpeedStep Technology Enable bit.

The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.
21 Reserved.
22 Shared Limit CPUID Maxval (R/W)
See Table 35-2.
23 Shared XTPR Message Disable (R/W)
See Table 35-2.
33:24 Reserved.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

34

Unique

XD Bit Disable (R/W)
See Table 35-2.

36:35

Reserved.

37

Unique

DCU Prefetcher Disable (R/W)

When set to 1, The DCU L1 data cache prefetcher is disabled. The
default value after reset is 0. BIOS may write ‘1" to disable this
feature.

The DCU prefetcher is an L1 data cache prefetcher. When the DCU
prefetcher detects multiple loads from the same line done within a
time limit, the DCU prefetcher assumes the next line will be
required. The next line is prefetched in to the L1 data cache from
memory or L2.

38

Shared

IDA Disable (R/W)

When set to 1 on processors that support IDA, the Intel Dynamic
Acceleration feature (IDA) is disabled and the IDA_Enable feature
flag will be clear (CPUID.O6H: EAX[1]=0).

When set to a 0 on processors that support IDA, CPUID.O6H:
EAX[1] reports the processor’s support of IDA is enabled.

Note: the power-on default value is used by BIOS to detect
hardware support of IDA. If power-on default value is 1, IDA is
available in the processor. If power-on default value is O, IDA is not
available.

39

Unique

IP Prefetcher Disable (R/W)
When set to 1, The IP prefetcher is disabled. The default value
after reset is 0. BIOS may write ‘1" to disable this feature.

The IP prefetcher is an L1 data cache prefetcher. The IP prefetcher
looks for sequential load history to determine whether to prefetch
the next expected data into the L1 cache from memory or L2.

63:40

Reserved.

1C9H

457

MSR_LASTBRANCH_TOS

Unique

Last Branch Record Stack TOS (R/W)

Contains an index (bits 0-3) that points to the MSR containing the
most recent branch record.

See MSR_LASTBRANCH_O_FROM_IP (at 40H).

1DSH

473

IA32_DEBUGCTL

Unique

Debug Control (R/W)
See Table 35-2

1DDH

477

MSR_LER_FROM_LIP

Unique

Last Exception Record From Linear IP (R)

Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.

1DEH

478

MSR_LER_TO_LIP

Unique

Last Exception Record To Linear IP (R)

This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
200H 512 | IA32_MTRR_PHYSBASEO Unique See Table 35-2.
201H 513 | IA32_MTRR_PHYSMASKO | Unique See Table 35-2.
202H 514 | 1A32_MTRR_PHYSBASE1 Unique See Table 35-2.
203H 515 | IA32_MTRR_PHYSMASK1 Unique See Table 35-2.
204H 516 |IA32_MTRR_PHYSBASE2 Unique See Table 35-2.
205H 517 | 1A32_MTRR_PHYSMASK2 | Unique See Table 35-2.
206H 518 | IA32_MTRR_PHYSBASE3 Unique See Table 35-2.
207H 519 |IA32_MTRR_PHYSMASK3 Unique See Table 35-2.
208H 520 |IA32_MTRR_PHYSBASE4 Unique See Table 35-2.
209H 521 |IA32_MTRR_PHYSMASK4 | Unique See Table 35-2.
20AH 522 | IA32_MTRR_PHYSBASES Unique See Table 35-2.
20BH 523 |IA32_MTRR_PHYSMASK5 | Unigue See Table 35-2.
20CH 524 | 1A32_MTRR_PHYSBASEG Unique See Table 35-2.
20DH 525 |IA32_MTRR_PHYSMASK6 Unique See Table 35-2.
20EH 526 |IA32_MTRR_PHYSBASE7 Unique See Table 35-2.
20FH 527 | 1A32_MTRR_PHYSMASK7 | Unique See Table 35-2.
250H 592 |IA32_MTRR_FIX64K_ Unique See Table 35-2.
00000
258H 600 |IA32_MTRR_FIX16K_ Unique See Table 35-2.
80000
259H 601 IA32_MTRR_FIX16K_ Unique See Table 35-2.
A0000
268H 616 |IA32_MTRR_FIX4K_C0000 | Unique See Table 35-2.
269H 617 | IA32_MTRR_FIX4K_C8000 | Unique See Table 35-2.
26AH 618 | IA32_MTRR_FIX4K_D0O00O | Unique See Table 35-2.
26BH 619 |IA32_MTRR_FIX4K_D8000 | Unique See Table 35-2.
26CH 620 |IA32_MTRR_FIX4K_EOO0O | Unique See Table 35-2.
26DH 621 | IA32_MTRR_FIX4K_EB000 | Unique See Table 35-2.
26EH 622 |IA32_MTRR_FIX4K_FO000 | Unique See Table 35-2.
26FH 623 | IA32_MTRR_FIX4K_F8000 | Unique See Table 35-2.
277H 631 IA32_PAT Unique See Table 35-2.
2FFH 767 | IA32_MTRR_DEF_TYPE Unique Default Memory Types (R/W)
See Table 35-2.
309H 777 | IA32_FIXED_CTRO Unique Fixed-Function Performance Counter Register 0O (R/W)
See Table 35-2.
309H 777 | MSR_PERF_FIXED_CTRO Unique Fixed-Function Performance Counter Register 0O (R/W)
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
30AH 778 | IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)
See Table 35-2.
30AH 778 | MSR_PERF_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)
30BH 779 | IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)
See Table 35-2.
30BH 779 | MSR_PERF_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)
345H 837 | IA32_PERF_CAPABILITIES | Unique See Table 35-2. See Section 17.4.1, “IA32_DEBUGCTL MSR/"
345H 837 | MSR_PERF_CAPABILITIES Unique RO. This applies to processors that do not support architectural
perfmon version 2.
5.0 LBR Format. See Table 35-2.
6 PEBS Record Format.
7 PEBSSaveArchRegs. See Table 35-2.
63:8 Reserved.
38DH 909 | IA32_FIXED_CTR_CTRL Unique Fixed-Function-Counter Control Register (R/W)
See Table 35-2.
38DH 909 | MSR_PERF_FIXED_CTR_ Unique Fixed-Function-Counter Control Register (R/W)
CTRL
38€EH 910 | IA32_PERF_GLOBAL_ Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
STATUS Facilities.”
38EH 910 | MSR_PERF_GLOBAL_STATU | Unique See Section 18.4.2, “Global Counter Control Facilities.”
S
38FH 911 IA32_PERF_GLOBAL_CTRL | Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
Facilities.”
38FH 911 MSR_PERF_GLOBAL_CTRL | Unique See Section 18.4.2, “Global Counter Control Facilities.”
390H 912 | IA32_PERF_GLOBAL_OVF_ | Unique See Table 35-2. See Section 18.4.2, “Global Counter Control
CTRL Facilities.”
390H 912 | MSR_PERF_GLOBAL_OVF_ | Unique See Section 18.4.2, “Global Counter Control Facilities.”
CTRL
3F1H 1009 | MSR_PEBS_ENABLE Unique See Table 35-2. See Section 18.4.4, "Processor Event Based
Sampling (PEBS)."
0 Enable PEBS on IA32_PMCO. (R/W)
400H | 1024 |IA32_MCO_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs."
401H | 1025 |IA32_MCO_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."
402H | 1026 |IA32_MCO_ADDR Unique See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
The IA32_MCO_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MCO_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec

404H | 1028 |IA32_MC1_CTL Unique See Section 15.3.2.1, "IA32_MCi_CTL MSRs."

405H | 1029 |IA32_MC1_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS."

406H | 1030 |IA32_MC1_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The IA32_MC1_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC1_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

408H | 1032 |IA32_MC2_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

409H | 1033 |IA32_MC2_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.”

40AH | 1034 |IA32_MC2_ADDR Unique See Section 15.3.2.3, "IA32_MCi_ADDR MSRs."
The IA32_MC2_ADDR register is either not implemented or
contains no address if the ADDRV flag in the IA32_MC2_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

40CH | 1036 |IA32_MC4_CTL Unique See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

40DH | 1037 |IA32_MC4_STATUS Unique See Section 15.3.2.2, “IA32_MCi_STATUS MSRS.

40€EH | 1038 |IA32_MC4_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The MSR_MC4_ADDR register is either not implemented or
contains no address if the ADDRYV flag in the MSR_MC4_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

410H | 1040 |IA32_MC3_CTL See Section 15.3.2.1, “IA32_MCi_CTL MSRs."

411H | 1041 |IA32_MC3_STATUS See Section 15.3.2.2, "IA32_MCi_STATUS MSRS.

412H | 1042 |IA32_MC3_ADDR Unique See Section 15.3.2.3, “IA32_MCi_ADDR MSRs."
The MSR_MC3_ADDR register is either not implemented or
contains no address if the ADDRV flag in the MSR_MC3_STATUS
register is clear.
When not implemented in the processor, all reads and writes to this
MSR will cause a general-protection exception.

413H | 1043 |IA32_MC3_MISC Unique

414H | 1044 |IA32_MC5_CTL Unique

415H | 1045 |IA32_MC5_STATUS Unique

416H | 1046 |IA32_MC5_ADDR Unique

417H | 1047 |IA32_MC5_MISC Unique

419H | 1045 |IA32_MC6_STATUS Unique Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 15.3.2.2, “IA32_MCi_STATUS MSRS." and
Chapter 23.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

480H

1152

IA32_VMX_BASIC

Unique

Reporting Register of Basic VMX Capabilities (R/0)
See Table 35-2.
See Appendix A.1, “Basic VMX Information.”

481H

1153

IA32_VMX_PINBASED_
CTLS

Unique

Capability Reporting Register of Pin-based VM-execution
Controls (R/0)

See Table 35-2.
See Appendix A.3, “VM-Execution Controls.”

482H

1154

IA32_VMX_PROCBASED_
CTLS

Unique

Capability Reporting Register of Primary Processor-based
VM-execution Controls (R/0)

See Appendix A.3, “VM-Execution Controls.”

483H

1155

IA32_VMX_EXIT_CTLS

Unique

Capability Reporting Register of VM-exit Controls (R/0)
See Table 35-2.
See Appendix A.4, “VM-Exit Controls.”

484H

1156

IA32_VMX_ENTRY_CTLS

Unique

Capability Reporting Register of VM-entry Controls (R/0)
See Table 35-2.
See Appendix A.5, “VM-Entry Controls.”

485H

1157

IA32_VMX_MISC

Unique

Reporting Register of Miscellaneous VMX Capabilities (R/0)
See Table 35-2.
See Appendix A.6, “Miscellaneous Data.”

486H

1158

IA32_VMX_CRO_FIXEDO

Unique

Capability Reporting Register of CRO Bits Fixed to 0 (R/0)
See Table 35-2.
See Appendix A.7, “WVMX-Fixed Bits in CRO."

487H

1159

IA32_VMX_CRO_FIXED1

Unique

Capability Reporting Register of CRO Bits Fixed to 1 (R/0)
See Table 35-2.
See Appendix A.7, “VMX-Fixed Bits in CRO."

488H

1160

IA32_VMX_CR4_FIXEDO

Unique

Capability Reporting Register of CR4 Bits Fixed to 0 (R/0)
See Table 35-2.
See Appendix A.8, “VMX-Fixed Bits in CR4."

489H

1161

IA32_VMX_CR4_FIXED1

Unique

Capability Reporting Register of CR4 Bits Fixed to 1 (R/0)
See Table 35-2.
See Appendix A.8, “VMX-Fixed Bits in CR4."

48AH

1162

IA32_VMX_VMCS_ENUM

Unique

Capability Reporting Register of VMCS Field Enumeration (R/0)
See Table 35-2.
See Appendix A.9, “VMCS Enumeration.”

48BH

1163

IA32_VMX_PROCBASED_
CTLS2

Unique

Capability Reporting Register of Secondary Processor-based
VM-execution Controls (R/0)

See Appendix A.3, “"VM-Execution Controls.”
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
600H | 1536 |IA32_DS_AREA Unique DS Save Area (R/W)
See Table 35-2.
See Section 18.15.4, “Debug Store (DS) Mechanism.”
107CC MSR_EMON_L3_CTR_CTLO | Unique GBUSQ Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107CD MSR_EMON_L3_CTR_CTL1 | Unique GBUSQ Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107CE MSR_EMON_L3_CTR_CTL2 | Unique GSNPQ Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107CF MSR_EMON_L3_CTR_CTL3 | Unique GSNPQ Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107D0 MSR_EMON_L3_CTR_CTL4 | Unique FSB Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107D1 MSR_EMON_L3_CTR_CTL5 | Unique FSB Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107D2 MSR_EMON_L3_CTR_CTL6 | Unique FSB Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
107D3 MSR_EMON_L3_CTR_CTL7 | Unique FSB Event Control/Counter Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
10708 MSR_EMON_L3_GL_CTL Unique L3/FSB Common Control Register (R/W)
H Apply to Intel Xeon processor 7400 series (processor signature
06_1D) only. See Section 17.2.2
C000_ IA32_EFER Unique Extended Feature Enables
0080H See Table 35-2.
C000_ IA32_STAR Unique System Call Target Address (R/W)
0081H See Table 35-2.
C000_ IA32_LSTAR Unique IA-32e Mode System Call Target Address (R/W)
0082H See Table 35-2.
C000_ IA32_FMASK Unique System Call Flag Mask (R/W)
0084H See Table 35-2.
C000_ IA32_FS_BASE Unique Map of BASE Address of FS (R/W)
0100H See Table 35-2.
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Table 35-3. MSRs in Processors Based on Intel® Core™ Microarchitecture (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec

C000_ IA32_GS_BASE Unique Map of BASE Address of GS (R/W)
0101H See Table 35-2.
C000_ IA32_KERNEL_GS_BASE Unique Swap Target of BASE Address of GS (R/W) See Table 35-2.
0102H
35.3 MSRSIN THE 45 NM AND 32 NM INTEL® ATOM™ PROCESSOR FAMILY

Table 35-4 lists model-specific registers (MSRs) for 45 nm and 32 nm Intel Atom processors, architectural MSR
addresses are also included in Table 35-4. These processors have a CPUID signature with
DisplayFamily_DisplayModel of 06_1CH, 06_26H, 06_27H, 06_35H and 06_36H; see Table 35-1.

The column “Shared/Unique” applies to logical processors sharing the same core in processors based on the Intel
Atom microarchitecture. “Unique” means each logical processor has a separate MSR, or a bit field in an MSR

governs only a logical processor. “Shared” means the MSR or the bit field in an MSR address governs the operation
of both logical processors in the same core.

Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
OH 0 IA32_P5_MC_ADDR Shared See Section 35.22, “MSRs in Pentium Processors.”
TH 1 IA32_P5_MC_TYPE Shared See Section 35.22, “MSRs in Pentium Processors.”
6H 6 IA32_MONITOR_FILTER_ Unique See Section 8.10.5, “Monitor/Mwait Address Range Determination.”
SIZE andTable 35-2
10H 16 IA32_TIME_STAMP_ Unique See Section 17.15, “Time-Stamp Counter,” and see Table 35-2.
COUNTER
17H 23 IA32_PLATFORM_ID Shared Platform ID (R)
See Table 35-2.
17H 23 MSR_PLATFORM_ID Shared Model Specific Platform ID (R)
7.0 Reserved.
12:8 Maximum Qualified Ratio (R)
The maximum allowed bus ratio.
63:13 Reserved.
1BH 27 IA32_APIC_BASE Unique See Section 10.4.4, “Local APIC Status and Location,” and
Table 35-2.
2AH 42 MSR_EBL_CR_POWERON Shared Processor Hard Power-On Configuration (R/W) Enables and
disables processor features;
(R) indicates current processor configuration.
0 Reserved.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

Data Error Checking Enable (R/W)
1 = Enabled; O = Disabled

Always 0.

Response Error Checking Enable (R/W)
1 = Enabled; O = Disabled

Always 0.

AERR# Drive Enable (R/W)
1 = Enabled; O = Disabled
Always 0.

BERR# Enable for initiator bus requests (R/W)
1 = Enabled; O = Disabled
Always 0.

Reserved.

Reserved.

BINIT# Driver Enable (R/W)
1 = Enabled; O = Disabled
Always 0.

Reserved.

Execute BIST (R/0)
1 = Enabled; O = Disabled

10

AERR# Observation Enabled (R/0)
1 = Enabled; O = Disabled
Always 0.

1

Reserved.

12

BINIT# Observation Enabled (R/0)
1 = Enabled; O = Disabled
Always 0.

13

Reserved.

14

1 MByte Power on Reset Vector (R/0)
1 =1 MByte; 0 = 4 GBytes

15

Reserved

17:16

APIC Cluster ID (R/0)
Always 00B.

19:18

Reserved.

21:20

Symmetric Arbitration ID (R/0)
Always 00B.

26:22

Integer Bus Frequency Ratio (R/0)

3AH

58

IA32_FEATURE_CONTROL

Unique

Control Features in Intel 64Processor (R/W)
See Table 35-2.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
40H 64 MSR_ Unique Last Branch Record O From IP (R/W)
LASTBRANCH_O_FROM_IP One of eight pairs of last branch record registers on the last branch
record stack. The From_IP part of the stack contains pointers to
the source instruction . See also:
= Last Branch Record Stack TOS at 1C9H
= Section 17.5
41H 65 MSR_ Unique Last Branch Record 1 From IP (R/W)
LASTBRANCH_1_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
42H 66 MSR_ Unique Last Branch Record 2 From IP (R/W)
LASTBRANCH_2_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
43H 67 MSR_ Unique Last Branch Record 3 From IP (R/W)
LASTBRANCH_3_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
44H 68 MSR_ Unique Last Branch Record 4 From IP (R/W)
LASTBRANCH_4_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
45H 69 MSR_ Unique Last Branch Record 5 From IP (R/W)
LASTBRANCH_5_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
46H 70 MSR_ Unique Last Branch Record 6 From IP (R/W)
LASTBRANCH_6_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
47H 71 MSR_ Unique Last Branch Record 7 From IP (R/W)
LASTBRANCH_7_FROM_IP See description of MSR_LASTBRANCH_O_FROM_IP.
60H 96 MSR_ Unique Last Branch Record 0 To IP (R/W)
LASTBRANCH_O_TO_IP One of eight pairs of last branch record registers on the last branch
record stack. The To_IP part of the stack contains pointers to the
destination instruction.
61H 97 MSR_ Unique Last Branch Record 1 To IP (R/W)
LASTBRANCH_1_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
62H 98 MSR_ Unique Last Branch Record 2 To IP (R/W)
LASTBRANCH_2_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
63H 99 MSR_ Unique Last Branch Record 3 To IP (R/W)
LASTBRANCH_3_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
64H 100 | MSR_ Unique Last Branch Record 4 To IP (R/W)
LASTBRANCH_4_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
65H 101 | MSR_ Unique Last Branch Record 5 To IP (R/W)
LASTBRANCH_5_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
66H 102 | MSR_ Unique Last Branch Record 6 To IP (R/W)
LASTBRANCH_6_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
67H 103 | MSR_ Unique Last Branch Record 7 To IP (R/W)
LASTBRANCH_7_TO_IP See description of MSR_LASTBRANCH_O_TO_IP.
79H 121 | 1A32_BIOS_UPDT_TRIG Shared BIOS Update Trigger Register (W)
See Table 35-2.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

8BH

139

IA32_BIOS_SIGN_ID

Unique

BIOS Update Signature ID (RO)
See Table 35-2.

C1H

193

IA32_PMCO

Unique

Performance counter register
See Table 35-2.

C2H

194

IA32_PMC1

Unique

Performance Counter Register
See Table 35-2.

CDH

205

MSR_FSB_FREQ

Shared

Scaleable Bus Speed(RO)

This field indicates the intended scaleable bus clock speed for
processors based on Intel Atom microarchitecture:

2.0

« 111B: 083 MHz (FSB 333)
« 101B: 100 MHz (FSB 400)
« 001B: 133 MHz (FSB 533)
« 011B: 167 MHz (FSB 667)

133.33 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 001B.

166.67 MHz should be utilized if performing calculation with
System Bus Speed when encoding is 011B.

63:3

Reserved.

E7H

231

IA32_MPERF

Unique

Maximum Performance Frequency Clock Count (RW)
See Table 35-2.

E8H

232

IA32_APERF

Unique

Actual Performance Frequency Clock Count (RW)
See Table 35-2.

FEH

254

IA32_MTRRCAP

Shared

Memory Type Range Register (R)
See Table 35-2.

11€H

281

MSR_BBL_CR_CTL3

Shared

0

L2 Hardware Enabled (RO)
1 = If the L2 is hardware-enabled
0= Indicates if the L2 is hardware-disabled

Reserved.

L2 Enabled. (R/W)
1 = L2 cache has been initialized
0= Disabled (default)

Until this bit is set the processor will not respond to the WBINVD
instruction or the assertion of the FLUSH# input.

229

Reserved.

23

L2 Not Present (RO)
0= L2 Present
1= L2 Not Present

63:24

Reserved.

174H

372

IA32_SYSENTER_CS

Unique

See Table 35-2.

175H

373

IA32_SYSENTER_ESP

Unique

See Table 35-2.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
176H 374 | IA32_SYSENTER_EIP Unique See Table 35-2.
179H 377 | 1A32_MCG_CAP Unique See Table 35-2.
17AH 378 | IA32_MCG_STATUS Unique
0 RIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) can be used to restart the program. If cleared, the
program cannot be reliably restarted
1 EIPV
When set, bit indicates that the instruction addressed by the
instruction pointer pushed on the stack (when the machine check
was generated) is directly associated with the error.
2 McIP
When set, bit indicates that a machine check has been generated. If
a second machine check is detected while this bit is still set, the
processor enters a shutdown state. Software should write this bit
to O after processing a machine check exception.
63:3 Reserved.
186H 390 |IA32_PERFEVTSELO Unique See Table 35-2.
187H 391 IA32_PERFEVTSEL1 Unique See Table 35-2.
198H 408 | IA32_PERF_STATUS Shared See Table 35-2.
198H 408 | MSR_PERF_STATUS Shared
15:.0 Current Performance State Value.
39:16 Reserved.
44:40 Maximum Bus Ratio (R/0)
Indicates maximum bus ratio configured for the processor.
63:45 Reserved.
199H 409 | IA32_PERF_CTL Unique See Table 35-2.
19AH 410 | IA32_CLOCK_MODULATION | Unique Clock Modulation (R/W)
See Table 35-2.
IA32_CLOCK_MODULATION MSR was originally named
IA32_THERM_CONTROL MSR.
19BH 411 IA32_THERM_INTERRUPT | Unique Thermal Interrupt Control (R/W)
See Table 35-2.
19CH 412 | IA32_THERM_STATUS Unique Thermal Monitor Status (R/W)
See Table 35-2.
19DH 413 | MSR_THERM2_CTL Shared
15:0 Reserved.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register
Address

Hex

Dec

Register Name

Shared/
Unique

Bit Description

16

TM_SELECT (R/W)

Mode of automatic thermal monitor:

0= Thermal Monitor 1 (thermally-initiated on-die modulation of
the stop-clock duty cycle)

1= Thermal Monitor 2 (thermally-initiated frequency transitions)

If bit 3 of the IA32_MISC_ENABLE register is cleared, TM_SELECT
has no effect. Neither TM1 nor TM2 are enabled.

63:17

Reserved.

1AOH

416

IA32_MISC_ENABLE

Unique

Enable Misc. Processor Features (R/W)
Allows a variety of processor functions to be enabled and disabled.

Fast-Strings Enable
See Table 35-2.

Reserved.

Unique

Automatic Thermal Control Circuit Enable (R/W)
See Table 35-2. Default value is O.

Reserved.

Shared

Performance Monitoring Available (R)
See Table 35-2.

Reserved.

Reserved.

Shared

FERR# Multiplexing Enable (R/W)

1= FERR# asserted by the processor to indicate a pending break
event within the processor

0= Indicates compatible FERR# signaling behavior

This bit must be set to 1 to support XAPIC interrupt model usage.

11

Shared

Branch Trace Storage Unavailable (RO)
See Table 35-2.

12

Shared

Processor Event Based Sampling Unavailable (RO)
See Table 35-2.

13

Shared

TM2 Enable (R/W)

When this bit is set (1) and the thermal sensor indicates that the
die temperature is at the pre-determined threshold, the Thermal
Monitor 2 mechanism is engaged. TM2 will reduce the bus to core
ratio and voltage according to the value last written to
MSR_THERMZ2_CTL bits 15:0.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
When this bit is clear (O, default), the processor does not change
the VID signals or the bus to core ratio when the processor enters
a thermally managed state.
The BIOS must enable this feature if the TM2 feature flag
(CPUID.1:ECX[8]) is set; if the TM2 feature flag is not set, this
feature is not supported and BIOS must not alter the contents of
the TM2 bit location.
The processor is operating out of specification if both this bit and
the TM1 bit are set to 0.
15:14 Reserved.
16 Shared Enhanced Intel SpeedStep Technology Enable (R/W)
See Table 35-2.
18 Shared ENABLE MONITOR FSM (R/W)
See Table 35-2.
19 Reserved.
20 Shared Enhanced Intel SpeedStep Technology Select Lock (R/WO)
When set, this bit causes the following bits to become read-only:
= Enhanced Intel SpeedStep Technology Select Lock (this bit),
= Enhanced Intel SpeedStep Technology Enable bit.
The bit must be set before an Enhanced Intel SpeedStep
Technology transition is requested. This bit is cleared on reset.
21 Reserved.
22 Unique Limit CPUID Maxval (R/W)
See Table 35-2.
23 Shared XTPR Message Disable (R/W)
See Table 35-2.
33:24 Reserved.
34 Unique XD Bit Disable (R/W)
See Table 35-2.
63:35 Reserved.
1C9H 457 | MSR_LASTBRANCH_TOS Unique Last Branch Record Stack TOS (R/W)
Contains an index (bits 0-2) that points to the MSR containing the
most recent branch record.
See MSR_LASTBRANCH_O_FROM_IP (at 40H).
1D9H 473 | IA32_DEBUGCTL Unique Debug Control (R/W)
See Table 35-2.
1DDH 477 | MSR_LER_FROM_LIP Unique Last Exception Record From Linear IP (R)
Contains a pointer to the last branch instruction that the processor
executed prior to the last exception that was generated or the last
interrupt that was handled.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
1DEH 478 | MSR_LER_TO_LIP Unique Last Exception Record To Linear IP (R)
This area contains a pointer to the target of the last branch
instruction that the processor executed prior to the last exception
that was generated or the last interrupt that was handled.
200H 512 |IA32_MTRR_PHYSBASEOQ Shared See Table 35-2.
201H 513 | IA32_MTRR_PHYSMASKO | Shared See Table 35-2.
202H 514 | IA32_MTRR_PHYSBASE1 Shared See Table 35-2.
203H 515 | IA32_MTRR_PHYSMASK1 Shared See Table 35-2.
204H 516 |IA32_MTRR_PHYSBASEZ2 Shared See Table 35-2.
205H 517 | IA32_MTRR_PHYSMASK2 | Shared See Table 35-2.
206H 518 | IA32_MTRR_PHYSBASE3 Shared See Table 35-2.
207H 519 |IA32_MTRR_PHYSMASK3 | Shared See Table 35-2.
208H 520 |IA32_MTRR_PHYSBASE4 Shared See Table 35-2.
209H 521 |IA32_MTRR_PHYSMASK4 | Shared See Table 35-2.
20AH 522 | 1A32_MTRR_PHYSBASES Shared See Table 35-2.
20BH 523 | IA32_MTRR_PHYSMASK5 | Shared See Table 35-2.
20CH 524 | 1A32_MTRR_PHYSBASE6 Shared See Table 35-2.
20DH 525 |IA32_MTRR_PHYSMASK6 | Shared See Table 35-2.
20€EH 526 | IA32_MTRR_PHYSBASE7 Shared See Table 35-2.
20FH 527 | 1A32_MTRR_PHYSMASK7 | Shared See Table 35-2.
250H 592 |IA32_MTRR_FIX64K_ Shared See Table 35-2.
00000
258H 600 |IA32_MTRR_FIX16K_ Shared See Table 35-2.
80000
259H 601 |IA32_MTRR_FIX16K_ Shared See Table 35-2.
A0000
268H 616 |IA32_MTRR_FIX4K_C0000 | Shared See Table 35-2.
269H 617 |IA32_MTRR_FIX4K_C8000 | Shared See Table 35-2.
26AH 618 | IA32_MTRR_FIX4K_D0O00O | Shared See Table 35-2.
26BH 619 |IA32_MTRR_FIX4K_D8000 | Shared See Table 35-2.
26CH 620 |IA32_MTRR_FIX4K_E000Q | Shared See Table 35-2.
26DH 621 |IA32_MTRR_FIX4K_EB000 | Shared See Table 35-2.
26EH 622 | IA32_MTRR_FIX4K_FO000 | Shared See Table 35-2.
26FH 623 | IA32_MTRR_FIX4K_FB8000 | Shared See Table 35-2.
277H 631 IA32_PAT Unique See Table 35-2.
309H 777 | IA32_FIXED_CTRO Unique Fixed-Function Performance Counter Register 0 (R/W)
See Table 35-2.
30AH 778 | IA32_FIXED_CTR1 Unique Fixed-Function Performance Counter Register 1 (R/W)
See Table 35-2.
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Table 35-4. MSRs in 45 nm and 32 nm Intel® Atom™ Processor Family (Contd.)

Register Shared/
Address Register Name Unique Bit Description
Hex Dec
30BH 779 | IA32_FIXED_CTR2 Unique Fixed-Function Performance Counter Register 2 (R/W)
See Table 35-2.
345H 837 | IA32_PERF_CAPABILITIES 