You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
capstone/arch/X86/X86ATTInstPrinter.c

1100 lines
33 KiB

3 years ago
//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as AT&T-style
// assembly.
//
//===----------------------------------------------------------------------===//
/* Capstone Disassembly Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013-2015 */
// this code is only relevant when DIET mode is disable
#if defined(CAPSTONE_HAS_X86) && !defined(CAPSTONE_DIET) && !defined(CAPSTONE_X86_ATT_DISABLE)
#if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64)
#pragma warning(disable:4996) // disable MSVC's warning on strncpy()
#pragma warning(disable:28719) // disable MSVC's warning on strncpy()
#endif
#if !defined(CAPSTONE_HAS_OSXKERNEL)
#include <ctype.h>
#endif
#include <capstone/platform.h>
#if defined(CAPSTONE_HAS_OSXKERNEL)
#include <Availability.h>
#include <libkern/libkern.h>
#else
#include <stdio.h>
#include <stdlib.h>
#endif
#include <string.h>
#include "../../utils.h"
#include "../../MCInst.h"
#include "../../SStream.h"
#include "../../MCRegisterInfo.h"
#include "X86Mapping.h"
#include "X86BaseInfo.h"
#define GET_INSTRINFO_ENUM
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenInstrInfo_reduce.inc"
#else
#include "X86GenInstrInfo.inc"
#endif
static void printMemReference(MCInst *MI, unsigned Op, SStream *O);
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O);
static void set_mem_access(MCInst *MI, bool status)
{
if (MI->csh->detail != CS_OPT_ON)
return;
MI->csh->doing_mem = status;
if (!status)
// done, create the next operand slot
MI->flat_insn->detail->x86.op_count++;
}
static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O)
{
switch(MI->csh->mode) {
case CS_MODE_16:
switch(MI->flat_insn->id) {
default:
MI->x86opsize = 2;
break;
case X86_INS_LJMP:
case X86_INS_LCALL:
MI->x86opsize = 4;
break;
case X86_INS_SGDT:
case X86_INS_SIDT:
case X86_INS_LGDT:
case X86_INS_LIDT:
MI->x86opsize = 6;
break;
}
break;
case CS_MODE_32:
switch(MI->flat_insn->id) {
default:
MI->x86opsize = 4;
break;
case X86_INS_LJMP:
case X86_INS_LCALL:
case X86_INS_SGDT:
case X86_INS_SIDT:
case X86_INS_LGDT:
case X86_INS_LIDT:
MI->x86opsize = 6;
break;
}
break;
case CS_MODE_64:
switch(MI->flat_insn->id) {
default:
MI->x86opsize = 8;
break;
case X86_INS_LJMP:
case X86_INS_LCALL:
case X86_INS_SGDT:
case X86_INS_SIDT:
case X86_INS_LGDT:
case X86_INS_LIDT:
MI->x86opsize = 10;
break;
}
break;
default: // never reach
break;
}
printMemReference(MI, OpNo, O);
}
static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 1;
printMemReference(MI, OpNo, O);
}
static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 2;
printMemReference(MI, OpNo, O);
}
static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 4;
printMemReference(MI, OpNo, O);
}
static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 8;
printMemReference(MI, OpNo, O);
}
static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 16;
printMemReference(MI, OpNo, O);
}
#ifndef CAPSTONE_X86_REDUCE
static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 32;
printMemReference(MI, OpNo, O);
}
static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 64;
printMemReference(MI, OpNo, O);
}
static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O)
{
switch(MCInst_getOpcode(MI)) {
default:
MI->x86opsize = 4;
break;
case X86_FBSTPm:
case X86_FBLDm:
// TODO: fix this in tablegen instead
MI->x86opsize = 10;
break;
case X86_FSTENVm:
case X86_FLDENVm:
// TODO: fix this in tablegen instead
switch(MI->csh->mode) {
default: // never reach
break;
case CS_MODE_16:
MI->x86opsize = 14;
break;
case CS_MODE_32:
case CS_MODE_64:
MI->x86opsize = 28;
break;
}
break;
}
printMemReference(MI, OpNo, O);
}
static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 8;
printMemReference(MI, OpNo, O);
}
static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 10;
printMemReference(MI, OpNo, O);
}
static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 16;
printMemReference(MI, OpNo, O);
}
static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 32;
printMemReference(MI, OpNo, O);
}
static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 64;
printMemReference(MI, OpNo, O);
}
static void printSSECC(MCInst *MI, unsigned Op, SStream *OS)
{
uint8_t Imm = (uint8_t)(MCOperand_getImm(MCInst_getOperand(MI, Op)) & 7);
switch (Imm) {
default: break; // never reach
case 0: SStream_concat0(OS, "eq"); op_addSseCC(MI, X86_SSE_CC_EQ); break;
case 1: SStream_concat0(OS, "lt"); op_addSseCC(MI, X86_SSE_CC_LT); break;
case 2: SStream_concat0(OS, "le"); op_addSseCC(MI, X86_SSE_CC_LE); break;
case 3: SStream_concat0(OS, "unord"); op_addSseCC(MI, X86_SSE_CC_UNORD); break;
case 4: SStream_concat0(OS, "neq"); op_addSseCC(MI, X86_SSE_CC_NEQ); break;
case 5: SStream_concat0(OS, "nlt"); op_addSseCC(MI, X86_SSE_CC_NLT); break;
case 6: SStream_concat0(OS, "nle"); op_addSseCC(MI, X86_SSE_CC_NLE); break;
case 7: SStream_concat0(OS, "ord"); op_addSseCC(MI, X86_SSE_CC_ORD); break;
}
MI->popcode_adjust = Imm + 1;
}
static void printAVXCC(MCInst *MI, unsigned Op, SStream *O)
{
uint8_t Imm = (uint8_t)(MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x1f);
switch (Imm) {
default: break;//printf("Invalid avxcc argument!\n"); break;
case 0: SStream_concat0(O, "eq"); op_addAvxCC(MI, X86_AVX_CC_EQ); break;
case 1: SStream_concat0(O, "lt"); op_addAvxCC(MI, X86_AVX_CC_LT); break;
case 2: SStream_concat0(O, "le"); op_addAvxCC(MI, X86_AVX_CC_LE); break;
case 3: SStream_concat0(O, "unord"); op_addAvxCC(MI, X86_AVX_CC_UNORD); break;
case 4: SStream_concat0(O, "neq"); op_addAvxCC(MI, X86_AVX_CC_NEQ); break;
case 5: SStream_concat0(O, "nlt"); op_addAvxCC(MI, X86_AVX_CC_NLT); break;
case 6: SStream_concat0(O, "nle"); op_addAvxCC(MI, X86_AVX_CC_NLE); break;
case 7: SStream_concat0(O, "ord"); op_addAvxCC(MI, X86_AVX_CC_ORD); break;
case 8: SStream_concat0(O, "eq_uq"); op_addAvxCC(MI, X86_AVX_CC_EQ_UQ); break;
case 9: SStream_concat0(O, "nge"); op_addAvxCC(MI, X86_AVX_CC_NGE); break;
case 0xa: SStream_concat0(O, "ngt"); op_addAvxCC(MI, X86_AVX_CC_NGT); break;
case 0xb: SStream_concat0(O, "false"); op_addAvxCC(MI, X86_AVX_CC_FALSE); break;
case 0xc: SStream_concat0(O, "neq_oq"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OQ); break;
case 0xd: SStream_concat0(O, "ge"); op_addAvxCC(MI, X86_AVX_CC_GE); break;
case 0xe: SStream_concat0(O, "gt"); op_addAvxCC(MI, X86_AVX_CC_GT); break;
case 0xf: SStream_concat0(O, "true"); op_addAvxCC(MI, X86_AVX_CC_TRUE); break;
case 0x10: SStream_concat0(O, "eq_os"); op_addAvxCC(MI, X86_AVX_CC_EQ_OS); break;
case 0x11: SStream_concat0(O, "lt_oq"); op_addAvxCC(MI, X86_AVX_CC_LT_OQ); break;
case 0x12: SStream_concat0(O, "le_oq"); op_addAvxCC(MI, X86_AVX_CC_LE_OQ); break;
case 0x13: SStream_concat0(O, "unord_s"); op_addAvxCC(MI, X86_AVX_CC_UNORD_S); break;
case 0x14: SStream_concat0(O, "neq_us"); op_addAvxCC(MI, X86_AVX_CC_NEQ_US); break;
case 0x15: SStream_concat0(O, "nlt_uq"); op_addAvxCC(MI, X86_AVX_CC_NLT_UQ); break;
case 0x16: SStream_concat0(O, "nle_uq"); op_addAvxCC(MI, X86_AVX_CC_NLE_UQ); break;
case 0x17: SStream_concat0(O, "ord_s"); op_addAvxCC(MI, X86_AVX_CC_ORD_S); break;
case 0x18: SStream_concat0(O, "eq_us"); op_addAvxCC(MI, X86_AVX_CC_EQ_US); break;
case 0x19: SStream_concat0(O, "nge_uq"); op_addAvxCC(MI, X86_AVX_CC_NGE_UQ); break;
case 0x1a: SStream_concat0(O, "ngt_uq"); op_addAvxCC(MI, X86_AVX_CC_NGT_UQ); break;
case 0x1b: SStream_concat0(O, "false_os"); op_addAvxCC(MI, X86_AVX_CC_FALSE_OS); break;
case 0x1c: SStream_concat0(O, "neq_os"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OS); break;
case 0x1d: SStream_concat0(O, "ge_oq"); op_addAvxCC(MI, X86_AVX_CC_GE_OQ); break;
case 0x1e: SStream_concat0(O, "gt_oq"); op_addAvxCC(MI, X86_AVX_CC_GT_OQ); break;
case 0x1f: SStream_concat0(O, "true_us"); op_addAvxCC(MI, X86_AVX_CC_TRUE_US); break;
}
MI->popcode_adjust = Imm + 1;
}
static void printXOPCC(MCInst *MI, unsigned Op, SStream *O)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op));
switch (Imm) {
default: // llvm_unreachable("Invalid xopcc argument!");
case 0: SStream_concat0(O, "lt"); op_addXopCC(MI, X86_XOP_CC_LT); break;
case 1: SStream_concat0(O, "le"); op_addXopCC(MI, X86_XOP_CC_LE); break;
case 2: SStream_concat0(O, "gt"); op_addXopCC(MI, X86_XOP_CC_GT); break;
case 3: SStream_concat0(O, "ge"); op_addXopCC(MI, X86_XOP_CC_GE); break;
case 4: SStream_concat0(O, "eq"); op_addXopCC(MI, X86_XOP_CC_EQ); break;
case 5: SStream_concat0(O, "neq"); op_addXopCC(MI, X86_XOP_CC_NEQ); break;
case 6: SStream_concat0(O, "false"); op_addXopCC(MI, X86_XOP_CC_FALSE); break;
case 7: SStream_concat0(O, "true"); op_addXopCC(MI, X86_XOP_CC_TRUE); break;
}
}
static void printRoundingControl(MCInst *MI, unsigned Op, SStream *O)
{
int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x3;
switch (Imm) {
case 0: SStream_concat0(O, "{rn-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RN); break;
case 1: SStream_concat0(O, "{rd-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RD); break;
case 2: SStream_concat0(O, "{ru-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RU); break;
case 3: SStream_concat0(O, "{rz-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RZ); break;
default: break; // nev0er reach
}
}
#endif
static void printRegName(SStream *OS, unsigned RegNo);
// local printOperand, without updating public operands
static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
printRegName(O, MCOperand_getReg(Op));
} else if (MCOperand_isImm(Op)) {
uint8_t encsize;
uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize);
// Print X86 immediates as signed values.
int64_t imm = MCOperand_getImm(Op);
if (imm < 0) {
if (MI->csh->imm_unsigned) {
if (opsize) {
switch(opsize) {
default:
break;
case 1:
imm &= 0xff;
break;
case 2:
imm &= 0xffff;
break;
case 4:
imm &= 0xffffffff;
break;
}
}
SStream_concat(O, "$0x%"PRIx64, imm);
} else {
if (imm < -HEX_THRESHOLD)
SStream_concat(O, "$-0x%"PRIx64, -imm);
else
SStream_concat(O, "$-%"PRIu64, -imm);
}
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "$0x%"PRIx64, imm);
else
SStream_concat(O, "$%"PRIu64, imm);
}
}
}
// convert Intel access info to AT&T access info
static void get_op_access(cs_struct *h, unsigned int id, uint8_t *access, uint64_t *eflags)
{
uint8_t count, i;
uint8_t *arr = X86_get_op_access(h, id, eflags);
if (!arr) {
access[0] = 0;
return;
}
// find the non-zero last entry
for(count = 0; arr[count]; count++);
if (count == 0)
return;
// copy in reverse order this access array from Intel syntax -> AT&T syntax
count--;
for(i = 0; i <= count; i++) {
if (arr[count - i] != CS_AC_IGNORE)
access[i] = arr[count - i];
else
access[i] = 0;
}
}
static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *SegReg;
int reg;
if (MI->csh->detail) {
uint8_t access[6];
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
}
SegReg = MCInst_getOperand(MI, Op+1);
reg = MCOperand_getReg(SegReg);
// If this has a segment register, print it.
if (reg) {
_printOperand(MI, Op+1, O);
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
}
SStream_concat0(O, ":");
}
SStream_concat0(O, "(");
set_mem_access(MI, true);
printOperand(MI, Op, O);
SStream_concat0(O, ")");
set_mem_access(MI, false);
}
static void printDstIdx(MCInst *MI, unsigned Op, SStream *O)
{
if (MI->csh->detail) {
uint8_t access[6];
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
}
// DI accesses are always ES-based on non-64bit mode
if (MI->csh->mode != CS_MODE_64) {
SStream_concat0(O, "%es:(");
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_ES;
}
} else
SStream_concat0(O, "(");
set_mem_access(MI, true);
printOperand(MI, Op, O);
SStream_concat0(O, ")");
set_mem_access(MI, false);
}
static void printSrcIdx8(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 1;
printSrcIdx(MI, OpNo, O);
}
static void printSrcIdx16(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 2;
printSrcIdx(MI, OpNo, O);
}
static void printSrcIdx32(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 4;
printSrcIdx(MI, OpNo, O);
}
static void printSrcIdx64(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 8;
printSrcIdx(MI, OpNo, O);
}
static void printDstIdx8(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 1;
printDstIdx(MI, OpNo, O);
}
static void printDstIdx16(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 2;
printDstIdx(MI, OpNo, O);
}
static void printDstIdx32(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 4;
printDstIdx(MI, OpNo, O);
}
static void printDstIdx64(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 8;
printDstIdx(MI, OpNo, O);
}
static void printMemOffset(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *DispSpec = MCInst_getOperand(MI, Op);
MCOperand *SegReg = MCInst_getOperand(MI, Op+1);
int reg;
if (MI->csh->detail) {
uint8_t access[6];
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
}
// If this has a segment register, print it.
reg = MCOperand_getReg(SegReg);
if (reg) {
_printOperand(MI, Op + 1, O);
SStream_concat0(O, ":");
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg;
}
}
if (MCOperand_isImm(DispSpec)) {
int64_t imm = MCOperand_getImm(DispSpec);
if (MI->csh->detail)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
if (imm < 0) {
SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
}
if (MI->csh->detail)
MI->flat_insn->detail->x86.op_count++;
}
#ifndef CAPSTONE_X86_REDUCE
static void printU8Imm(MCInst *MI, unsigned Op, SStream *O)
{
uint8_t val = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xff;
if (val > HEX_THRESHOLD)
SStream_concat(O, "$0x%x", val);
else
SStream_concat(O, "$%u", val);
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = val;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = 1;
MI->flat_insn->detail->x86.op_count++;
}
}
#endif
static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 1;
printMemOffset(MI, OpNo, O);
}
static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 2;
printMemOffset(MI, OpNo, O);
}
static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 4;
printMemOffset(MI, OpNo, O);
}
static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O)
{
MI->x86opsize = 8;
printMemOffset(MI, OpNo, O);
}
/// printPCRelImm - This is used to print an immediate value that ends up
/// being encoded as a pc-relative value (e.g. for jumps and calls). These
/// print slightly differently than normal immediates. For example, a $ is not
/// emitted.
static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isImm(Op)) {
int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address;
// truncat imm for non-64bit
if (MI->csh->mode != CS_MODE_64) {
imm = imm & 0xffffffff;
}
if (MI->csh->mode == CS_MODE_16 &&
(MI->Opcode != X86_JMP_4 && MI->Opcode != X86_CALLpcrel32))
imm = imm & 0xffff;
// Hack: X86 16bit with opcode X86_JMP_4
if (MI->csh->mode == CS_MODE_16 &&
(MI->Opcode == X86_JMP_4 && MI->x86_prefix[2] != 0x66))
imm = imm & 0xffff;
// CALL/JMP rel16 is special
if (MI->Opcode == X86_CALLpcrel16 || MI->Opcode == X86_JMP_2)
imm = imm & 0xffff;
if (imm < 0) {
SStream_concat(O, "0x%"PRIx64, imm);
} else {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, imm);
else
SStream_concat(O, "%"PRIu64, imm);
}
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
MI->has_imm = true;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;
MI->flat_insn->detail->x86.op_count++;
}
}
}
static void printOperand(MCInst *MI, unsigned OpNo, SStream *O)
{
MCOperand *Op = MCInst_getOperand(MI, OpNo);
if (MCOperand_isReg(Op)) {
unsigned int reg = MCOperand_getReg(Op);
printRegName(O, reg);
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg;
} else {
uint8_t access[6];
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg];
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
MI->flat_insn->detail->x86.op_count++;
}
}
} else if (MCOperand_isImm(Op)) {
// Print X86 immediates as signed values.
uint8_t encsize;
int64_t imm = MCOperand_getImm(Op);
uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize);
if (opsize == 1) // print 1 byte immediate in positive form
imm = imm & 0xff;
switch(MI->flat_insn->id) {
default:
if (imm >= 0) {
if (imm > HEX_THRESHOLD)
SStream_concat(O, "$0x%"PRIx64, imm);
else
SStream_concat(O, "$%"PRIu64, imm);
} else {
if (MI->csh->imm_unsigned) {
if (opsize) {
switch(opsize) {
default:
break;
case 1:
imm &= 0xff;
break;
case 2:
imm &= 0xffff;
break;
case 4:
imm &= 0xffffffff;
break;
}
}
SStream_concat(O, "$0x%"PRIx64, imm);
} else {
if (imm == 0x8000000000000000LL) // imm == -imm
SStream_concat0(O, "$0x8000000000000000");
else if (imm < -HEX_THRESHOLD)
SStream_concat(O, "$-0x%"PRIx64, -imm);
else
SStream_concat(O, "$-%"PRIu64, -imm);
}
}
break;
case X86_INS_MOVABS:
// do not print number in negative form
SStream_concat(O, "$0x%"PRIx64, imm);
break;
case X86_INS_IN:
case X86_INS_OUT:
case X86_INS_INT:
// do not print number in negative form
imm = imm & 0xff;
if (imm >= 0 && imm <= HEX_THRESHOLD)
SStream_concat(O, "$%u", imm);
else {
SStream_concat(O, "$0x%x", imm);
}
break;
case X86_INS_LCALL:
case X86_INS_LJMP:
// always print address in positive form
if (OpNo == 1) { // selector is ptr16
imm = imm & 0xffff;
opsize = 2;
}
SStream_concat(O, "$0x%"PRIx64, imm);
break;
case X86_INS_AND:
case X86_INS_OR:
case X86_INS_XOR:
// do not print number in negative form
if (imm >= 0 && imm <= HEX_THRESHOLD)
SStream_concat(O, "$%u", imm);
else {
imm = arch_masks[opsize? opsize : MI->imm_size] & imm;
SStream_concat(O, "$0x%"PRIx64, imm);
}
break;
case X86_INS_RET:
case X86_INS_RETF:
// RET imm16
if (imm >= 0 && imm <= HEX_THRESHOLD)
SStream_concat(O, "$%u", imm);
else {
imm = 0xffff & imm;
SStream_concat(O, "$0x%x", imm);
}
break;
}
if (MI->csh->detail) {
if (MI->csh->doing_mem) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm;
} else {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM;
MI->has_imm = true;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm;
if (opsize > 0) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize;
MI->flat_insn->detail->x86.encoding.imm_size = encsize;
} else if (MI->op1_size > 0)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->op1_size;
else
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size;
MI->flat_insn->detail->x86.op_count++;
}
}
}
}
static void printMemReference(MCInst *MI, unsigned Op, SStream *O)
{
MCOperand *BaseReg = MCInst_getOperand(MI, Op + X86_AddrBaseReg);
MCOperand *IndexReg = MCInst_getOperand(MI, Op + X86_AddrIndexReg);
MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp);
MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg);
uint64_t ScaleVal;
int segreg;
int64_t DispVal = 1;
if (MI->csh->detail) {
uint8_t access[6];
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1;
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0;
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count];
}
// If this has a segment register, print it.
segreg = MCOperand_getReg(SegReg);
if (segreg) {
_printOperand(MI, Op + X86_AddrSegmentReg, O);
if (MI->csh->detail) {
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = segreg;
}
SStream_concat0(O, ":");
}
if (MCOperand_isImm(DispSpec)) {
DispVal = MCOperand_getImm(DispSpec);
if (MI->csh->detail)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal;
if (DispVal) {
if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) {
printInt64(O, DispVal);
} else {
// only immediate as address of memory
if (DispVal < 0) {
SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & DispVal);
} else {
if (DispVal > HEX_THRESHOLD)
SStream_concat(O, "0x%"PRIx64, DispVal);
else
SStream_concat(O, "%"PRIu64, DispVal);
}
}
} else {
}
}
if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) {
SStream_concat0(O, "(");
if (MCOperand_getReg(BaseReg))
_printOperand(MI, Op + X86_AddrBaseReg, O);
if (MCOperand_getReg(IndexReg)) {
SStream_concat0(O, ", ");
_printOperand(MI, Op + X86_AddrIndexReg, O);
ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt));
if (MI->csh->detail)
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal;
if (ScaleVal != 1) {
SStream_concat(O, ", %u", ScaleVal);
}
}
SStream_concat0(O, ")");
} else {
if (!DispVal)
SStream_concat0(O, "0");
}
if (MI->csh->detail)
MI->flat_insn->detail->x86.op_count++;
}
static void printanymem(MCInst *MI, unsigned OpNo, SStream *O)
{
switch(MI->Opcode) {
default: break;
case X86_LEA16r:
MI->x86opsize = 2;
break;
case X86_LEA32r:
case X86_LEA64_32r:
MI->x86opsize = 4;
break;
case X86_LEA64r:
MI->x86opsize = 8;
break;
}
printMemReference(MI, OpNo, O);
}
#include "X86InstPrinter.h"
#define GET_REGINFO_ENUM
#include "X86GenRegisterInfo.inc"
// Include the auto-generated portion of the assembly writer.
#define PRINT_ALIAS_INSTR
#ifdef CAPSTONE_X86_REDUCE
#include "X86GenAsmWriter_reduce.inc"
#else
#include "X86GenAsmWriter.inc"
#endif
static void printRegName(SStream *OS, unsigned RegNo)
{
SStream_concat(OS, "%%%s", getRegisterName(RegNo));
}
void X86_ATT_printInst(MCInst *MI, SStream *OS, void *info)
{
char *mnem;
x86_reg reg, reg2;
enum cs_ac_type access1, access2;
int i;
// perhaps this instruction does not need printer
if (MI->assembly[0]) {
strncpy(OS->buffer, MI->assembly, sizeof(OS->buffer));
return;
}
// Output CALLpcrel32 as "callq" in 64-bit mode.
// In Intel annotation it's always emitted as "call".
//
// TODO: Probably this hack should be redesigned via InstAlias in
// InstrInfo.td as soon as Requires clause is supported properly
// for InstAlias.
if (MI->csh->mode == CS_MODE_64 && MCInst_getOpcode(MI) == X86_CALLpcrel32) {
SStream_concat0(OS, "callq\t");
MCInst_setOpcodePub(MI, X86_INS_CALL);
printPCRelImm(MI, 0, OS);
return;
}
// Try to print any aliases first.
mnem = printAliasInstr(MI, OS, info);
if (mnem)
cs_mem_free(mnem);
else
printInstruction(MI, OS, info);
// HACK TODO: fix this in machine description
switch(MI->flat_insn->id) {
default: break;
case X86_INS_SYSEXIT:
SStream_Init(OS);
SStream_concat0(OS, "sysexit");
break;
}
if (MI->has_imm) {
// if op_count > 1, then this operand's size is taken from the destination op
if (MI->flat_insn->detail->x86.op_count > 1) {
if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) {
for (i = 0; i < MI->flat_insn->detail->x86.op_count; i++) {
if (MI->flat_insn->detail->x86.operands[i].type == X86_OP_IMM)
MI->flat_insn->detail->x86.operands[i].size =
MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count - 1].size;
}
}
} else
MI->flat_insn->detail->x86.operands[0].size = MI->imm_size;
}
if (MI->csh->detail) {
uint8_t access[6] = {0};
// some instructions need to supply immediate 1 in the first op
switch(MCInst_getOpcode(MI)) {
default:
break;
case X86_SHL8r1:
case X86_SHL16r1:
case X86_SHL32r1:
case X86_SHL64r1:
case X86_SAL8r1:
case X86_SAL16r1:
case X86_SAL32r1:
case X86_SAL64r1:
case X86_SHR8r1:
case X86_SHR16r1:
case X86_SHR32r1:
case X86_SHR64r1:
case X86_SAR8r1:
case X86_SAR16r1:
case X86_SAR32r1:
case X86_SAR64r1:
case X86_RCL8r1:
case X86_RCL16r1:
case X86_RCL32r1:
case X86_RCL64r1:
case X86_RCR8r1:
case X86_RCR16r1:
case X86_RCR32r1:
case X86_RCR64r1:
case X86_ROL8r1:
case X86_ROL16r1:
case X86_ROL32r1:
case X86_ROL64r1:
case X86_ROR8r1:
case X86_ROR16r1:
case X86_ROR32r1:
case X86_ROR64r1:
case X86_SHL8m1:
case X86_SHL16m1:
case X86_SHL32m1:
case X86_SHL64m1:
case X86_SAL8m1:
case X86_SAL16m1:
case X86_SAL32m1:
case X86_SAL64m1:
case X86_SHR8m1:
case X86_SHR16m1:
case X86_SHR32m1:
case X86_SHR64m1:
case X86_SAR8m1:
case X86_SAR16m1:
case X86_SAR32m1:
case X86_SAR64m1:
case X86_RCL8m1:
case X86_RCL16m1:
case X86_RCL32m1:
case X86_RCL64m1:
case X86_RCR8m1:
case X86_RCR16m1:
case X86_RCR32m1:
case X86_RCR64m1:
case X86_ROL8m1:
case X86_ROL16m1:
case X86_ROL32m1:
case X86_ROL64m1:
case X86_ROR8m1:
case X86_ROR16m1:
case X86_ROR32m1:
case X86_ROR64m1:
// shift all the ops right to leave 1st slot for this new register op
memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
MI->flat_insn->detail->x86.operands[0].type = X86_OP_IMM;
MI->flat_insn->detail->x86.operands[0].imm = 1;
MI->flat_insn->detail->x86.operands[0].size = 1;
MI->flat_insn->detail->x86.op_count++;
}
// special instruction needs to supply register op
// first op can be embedded in the asm by llvm.
// so we have to add the missing register as the first operand
//printf(">>> opcode = %u\n", MCInst_getOpcode(MI));
reg = X86_insn_reg_att(MCInst_getOpcode(MI), &access1);
if (reg) {
// shift all the ops right to leave 1st slot for this new register op
memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]),
sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1));
MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[0].reg = reg;
MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
MI->flat_insn->detail->x86.operands[0].access = access1;
MI->flat_insn->detail->x86.op_count++;
} else {
if (X86_insn_reg_att2(MCInst_getOpcode(MI), &reg, &access1, &reg2, &access2)) {
MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[0].reg = reg;
MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg];
MI->flat_insn->detail->x86.operands[0].access = access1;
MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG;
MI->flat_insn->detail->x86.operands[1].reg = reg2;
MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2];
MI->flat_insn->detail->x86.operands[0].access = access2;
MI->flat_insn->detail->x86.op_count = 2;
}
}
#ifndef CAPSTONE_DIET
get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags);
MI->flat_insn->detail->x86.operands[0].access = access[0];
MI->flat_insn->detail->x86.operands[1].access = access[1];
#endif
}
}
#endif