//===-- X86ATTInstPrinter.cpp - AT&T assembly instruction printing --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file includes code for rendering MCInst instances as AT&T-style // assembly. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2015 */ // this code is only relevant when DIET mode is disable #if defined(CAPSTONE_HAS_X86) && !defined(CAPSTONE_DIET) && !defined(CAPSTONE_X86_ATT_DISABLE) #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64) #pragma warning(disable:4996) // disable MSVC's warning on strncpy() #pragma warning(disable:28719) // disable MSVC's warning on strncpy() #endif #if !defined(CAPSTONE_HAS_OSXKERNEL) #include #endif #include #if defined(CAPSTONE_HAS_OSXKERNEL) #include #include #else #include #include #endif #include #include "../../utils.h" #include "../../MCInst.h" #include "../../SStream.h" #include "../../MCRegisterInfo.h" #include "X86Mapping.h" #include "X86BaseInfo.h" #define GET_INSTRINFO_ENUM #ifdef CAPSTONE_X86_REDUCE #include "X86GenInstrInfo_reduce.inc" #else #include "X86GenInstrInfo.inc" #endif static void printMemReference(MCInst *MI, unsigned Op, SStream *O); static void printOperand(MCInst *MI, unsigned OpNo, SStream *O); static void set_mem_access(MCInst *MI, bool status) { if (MI->csh->detail != CS_OPT_ON) return; MI->csh->doing_mem = status; if (!status) // done, create the next operand slot MI->flat_insn->detail->x86.op_count++; } static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O) { switch(MI->csh->mode) { case CS_MODE_16: switch(MI->flat_insn->id) { default: MI->x86opsize = 2; break; case X86_INS_LJMP: case X86_INS_LCALL: MI->x86opsize = 4; break; case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: MI->x86opsize = 6; break; } break; case CS_MODE_32: switch(MI->flat_insn->id) { default: MI->x86opsize = 4; break; case X86_INS_LJMP: case X86_INS_LCALL: case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: MI->x86opsize = 6; break; } break; case CS_MODE_64: switch(MI->flat_insn->id) { default: MI->x86opsize = 8; break; case X86_INS_LJMP: case X86_INS_LCALL: case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: MI->x86opsize = 10; break; } break; default: // never reach break; } printMemReference(MI, OpNo, O); } static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printMemReference(MI, OpNo, O); } static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printMemReference(MI, OpNo, O); } static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printMemReference(MI, OpNo, O); } static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printMemReference(MI, OpNo, O); } static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 16; printMemReference(MI, OpNo, O); } #ifndef CAPSTONE_X86_REDUCE static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 32; printMemReference(MI, OpNo, O); } static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 64; printMemReference(MI, OpNo, O); } static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O) { switch(MCInst_getOpcode(MI)) { default: MI->x86opsize = 4; break; case X86_FBSTPm: case X86_FBLDm: // TODO: fix this in tablegen instead MI->x86opsize = 10; break; case X86_FSTENVm: case X86_FLDENVm: // TODO: fix this in tablegen instead switch(MI->csh->mode) { default: // never reach break; case CS_MODE_16: MI->x86opsize = 14; break; case CS_MODE_32: case CS_MODE_64: MI->x86opsize = 28; break; } break; } printMemReference(MI, OpNo, O); } static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printMemReference(MI, OpNo, O); } static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 10; printMemReference(MI, OpNo, O); } static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 16; printMemReference(MI, OpNo, O); } static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 32; printMemReference(MI, OpNo, O); } static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 64; printMemReference(MI, OpNo, O); } static void printSSECC(MCInst *MI, unsigned Op, SStream *OS) { uint8_t Imm = (uint8_t)(MCOperand_getImm(MCInst_getOperand(MI, Op)) & 7); switch (Imm) { default: break; // never reach case 0: SStream_concat0(OS, "eq"); op_addSseCC(MI, X86_SSE_CC_EQ); break; case 1: SStream_concat0(OS, "lt"); op_addSseCC(MI, X86_SSE_CC_LT); break; case 2: SStream_concat0(OS, "le"); op_addSseCC(MI, X86_SSE_CC_LE); break; case 3: SStream_concat0(OS, "unord"); op_addSseCC(MI, X86_SSE_CC_UNORD); break; case 4: SStream_concat0(OS, "neq"); op_addSseCC(MI, X86_SSE_CC_NEQ); break; case 5: SStream_concat0(OS, "nlt"); op_addSseCC(MI, X86_SSE_CC_NLT); break; case 6: SStream_concat0(OS, "nle"); op_addSseCC(MI, X86_SSE_CC_NLE); break; case 7: SStream_concat0(OS, "ord"); op_addSseCC(MI, X86_SSE_CC_ORD); break; } MI->popcode_adjust = Imm + 1; } static void printAVXCC(MCInst *MI, unsigned Op, SStream *O) { uint8_t Imm = (uint8_t)(MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x1f); switch (Imm) { default: break;//printf("Invalid avxcc argument!\n"); break; case 0: SStream_concat0(O, "eq"); op_addAvxCC(MI, X86_AVX_CC_EQ); break; case 1: SStream_concat0(O, "lt"); op_addAvxCC(MI, X86_AVX_CC_LT); break; case 2: SStream_concat0(O, "le"); op_addAvxCC(MI, X86_AVX_CC_LE); break; case 3: SStream_concat0(O, "unord"); op_addAvxCC(MI, X86_AVX_CC_UNORD); break; case 4: SStream_concat0(O, "neq"); op_addAvxCC(MI, X86_AVX_CC_NEQ); break; case 5: SStream_concat0(O, "nlt"); op_addAvxCC(MI, X86_AVX_CC_NLT); break; case 6: SStream_concat0(O, "nle"); op_addAvxCC(MI, X86_AVX_CC_NLE); break; case 7: SStream_concat0(O, "ord"); op_addAvxCC(MI, X86_AVX_CC_ORD); break; case 8: SStream_concat0(O, "eq_uq"); op_addAvxCC(MI, X86_AVX_CC_EQ_UQ); break; case 9: SStream_concat0(O, "nge"); op_addAvxCC(MI, X86_AVX_CC_NGE); break; case 0xa: SStream_concat0(O, "ngt"); op_addAvxCC(MI, X86_AVX_CC_NGT); break; case 0xb: SStream_concat0(O, "false"); op_addAvxCC(MI, X86_AVX_CC_FALSE); break; case 0xc: SStream_concat0(O, "neq_oq"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OQ); break; case 0xd: SStream_concat0(O, "ge"); op_addAvxCC(MI, X86_AVX_CC_GE); break; case 0xe: SStream_concat0(O, "gt"); op_addAvxCC(MI, X86_AVX_CC_GT); break; case 0xf: SStream_concat0(O, "true"); op_addAvxCC(MI, X86_AVX_CC_TRUE); break; case 0x10: SStream_concat0(O, "eq_os"); op_addAvxCC(MI, X86_AVX_CC_EQ_OS); break; case 0x11: SStream_concat0(O, "lt_oq"); op_addAvxCC(MI, X86_AVX_CC_LT_OQ); break; case 0x12: SStream_concat0(O, "le_oq"); op_addAvxCC(MI, X86_AVX_CC_LE_OQ); break; case 0x13: SStream_concat0(O, "unord_s"); op_addAvxCC(MI, X86_AVX_CC_UNORD_S); break; case 0x14: SStream_concat0(O, "neq_us"); op_addAvxCC(MI, X86_AVX_CC_NEQ_US); break; case 0x15: SStream_concat0(O, "nlt_uq"); op_addAvxCC(MI, X86_AVX_CC_NLT_UQ); break; case 0x16: SStream_concat0(O, "nle_uq"); op_addAvxCC(MI, X86_AVX_CC_NLE_UQ); break; case 0x17: SStream_concat0(O, "ord_s"); op_addAvxCC(MI, X86_AVX_CC_ORD_S); break; case 0x18: SStream_concat0(O, "eq_us"); op_addAvxCC(MI, X86_AVX_CC_EQ_US); break; case 0x19: SStream_concat0(O, "nge_uq"); op_addAvxCC(MI, X86_AVX_CC_NGE_UQ); break; case 0x1a: SStream_concat0(O, "ngt_uq"); op_addAvxCC(MI, X86_AVX_CC_NGT_UQ); break; case 0x1b: SStream_concat0(O, "false_os"); op_addAvxCC(MI, X86_AVX_CC_FALSE_OS); break; case 0x1c: SStream_concat0(O, "neq_os"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OS); break; case 0x1d: SStream_concat0(O, "ge_oq"); op_addAvxCC(MI, X86_AVX_CC_GE_OQ); break; case 0x1e: SStream_concat0(O, "gt_oq"); op_addAvxCC(MI, X86_AVX_CC_GT_OQ); break; case 0x1f: SStream_concat0(O, "true_us"); op_addAvxCC(MI, X86_AVX_CC_TRUE_US); break; } MI->popcode_adjust = Imm + 1; } static void printXOPCC(MCInst *MI, unsigned Op, SStream *O) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)); switch (Imm) { default: // llvm_unreachable("Invalid xopcc argument!"); case 0: SStream_concat0(O, "lt"); op_addXopCC(MI, X86_XOP_CC_LT); break; case 1: SStream_concat0(O, "le"); op_addXopCC(MI, X86_XOP_CC_LE); break; case 2: SStream_concat0(O, "gt"); op_addXopCC(MI, X86_XOP_CC_GT); break; case 3: SStream_concat0(O, "ge"); op_addXopCC(MI, X86_XOP_CC_GE); break; case 4: SStream_concat0(O, "eq"); op_addXopCC(MI, X86_XOP_CC_EQ); break; case 5: SStream_concat0(O, "neq"); op_addXopCC(MI, X86_XOP_CC_NEQ); break; case 6: SStream_concat0(O, "false"); op_addXopCC(MI, X86_XOP_CC_FALSE); break; case 7: SStream_concat0(O, "true"); op_addXopCC(MI, X86_XOP_CC_TRUE); break; } } static void printRoundingControl(MCInst *MI, unsigned Op, SStream *O) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x3; switch (Imm) { case 0: SStream_concat0(O, "{rn-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RN); break; case 1: SStream_concat0(O, "{rd-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RD); break; case 2: SStream_concat0(O, "{ru-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RU); break; case 3: SStream_concat0(O, "{rz-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RZ); break; default: break; // nev0er reach } } #endif static void printRegName(SStream *OS, unsigned RegNo); // local printOperand, without updating public operands static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { printRegName(O, MCOperand_getReg(Op)); } else if (MCOperand_isImm(Op)) { uint8_t encsize; uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize); // Print X86 immediates as signed values. int64_t imm = MCOperand_getImm(Op); if (imm < 0) { if (MI->csh->imm_unsigned) { if (opsize) { switch(opsize) { default: break; case 1: imm &= 0xff; break; case 2: imm &= 0xffff; break; case 4: imm &= 0xffffffff; break; } } SStream_concat(O, "$0x%"PRIx64, imm); } else { if (imm < -HEX_THRESHOLD) SStream_concat(O, "$-0x%"PRIx64, -imm); else SStream_concat(O, "$-%"PRIu64, -imm); } } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "$0x%"PRIx64, imm); else SStream_concat(O, "$%"PRIu64, imm); } } } // convert Intel access info to AT&T access info static void get_op_access(cs_struct *h, unsigned int id, uint8_t *access, uint64_t *eflags) { uint8_t count, i; uint8_t *arr = X86_get_op_access(h, id, eflags); if (!arr) { access[0] = 0; return; } // find the non-zero last entry for(count = 0; arr[count]; count++); if (count == 0) return; // copy in reverse order this access array from Intel syntax -> AT&T syntax count--; for(i = 0; i <= count; i++) { if (arr[count - i] != CS_AC_IGNORE) access[i] = arr[count - i]; else access[i] = 0; } } static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O) { MCOperand *SegReg; int reg; if (MI->csh->detail) { uint8_t access[6]; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; } SegReg = MCInst_getOperand(MI, Op+1); reg = MCOperand_getReg(SegReg); // If this has a segment register, print it. if (reg) { _printOperand(MI, Op+1, O); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg; } SStream_concat0(O, ":"); } SStream_concat0(O, "("); set_mem_access(MI, true); printOperand(MI, Op, O); SStream_concat0(O, ")"); set_mem_access(MI, false); } static void printDstIdx(MCInst *MI, unsigned Op, SStream *O) { if (MI->csh->detail) { uint8_t access[6]; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; } // DI accesses are always ES-based on non-64bit mode if (MI->csh->mode != CS_MODE_64) { SStream_concat0(O, "%es:("); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_ES; } } else SStream_concat0(O, "("); set_mem_access(MI, true); printOperand(MI, Op, O); SStream_concat0(O, ")"); set_mem_access(MI, false); } static void printSrcIdx8(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printSrcIdx(MI, OpNo, O); } static void printSrcIdx16(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printSrcIdx(MI, OpNo, O); } static void printSrcIdx32(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printSrcIdx(MI, OpNo, O); } static void printSrcIdx64(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printSrcIdx(MI, OpNo, O); } static void printDstIdx8(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printDstIdx(MI, OpNo, O); } static void printDstIdx16(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printDstIdx(MI, OpNo, O); } static void printDstIdx32(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printDstIdx(MI, OpNo, O); } static void printDstIdx64(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printDstIdx(MI, OpNo, O); } static void printMemOffset(MCInst *MI, unsigned Op, SStream *O) { MCOperand *DispSpec = MCInst_getOperand(MI, Op); MCOperand *SegReg = MCInst_getOperand(MI, Op+1); int reg; if (MI->csh->detail) { uint8_t access[6]; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; } // If this has a segment register, print it. reg = MCOperand_getReg(SegReg); if (reg) { _printOperand(MI, Op + 1, O); SStream_concat0(O, ":"); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg; } } if (MCOperand_isImm(DispSpec)) { int64_t imm = MCOperand_getImm(DispSpec); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm; if (imm < 0) { SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & imm); } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, imm); else SStream_concat(O, "%"PRIu64, imm); } } if (MI->csh->detail) MI->flat_insn->detail->x86.op_count++; } #ifndef CAPSTONE_X86_REDUCE static void printU8Imm(MCInst *MI, unsigned Op, SStream *O) { uint8_t val = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xff; if (val > HEX_THRESHOLD) SStream_concat(O, "$0x%x", val); else SStream_concat(O, "$%u", val); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = val; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = 1; MI->flat_insn->detail->x86.op_count++; } } #endif static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 1; printMemOffset(MI, OpNo, O); } static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; printMemOffset(MI, OpNo, O); } static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; printMemOffset(MI, OpNo, O); } static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 8; printMemOffset(MI, OpNo, O); } /// printPCRelImm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value (e.g. for jumps and calls). These /// print slightly differently than normal immediates. For example, a $ is not /// emitted. static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isImm(Op)) { int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address; // truncat imm for non-64bit if (MI->csh->mode != CS_MODE_64) { imm = imm & 0xffffffff; } if (MI->csh->mode == CS_MODE_16 && (MI->Opcode != X86_JMP_4 && MI->Opcode != X86_CALLpcrel32)) imm = imm & 0xffff; // Hack: X86 16bit with opcode X86_JMP_4 if (MI->csh->mode == CS_MODE_16 && (MI->Opcode == X86_JMP_4 && MI->x86_prefix[2] != 0x66)) imm = imm & 0xffff; // CALL/JMP rel16 is special if (MI->Opcode == X86_CALLpcrel16 || MI->Opcode == X86_JMP_2) imm = imm & 0xffff; if (imm < 0) { SStream_concat(O, "0x%"PRIx64, imm); } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, imm); else SStream_concat(O, "%"PRIu64, imm); } if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->has_imm = true; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm; MI->flat_insn->detail->x86.op_count++; } } } static void printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { unsigned int reg = MCOperand_getReg(Op); printRegName(O, reg); if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg; } else { uint8_t access[6]; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg]; get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; MI->flat_insn->detail->x86.op_count++; } } } else if (MCOperand_isImm(Op)) { // Print X86 immediates as signed values. uint8_t encsize; int64_t imm = MCOperand_getImm(Op); uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize); if (opsize == 1) // print 1 byte immediate in positive form imm = imm & 0xff; switch(MI->flat_insn->id) { default: if (imm >= 0) { if (imm > HEX_THRESHOLD) SStream_concat(O, "$0x%"PRIx64, imm); else SStream_concat(O, "$%"PRIu64, imm); } else { if (MI->csh->imm_unsigned) { if (opsize) { switch(opsize) { default: break; case 1: imm &= 0xff; break; case 2: imm &= 0xffff; break; case 4: imm &= 0xffffffff; break; } } SStream_concat(O, "$0x%"PRIx64, imm); } else { if (imm == 0x8000000000000000LL) // imm == -imm SStream_concat0(O, "$0x8000000000000000"); else if (imm < -HEX_THRESHOLD) SStream_concat(O, "$-0x%"PRIx64, -imm); else SStream_concat(O, "$-%"PRIu64, -imm); } } break; case X86_INS_MOVABS: // do not print number in negative form SStream_concat(O, "$0x%"PRIx64, imm); break; case X86_INS_IN: case X86_INS_OUT: case X86_INS_INT: // do not print number in negative form imm = imm & 0xff; if (imm >= 0 && imm <= HEX_THRESHOLD) SStream_concat(O, "$%u", imm); else { SStream_concat(O, "$0x%x", imm); } break; case X86_INS_LCALL: case X86_INS_LJMP: // always print address in positive form if (OpNo == 1) { // selector is ptr16 imm = imm & 0xffff; opsize = 2; } SStream_concat(O, "$0x%"PRIx64, imm); break; case X86_INS_AND: case X86_INS_OR: case X86_INS_XOR: // do not print number in negative form if (imm >= 0 && imm <= HEX_THRESHOLD) SStream_concat(O, "$%u", imm); else { imm = arch_masks[opsize? opsize : MI->imm_size] & imm; SStream_concat(O, "$0x%"PRIx64, imm); } break; case X86_INS_RET: case X86_INS_RETF: // RET imm16 if (imm >= 0 && imm <= HEX_THRESHOLD) SStream_concat(O, "$%u", imm); else { imm = 0xffff & imm; SStream_concat(O, "$0x%x", imm); } break; } if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm; } else { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->has_imm = true; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm; if (opsize > 0) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize; MI->flat_insn->detail->x86.encoding.imm_size = encsize; } else if (MI->op1_size > 0) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->op1_size; else MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size; MI->flat_insn->detail->x86.op_count++; } } } } static void printMemReference(MCInst *MI, unsigned Op, SStream *O) { MCOperand *BaseReg = MCInst_getOperand(MI, Op + X86_AddrBaseReg); MCOperand *IndexReg = MCInst_getOperand(MI, Op + X86_AddrIndexReg); MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp); MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg); uint64_t ScaleVal; int segreg; int64_t DispVal = 1; if (MI->csh->detail) { uint8_t access[6]; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; } // If this has a segment register, print it. segreg = MCOperand_getReg(SegReg); if (segreg) { _printOperand(MI, Op + X86_AddrSegmentReg, O); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = segreg; } SStream_concat0(O, ":"); } if (MCOperand_isImm(DispSpec)) { DispVal = MCOperand_getImm(DispSpec); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal; if (DispVal) { if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) { printInt64(O, DispVal); } else { // only immediate as address of memory if (DispVal < 0) { SStream_concat(O, "0x%"PRIx64, arch_masks[MI->csh->mode] & DispVal); } else { if (DispVal > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, DispVal); else SStream_concat(O, "%"PRIu64, DispVal); } } } else { } } if (MCOperand_getReg(IndexReg) || MCOperand_getReg(BaseReg)) { SStream_concat0(O, "("); if (MCOperand_getReg(BaseReg)) _printOperand(MI, Op + X86_AddrBaseReg, O); if (MCOperand_getReg(IndexReg)) { SStream_concat0(O, ", "); _printOperand(MI, Op + X86_AddrIndexReg, O); ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt)); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal; if (ScaleVal != 1) { SStream_concat(O, ", %u", ScaleVal); } } SStream_concat0(O, ")"); } else { if (!DispVal) SStream_concat0(O, "0"); } if (MI->csh->detail) MI->flat_insn->detail->x86.op_count++; } static void printanymem(MCInst *MI, unsigned OpNo, SStream *O) { switch(MI->Opcode) { default: break; case X86_LEA16r: MI->x86opsize = 2; break; case X86_LEA32r: case X86_LEA64_32r: MI->x86opsize = 4; break; case X86_LEA64r: MI->x86opsize = 8; break; } printMemReference(MI, OpNo, O); } #include "X86InstPrinter.h" #define GET_REGINFO_ENUM #include "X86GenRegisterInfo.inc" // Include the auto-generated portion of the assembly writer. #define PRINT_ALIAS_INSTR #ifdef CAPSTONE_X86_REDUCE #include "X86GenAsmWriter_reduce.inc" #else #include "X86GenAsmWriter.inc" #endif static void printRegName(SStream *OS, unsigned RegNo) { SStream_concat(OS, "%%%s", getRegisterName(RegNo)); } void X86_ATT_printInst(MCInst *MI, SStream *OS, void *info) { char *mnem; x86_reg reg, reg2; enum cs_ac_type access1, access2; int i; // perhaps this instruction does not need printer if (MI->assembly[0]) { strncpy(OS->buffer, MI->assembly, sizeof(OS->buffer)); return; } // Output CALLpcrel32 as "callq" in 64-bit mode. // In Intel annotation it's always emitted as "call". // // TODO: Probably this hack should be redesigned via InstAlias in // InstrInfo.td as soon as Requires clause is supported properly // for InstAlias. if (MI->csh->mode == CS_MODE_64 && MCInst_getOpcode(MI) == X86_CALLpcrel32) { SStream_concat0(OS, "callq\t"); MCInst_setOpcodePub(MI, X86_INS_CALL); printPCRelImm(MI, 0, OS); return; } // Try to print any aliases first. mnem = printAliasInstr(MI, OS, info); if (mnem) cs_mem_free(mnem); else printInstruction(MI, OS, info); // HACK TODO: fix this in machine description switch(MI->flat_insn->id) { default: break; case X86_INS_SYSEXIT: SStream_Init(OS); SStream_concat0(OS, "sysexit"); break; } if (MI->has_imm) { // if op_count > 1, then this operand's size is taken from the destination op if (MI->flat_insn->detail->x86.op_count > 1) { if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) { for (i = 0; i < MI->flat_insn->detail->x86.op_count; i++) { if (MI->flat_insn->detail->x86.operands[i].type == X86_OP_IMM) MI->flat_insn->detail->x86.operands[i].size = MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count - 1].size; } } } else MI->flat_insn->detail->x86.operands[0].size = MI->imm_size; } if (MI->csh->detail) { uint8_t access[6] = {0}; // some instructions need to supply immediate 1 in the first op switch(MCInst_getOpcode(MI)) { default: break; case X86_SHL8r1: case X86_SHL16r1: case X86_SHL32r1: case X86_SHL64r1: case X86_SAL8r1: case X86_SAL16r1: case X86_SAL32r1: case X86_SAL64r1: case X86_SHR8r1: case X86_SHR16r1: case X86_SHR32r1: case X86_SHR64r1: case X86_SAR8r1: case X86_SAR16r1: case X86_SAR32r1: case X86_SAR64r1: case X86_RCL8r1: case X86_RCL16r1: case X86_RCL32r1: case X86_RCL64r1: case X86_RCR8r1: case X86_RCR16r1: case X86_RCR32r1: case X86_RCR64r1: case X86_ROL8r1: case X86_ROL16r1: case X86_ROL32r1: case X86_ROL64r1: case X86_ROR8r1: case X86_ROR16r1: case X86_ROR32r1: case X86_ROR64r1: case X86_SHL8m1: case X86_SHL16m1: case X86_SHL32m1: case X86_SHL64m1: case X86_SAL8m1: case X86_SAL16m1: case X86_SAL32m1: case X86_SAL64m1: case X86_SHR8m1: case X86_SHR16m1: case X86_SHR32m1: case X86_SHR64m1: case X86_SAR8m1: case X86_SAR16m1: case X86_SAR32m1: case X86_SAR64m1: case X86_RCL8m1: case X86_RCL16m1: case X86_RCL32m1: case X86_RCL64m1: case X86_RCR8m1: case X86_RCR16m1: case X86_RCR32m1: case X86_RCR64m1: case X86_ROL8m1: case X86_ROL16m1: case X86_ROL32m1: case X86_ROL64m1: case X86_ROR8m1: case X86_ROR16m1: case X86_ROR32m1: case X86_ROR64m1: // shift all the ops right to leave 1st slot for this new register op memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]), sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1)); MI->flat_insn->detail->x86.operands[0].type = X86_OP_IMM; MI->flat_insn->detail->x86.operands[0].imm = 1; MI->flat_insn->detail->x86.operands[0].size = 1; MI->flat_insn->detail->x86.op_count++; } // special instruction needs to supply register op // first op can be embedded in the asm by llvm. // so we have to add the missing register as the first operand //printf(">>> opcode = %u\n", MCInst_getOpcode(MI)); reg = X86_insn_reg_att(MCInst_getOpcode(MI), &access1); if (reg) { // shift all the ops right to leave 1st slot for this new register op memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]), sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1)); MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[0].reg = reg; MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.operands[0].access = access1; MI->flat_insn->detail->x86.op_count++; } else { if (X86_insn_reg_att2(MCInst_getOpcode(MI), ®, &access1, ®2, &access2)) { MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[0].reg = reg; MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.operands[0].access = access1; MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[1].reg = reg2; MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2]; MI->flat_insn->detail->x86.operands[0].access = access2; MI->flat_insn->detail->x86.op_count = 2; } } #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[0].access = access[0]; MI->flat_insn->detail->x86.operands[1].access = access[1]; #endif } } #endif