//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file includes code for rendering MCInst instances as Intel-style // assembly. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2015 */ #ifdef CAPSTONE_HAS_X86 #if defined (WIN32) || defined (WIN64) || defined (_WIN32) || defined (_WIN64) #pragma warning(disable:4996) // disable MSVC's warning on strncpy() #pragma warning(disable:28719) // disable MSVC's warning on strncpy() #endif #if !defined(CAPSTONE_HAS_OSXKERNEL) #include #endif #include #if defined(CAPSTONE_HAS_OSXKERNEL) #include #include #else #include #include #endif #include #include "../../utils.h" #include "../../MCInst.h" #include "../../SStream.h" #include "../../MCRegisterInfo.h" #include "X86InstPrinter.h" #include "X86Mapping.h" #define GET_INSTRINFO_ENUM #ifdef CAPSTONE_X86_REDUCE #include "X86GenInstrInfo_reduce.inc" #else #include "X86GenInstrInfo.inc" #endif #include "X86BaseInfo.h" static void printMemReference(MCInst *MI, unsigned Op, SStream *O); static void printOperand(MCInst *MI, unsigned OpNo, SStream *O); static void set_mem_access(MCInst *MI, bool status) { if (MI->csh->detail != CS_OPT_ON) return; MI->csh->doing_mem = status; if (!status) // done, create the next operand slot MI->flat_insn->detail->x86.op_count++; } static void printopaquemem(MCInst *MI, unsigned OpNo, SStream *O) { // FIXME: do this with autogen // printf(">>> ID = %u\n", MI->flat_insn->id); switch(MI->flat_insn->id) { default: SStream_concat0(O, "ptr "); break; case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: case X86_INS_FXRSTOR: case X86_INS_FXSAVE: case X86_INS_LJMP: case X86_INS_LCALL: // do not print "ptr" break; } switch(MI->csh->mode) { case CS_MODE_16: switch(MI->flat_insn->id) { default: MI->x86opsize = 2; break; case X86_INS_LJMP: case X86_INS_LCALL: MI->x86opsize = 4; break; case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: MI->x86opsize = 6; break; } break; case CS_MODE_32: switch(MI->flat_insn->id) { default: MI->x86opsize = 4; break; case X86_INS_LJMP: case X86_INS_LCALL: case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: MI->x86opsize = 6; break; } break; case CS_MODE_64: switch(MI->flat_insn->id) { default: MI->x86opsize = 8; break; case X86_INS_LJMP: case X86_INS_LCALL: case X86_INS_SGDT: case X86_INS_SIDT: case X86_INS_LGDT: case X86_INS_LIDT: MI->x86opsize = 10; break; } break; default: // never reach break; } printMemReference(MI, OpNo, O); } static void printi8mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "byte ptr "); MI->x86opsize = 1; printMemReference(MI, OpNo, O); } static void printi16mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 2; SStream_concat0(O, "word ptr "); printMemReference(MI, OpNo, O); } static void printi32mem(MCInst *MI, unsigned OpNo, SStream *O) { MI->x86opsize = 4; SStream_concat0(O, "dword ptr "); printMemReference(MI, OpNo, O); } static void printi64mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "qword ptr "); MI->x86opsize = 8; printMemReference(MI, OpNo, O); } static void printi128mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "xmmword ptr "); MI->x86opsize = 16; printMemReference(MI, OpNo, O); } #ifndef CAPSTONE_X86_REDUCE static void printi256mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "ymmword ptr "); MI->x86opsize = 32; printMemReference(MI, OpNo, O); } static void printi512mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "zmmword ptr "); MI->x86opsize = 64; printMemReference(MI, OpNo, O); } static void printf32mem(MCInst *MI, unsigned OpNo, SStream *O) { switch(MCInst_getOpcode(MI)) { default: SStream_concat0(O, "dword ptr "); MI->x86opsize = 4; break; case X86_FBSTPm: case X86_FBLDm: // TODO: fix this in tablegen instead SStream_concat0(O, "tbyte ptr "); MI->x86opsize = 10; break; case X86_FSTENVm: case X86_FLDENVm: // TODO: fix this in tablegen instead switch(MI->csh->mode) { default: // never reach break; case CS_MODE_16: MI->x86opsize = 14; break; case CS_MODE_32: case CS_MODE_64: MI->x86opsize = 28; break; } break; } printMemReference(MI, OpNo, O); } static void printf64mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "qword ptr "); MI->x86opsize = 8; printMemReference(MI, OpNo, O); } static void printf80mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "xword ptr "); MI->x86opsize = 10; printMemReference(MI, OpNo, O); } static void printf128mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "xmmword ptr "); MI->x86opsize = 16; printMemReference(MI, OpNo, O); } static void printf256mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "ymmword ptr "); MI->x86opsize = 32; printMemReference(MI, OpNo, O); } static void printf512mem(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "zmmword ptr "); MI->x86opsize = 64; printMemReference(MI, OpNo, O); } static void printSSECC(MCInst *MI, unsigned Op, SStream *OS) { uint8_t Imm = (uint8_t)(MCOperand_getImm(MCInst_getOperand(MI, Op)) & 7); switch (Imm) { default: break; // never reach case 0: SStream_concat0(OS, "eq"); op_addSseCC(MI, X86_SSE_CC_EQ); break; case 1: SStream_concat0(OS, "lt"); op_addSseCC(MI, X86_SSE_CC_LT); break; case 2: SStream_concat0(OS, "le"); op_addSseCC(MI, X86_SSE_CC_LE); break; case 3: SStream_concat0(OS, "unord"); op_addSseCC(MI, X86_SSE_CC_UNORD); break; case 4: SStream_concat0(OS, "neq"); op_addSseCC(MI, X86_SSE_CC_NEQ); break; case 5: SStream_concat0(OS, "nlt"); op_addSseCC(MI, X86_SSE_CC_NLT); break; case 6: SStream_concat0(OS, "nle"); op_addSseCC(MI, X86_SSE_CC_NLE); break; case 7: SStream_concat0(OS, "ord"); op_addSseCC(MI, X86_SSE_CC_ORD); break; } MI->popcode_adjust = Imm + 1; } static void printAVXCC(MCInst *MI, unsigned Op, SStream *O) { uint8_t Imm = (uint8_t)(MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x1f); switch (Imm) { default: break;//printf("Invalid avxcc argument!\n"); break; case 0: SStream_concat0(O, "eq"); op_addAvxCC(MI, X86_AVX_CC_EQ); break; case 1: SStream_concat0(O, "lt"); op_addAvxCC(MI, X86_AVX_CC_LT); break; case 2: SStream_concat0(O, "le"); op_addAvxCC(MI, X86_AVX_CC_LE); break; case 3: SStream_concat0(O, "unord"); op_addAvxCC(MI, X86_AVX_CC_UNORD); break; case 4: SStream_concat0(O, "neq"); op_addAvxCC(MI, X86_AVX_CC_NEQ); break; case 5: SStream_concat0(O, "nlt"); op_addAvxCC(MI, X86_AVX_CC_NLT); break; case 6: SStream_concat0(O, "nle"); op_addAvxCC(MI, X86_AVX_CC_NLE); break; case 7: SStream_concat0(O, "ord"); op_addAvxCC(MI, X86_AVX_CC_ORD); break; case 8: SStream_concat0(O, "eq_uq"); op_addAvxCC(MI, X86_AVX_CC_EQ_UQ); break; case 9: SStream_concat0(O, "nge"); op_addAvxCC(MI, X86_AVX_CC_NGE); break; case 0xa: SStream_concat0(O, "ngt"); op_addAvxCC(MI, X86_AVX_CC_NGT); break; case 0xb: SStream_concat0(O, "false"); op_addAvxCC(MI, X86_AVX_CC_FALSE); break; case 0xc: SStream_concat0(O, "neq_oq"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OQ); break; case 0xd: SStream_concat0(O, "ge"); op_addAvxCC(MI, X86_AVX_CC_GE); break; case 0xe: SStream_concat0(O, "gt"); op_addAvxCC(MI, X86_AVX_CC_GT); break; case 0xf: SStream_concat0(O, "true"); op_addAvxCC(MI, X86_AVX_CC_TRUE); break; case 0x10: SStream_concat0(O, "eq_os"); op_addAvxCC(MI, X86_AVX_CC_EQ_OS); break; case 0x11: SStream_concat0(O, "lt_oq"); op_addAvxCC(MI, X86_AVX_CC_LT_OQ); break; case 0x12: SStream_concat0(O, "le_oq"); op_addAvxCC(MI, X86_AVX_CC_LE_OQ); break; case 0x13: SStream_concat0(O, "unord_s"); op_addAvxCC(MI, X86_AVX_CC_UNORD_S); break; case 0x14: SStream_concat0(O, "neq_us"); op_addAvxCC(MI, X86_AVX_CC_NEQ_US); break; case 0x15: SStream_concat0(O, "nlt_uq"); op_addAvxCC(MI, X86_AVX_CC_NLT_UQ); break; case 0x16: SStream_concat0(O, "nle_uq"); op_addAvxCC(MI, X86_AVX_CC_NLE_UQ); break; case 0x17: SStream_concat0(O, "ord_s"); op_addAvxCC(MI, X86_AVX_CC_ORD_S); break; case 0x18: SStream_concat0(O, "eq_us"); op_addAvxCC(MI, X86_AVX_CC_EQ_US); break; case 0x19: SStream_concat0(O, "nge_uq"); op_addAvxCC(MI, X86_AVX_CC_NGE_UQ); break; case 0x1a: SStream_concat0(O, "ngt_uq"); op_addAvxCC(MI, X86_AVX_CC_NGT_UQ); break; case 0x1b: SStream_concat0(O, "false_os"); op_addAvxCC(MI, X86_AVX_CC_FALSE_OS); break; case 0x1c: SStream_concat0(O, "neq_os"); op_addAvxCC(MI, X86_AVX_CC_NEQ_OS); break; case 0x1d: SStream_concat0(O, "ge_oq"); op_addAvxCC(MI, X86_AVX_CC_GE_OQ); break; case 0x1e: SStream_concat0(O, "gt_oq"); op_addAvxCC(MI, X86_AVX_CC_GT_OQ); break; case 0x1f: SStream_concat0(O, "true_us"); op_addAvxCC(MI, X86_AVX_CC_TRUE_US); break; } MI->popcode_adjust = Imm + 1; } static void printXOPCC(MCInst *MI, unsigned Op, SStream *O) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)); switch (Imm) { default: // llvm_unreachable("Invalid xopcc argument!"); case 0: SStream_concat0(O, "lt"); op_addXopCC(MI, X86_XOP_CC_LT); break; case 1: SStream_concat0(O, "le"); op_addXopCC(MI, X86_XOP_CC_LE); break; case 2: SStream_concat0(O, "gt"); op_addXopCC(MI, X86_XOP_CC_GT); break; case 3: SStream_concat0(O, "ge"); op_addXopCC(MI, X86_XOP_CC_GE); break; case 4: SStream_concat0(O, "eq"); op_addXopCC(MI, X86_XOP_CC_EQ); break; case 5: SStream_concat0(O, "neq"); op_addXopCC(MI, X86_XOP_CC_NEQ); break; case 6: SStream_concat0(O, "false"); op_addXopCC(MI, X86_XOP_CC_FALSE); break; case 7: SStream_concat0(O, "true"); op_addXopCC(MI, X86_XOP_CC_TRUE); break; } } static void printRoundingControl(MCInst *MI, unsigned Op, SStream *O) { int64_t Imm = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0x3; switch (Imm) { case 0: SStream_concat0(O, "{rn-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RN); break; case 1: SStream_concat0(O, "{rd-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RD); break; case 2: SStream_concat0(O, "{ru-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RU); break; case 3: SStream_concat0(O, "{rz-sae}"); op_addAvxSae(MI); op_addAvxRoundingMode(MI, X86_AVX_RM_RZ); break; default: break; // never reach } } #endif static const char *getRegisterName(unsigned RegNo); static void printRegName(SStream *OS, unsigned RegNo) { SStream_concat0(OS, getRegisterName(RegNo)); } // for MASM syntax, 0x123 = 123h, 0xA123 = 0A123h // this function tell us if we need to have prefix 0 in front of a number static bool need_zero_prefix(uint64_t imm) { // find the first hex letter representing imm while(imm >= 0x10) imm >>= 4; if (imm < 0xa) return false; else // this need 0 prefix return true; } static void printImm(MCInst *MI, SStream *O, int64_t imm, bool positive) { if (positive) { // always print this number in positive form if (MI->csh->syntax == CS_OPT_SYNTAX_MASM) { if (imm < 0) { if (MI->op1_size) { switch(MI->op1_size) { default: break; case 1: imm &= 0xff; break; case 2: imm &= 0xffff; break; case 4: imm &= 0xffffffff; break; } } if (imm == 0x8000000000000000LL) // imm == -imm SStream_concat0(O, "8000000000000000h"); else if (need_zero_prefix(imm)) SStream_concat(O, "0%"PRIx64"h", imm); else SStream_concat(O, "%"PRIx64"h", imm); } else { if (imm > HEX_THRESHOLD) { if (need_zero_prefix(imm)) SStream_concat(O, "0%"PRIx64"h", imm); else SStream_concat(O, "%"PRIx64"h", imm); } else SStream_concat(O, "%"PRIu64, imm); } } else { // Intel syntax if (imm < 0) { if (MI->op1_size) { switch(MI->op1_size) { default: break; case 1: imm &= 0xff; break; case 2: imm &= 0xffff; break; case 4: imm &= 0xffffffff; break; } } SStream_concat(O, "0x%"PRIx64, imm); } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, imm); else SStream_concat(O, "%"PRIu64, imm); } } } else { if (MI->csh->syntax == CS_OPT_SYNTAX_MASM) { if (imm < 0) { if (imm == 0x8000000000000000LL) // imm == -imm SStream_concat0(O, "8000000000000000h"); else if (imm < -HEX_THRESHOLD) { if (need_zero_prefix(imm)) SStream_concat(O, "-0%"PRIx64"h", -imm); else SStream_concat(O, "-%"PRIx64"h", -imm); } else SStream_concat(O, "-%"PRIu64, -imm); } else { if (imm > HEX_THRESHOLD) { if (need_zero_prefix(imm)) SStream_concat(O, "0%"PRIx64"h", imm); else SStream_concat(O, "%"PRIx64"h", imm); } else SStream_concat(O, "%"PRIu64, imm); } } else { // Intel syntax if (imm < 0) { if (imm == 0x8000000000000000LL) // imm == -imm SStream_concat0(O, "0x8000000000000000"); else if (imm < -HEX_THRESHOLD) SStream_concat(O, "-0x%"PRIx64, -imm); else SStream_concat(O, "-%"PRIu64, -imm); } else { if (imm > HEX_THRESHOLD) SStream_concat(O, "0x%"PRIx64, imm); else SStream_concat(O, "%"PRIu64, imm); } } } } // local printOperand, without updating public operands static void _printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { printRegName(O, MCOperand_getReg(Op)); } else if (MCOperand_isImm(Op)) { int64_t imm = MCOperand_getImm(Op); printImm(MI, O, imm, MI->csh->imm_unsigned); } } #ifndef CAPSTONE_DIET // copy & normalize access info static void get_op_access(cs_struct *h, unsigned int id, uint8_t *access, uint64_t *eflags) { #ifndef CAPSTONE_DIET uint8_t i; uint8_t *arr = X86_get_op_access(h, id, eflags); if (!arr) { access[0] = 0; return; } // copy to access but zero out CS_AC_IGNORE for(i = 0; arr[i]; i++) { if (arr[i] != CS_AC_IGNORE) access[i] = arr[i]; else access[i] = 0; } // mark the end of array access[i] = 0; #endif } #endif static void printSrcIdx(MCInst *MI, unsigned Op, SStream *O) { MCOperand *SegReg; int reg; if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif } SegReg = MCInst_getOperand(MI, Op+1); reg = MCOperand_getReg(SegReg); // If this has a segment register, print it. if (reg) { _printOperand(MI, Op+1, O); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg; } SStream_concat0(O, ":"); } SStream_concat0(O, "["); set_mem_access(MI, true); printOperand(MI, Op, O); SStream_concat0(O, "]"); set_mem_access(MI, false); } static void printDstIdx(MCInst *MI, unsigned Op, SStream *O) { if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif } // DI accesses are always ES-based on non-64bit mode if (MI->csh->mode != CS_MODE_64) { SStream_concat(O, "es:["); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_ES; } } else SStream_concat(O, "["); set_mem_access(MI, true); printOperand(MI, Op, O); SStream_concat0(O, "]"); set_mem_access(MI, false); } static void printSrcIdx8(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "byte ptr "); MI->x86opsize = 1; printSrcIdx(MI, OpNo, O); } static void printSrcIdx16(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "word ptr "); MI->x86opsize = 2; printSrcIdx(MI, OpNo, O); } static void printSrcIdx32(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "dword ptr "); MI->x86opsize = 4; printSrcIdx(MI, OpNo, O); } static void printSrcIdx64(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "qword ptr "); MI->x86opsize = 8; printSrcIdx(MI, OpNo, O); } static void printDstIdx8(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "byte ptr "); MI->x86opsize = 1; printDstIdx(MI, OpNo, O); } static void printDstIdx16(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "word ptr "); MI->x86opsize = 2; printDstIdx(MI, OpNo, O); } static void printDstIdx32(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "dword ptr "); MI->x86opsize = 4; printDstIdx(MI, OpNo, O); } static void printDstIdx64(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "qword ptr "); MI->x86opsize = 8; printDstIdx(MI, OpNo, O); } static void printMemOffset(MCInst *MI, unsigned Op, SStream *O) { MCOperand *DispSpec = MCInst_getOperand(MI, Op); MCOperand *SegReg = MCInst_getOperand(MI, Op + 1); int reg; if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = 1; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif } // If this has a segment register, print it. reg = MCOperand_getReg(SegReg); if (reg) { _printOperand(MI, Op + 1, O); SStream_concat0(O, ":"); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg; } } SStream_concat0(O, "["); if (MCOperand_isImm(DispSpec)) { int64_t imm = MCOperand_getImm(DispSpec); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm; if (imm < 0) printImm(MI, O, arch_masks[MI->csh->mode] & imm, true); else printImm(MI, O, imm, true); } SStream_concat0(O, "]"); if (MI->csh->detail) MI->flat_insn->detail->x86.op_count++; if (MI->op1_size == 0) MI->op1_size = MI->x86opsize; } #ifndef CAPSTONE_X86_REDUCE static void printU8Imm(MCInst *MI, unsigned Op, SStream *O) { uint8_t val = MCOperand_getImm(MCInst_getOperand(MI, Op)) & 0xff; printImm(MI, O, val, true); if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = val; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = 1; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif MI->flat_insn->detail->x86.op_count++; } } #endif static void printMemOffs8(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "byte ptr "); MI->x86opsize = 1; printMemOffset(MI, OpNo, O); } static void printMemOffs16(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "word ptr "); MI->x86opsize = 2; printMemOffset(MI, OpNo, O); } static void printMemOffs32(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "dword ptr "); MI->x86opsize = 4; printMemOffset(MI, OpNo, O); } static void printMemOffs64(MCInst *MI, unsigned OpNo, SStream *O) { SStream_concat0(O, "qword ptr "); MI->x86opsize = 8; printMemOffset(MI, OpNo, O); } #ifndef CAPSTONE_DIET static char *printAliasInstr(MCInst *MI, SStream *OS, void *info); #endif static void printInstruction(MCInst *MI, SStream *O, MCRegisterInfo *MRI); void X86_Intel_printInst(MCInst *MI, SStream *O, void *Info) { #ifndef CAPSTONE_DIET char *mnem; #endif x86_reg reg, reg2; enum cs_ac_type access1, access2; // perhaps this instruction does not need printer if (MI->assembly[0]) { strncpy(O->buffer, MI->assembly, sizeof(O->buffer)); return; } #ifndef CAPSTONE_DIET // Try to print any aliases first. mnem = printAliasInstr(MI, O, Info); if (mnem) cs_mem_free(mnem); else #endif printInstruction(MI, O, Info); reg = X86_insn_reg_intel(MCInst_getOpcode(MI), &access1); if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6] = {0}; #endif // first op can be embedded in the asm by llvm. // so we have to add the missing register as the first operand if (reg) { // shift all the ops right to leave 1st slot for this new register op memmove(&(MI->flat_insn->detail->x86.operands[1]), &(MI->flat_insn->detail->x86.operands[0]), sizeof(MI->flat_insn->detail->x86.operands[0]) * (ARR_SIZE(MI->flat_insn->detail->x86.operands) - 1)); MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[0].reg = reg; MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.operands[0].access = access1; MI->flat_insn->detail->x86.op_count++; } else { if (X86_insn_reg_intel2(MCInst_getOpcode(MI), ®, &access1, ®2, &access2)) { MI->flat_insn->detail->x86.operands[0].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[0].reg = reg; MI->flat_insn->detail->x86.operands[0].size = MI->csh->regsize_map[reg]; MI->flat_insn->detail->x86.operands[0].access = access1; MI->flat_insn->detail->x86.operands[1].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[1].reg = reg2; MI->flat_insn->detail->x86.operands[1].size = MI->csh->regsize_map[reg2]; MI->flat_insn->detail->x86.operands[1].access = access2; MI->flat_insn->detail->x86.op_count = 2; } } #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[0].access = access[0]; MI->flat_insn->detail->x86.operands[1].access = access[1]; #endif } if (MI->op1_size == 0 && reg) MI->op1_size = MI->csh->regsize_map[reg]; } /// printPCRelImm - This is used to print an immediate value that ends up /// being encoded as a pc-relative value. static void printPCRelImm(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isImm(Op)) { int64_t imm = MCOperand_getImm(Op) + MI->flat_insn->size + MI->address; uint8_t opsize = X86_immediate_size(MI->Opcode, NULL); // truncat imm for non-64bit if (MI->csh->mode != CS_MODE_64) { imm = imm & 0xffffffff; } if (MI->csh->mode == CS_MODE_16 && (MI->Opcode != X86_JMP_4 && MI->Opcode != X86_CALLpcrel32)) imm = imm & 0xffff; // Hack: X86 16bit with opcode X86_JMP_4 if (MI->csh->mode == CS_MODE_16 && (MI->Opcode == X86_JMP_4 && MI->x86_prefix[2] != 0x66)) imm = imm & 0xffff; // CALL/JMP rel16 is special if (MI->Opcode == X86_CALLpcrel16 || MI->Opcode == X86_JMP_2) imm = imm & 0xffff; printImm(MI, O, imm, true); if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; // if op_count > 0, then this operand's size is taken from the destination op if (MI->flat_insn->detail->x86.op_count > 0) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size; else if (opsize > 0) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize; else MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif MI->flat_insn->detail->x86.op_count++; } if (MI->op1_size == 0) MI->op1_size = MI->imm_size; } } static void printOperand(MCInst *MI, unsigned OpNo, SStream *O) { MCOperand *Op = MCInst_getOperand(MI, OpNo); if (MCOperand_isReg(Op)) { unsigned int reg = MCOperand_getReg(Op); printRegName(O, reg); if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = reg; } else { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_REG; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].reg = reg; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->csh->regsize_map[reg]; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif MI->flat_insn->detail->x86.op_count++; } } if (MI->op1_size == 0) MI->op1_size = MI->csh->regsize_map[reg]; } else if (MCOperand_isImm(Op)) { uint8_t encsize; int64_t imm = MCOperand_getImm(Op); uint8_t opsize = X86_immediate_size(MCInst_getOpcode(MI), &encsize); if (opsize == 1) // print 1 byte immediate in positive form imm = imm & 0xff; // printf(">>> id = %u\n", MI->flat_insn->id); switch(MI->flat_insn->id) { default: printImm(MI, O, imm, MI->csh->imm_unsigned); break; case X86_INS_MOVABS: // do not print number in negative form printImm(MI, O, imm, true); break; case X86_INS_IN: case X86_INS_OUT: case X86_INS_INT: // do not print number in negative form imm = imm & 0xff; printImm(MI, O, imm, true); break; case X86_INS_LCALL: case X86_INS_LJMP: // always print address in positive form if (OpNo == 1) { // ptr16 part imm = imm & 0xffff; opsize = 2; } printImm(MI, O, imm, true); break; case X86_INS_AND: case X86_INS_OR: case X86_INS_XOR: // do not print number in negative form if (imm >= 0 && imm <= HEX_THRESHOLD) printImm(MI, O, imm, true); else { imm = arch_masks[opsize? opsize : MI->imm_size] & imm; printImm(MI, O, imm, true); } break; case X86_INS_RET: case X86_INS_RETF: // RET imm16 if (imm >= 0 && imm <= HEX_THRESHOLD) printImm(MI, O, imm, true); else { imm = 0xffff & imm; printImm(MI, O, imm, true); } break; } if (MI->csh->detail) { if (MI->csh->doing_mem) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = imm; } else { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_IMM; if (opsize > 0) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = opsize; MI->flat_insn->detail->x86.encoding.imm_size = encsize; } else if (MI->flat_insn->detail->x86.op_count > 0) { if (MI->flat_insn->id != X86_INS_LCALL && MI->flat_insn->id != X86_INS_LJMP) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->flat_insn->detail->x86.operands[0].size; } else MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size; } else MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->imm_size; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].imm = imm; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif MI->flat_insn->detail->x86.op_count++; } } } } static void printMemReference(MCInst *MI, unsigned Op, SStream *O) { bool NeedPlus = false; MCOperand *BaseReg = MCInst_getOperand(MI, Op + X86_AddrBaseReg); uint64_t ScaleVal = MCOperand_getImm(MCInst_getOperand(MI, Op + X86_AddrScaleAmt)); MCOperand *IndexReg = MCInst_getOperand(MI, Op + X86_AddrIndexReg); MCOperand *DispSpec = MCInst_getOperand(MI, Op + X86_AddrDisp); MCOperand *SegReg = MCInst_getOperand(MI, Op + X86_AddrSegmentReg); int reg; if (MI->csh->detail) { #ifndef CAPSTONE_DIET uint8_t access[6]; #endif MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].type = X86_OP_MEM; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].size = MI->x86opsize; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = X86_REG_INVALID; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.base = MCOperand_getReg(BaseReg); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.index = MCOperand_getReg(IndexReg); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.scale = (int)ScaleVal; MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = 0; #ifndef CAPSTONE_DIET get_op_access(MI->csh, MCInst_getOpcode(MI), access, &MI->flat_insn->detail->x86.eflags); MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].access = access[MI->flat_insn->detail->x86.op_count]; #endif } // If this has a segment register, print it. reg = MCOperand_getReg(SegReg); if (reg) { _printOperand(MI, Op + X86_AddrSegmentReg, O); if (MI->csh->detail) { MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.segment = reg; } SStream_concat0(O, ":"); } SStream_concat0(O, "["); if (MCOperand_getReg(BaseReg)) { _printOperand(MI, Op + X86_AddrBaseReg, O); NeedPlus = true; } if (MCOperand_getReg(IndexReg)) { if (NeedPlus) SStream_concat0(O, " + "); _printOperand(MI, Op + X86_AddrIndexReg, O); if (ScaleVal != 1) SStream_concat(O, "*%u", ScaleVal); NeedPlus = true; } if (MCOperand_isImm(DispSpec)) { int64_t DispVal = MCOperand_getImm(DispSpec); if (MI->csh->detail) MI->flat_insn->detail->x86.operands[MI->flat_insn->detail->x86.op_count].mem.disp = DispVal; if (DispVal) { if (NeedPlus) { if (DispVal < 0) { SStream_concat0(O, " - "); printImm(MI, O, -DispVal, true); } else { SStream_concat0(O, " + "); printImm(MI, O, DispVal, true); } } else { // memory reference to an immediate address if (DispVal < 0) { printImm(MI, O, arch_masks[MI->csh->mode] & DispVal, true); } else { printImm(MI, O, DispVal, true); } } } else { // DispVal = 0 if (!NeedPlus) // [0] SStream_concat0(O, "0"); } } SStream_concat0(O, "]"); if (MI->csh->detail) MI->flat_insn->detail->x86.op_count++; if (MI->op1_size == 0) MI->op1_size = MI->x86opsize; } static void printanymem(MCInst *MI, unsigned OpNo, SStream *O) { switch(MI->Opcode) { default: break; case X86_LEA16r: MI->x86opsize = 2; break; case X86_LEA32r: case X86_LEA64_32r: MI->x86opsize = 4; break; case X86_LEA64r: MI->x86opsize = 8; break; } printMemReference(MI, OpNo, O); } #define GET_REGINFO_ENUM #include "X86GenRegisterInfo.inc" #define PRINT_ALIAS_INSTR #ifdef CAPSTONE_X86_REDUCE #include "X86GenAsmWriter1_reduce.inc" #else #include "X86GenAsmWriter1.inc" #endif #endif