You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1106 lines
32 KiB

/* Capstone Disassembler Engine */
/* By Nguyen Anh Quynh <aquynh@gmail.com>, 2013> */
#include <stdio.h> // debug
#include <string.h>
#include <caml/mlvalues.h>
#include <caml/memory.h>
#include <caml/alloc.h>
#include <caml/fail.h>
#include "capstone/capstone.h"
#define ARR_SIZE(a) (sizeof(a)/sizeof(a[0]))
// count the number of positive members in @list
static unsigned int list_count(uint8_t *list, unsigned int max)
{
unsigned int i;
for(i = 0; i < max; i++)
if (list[i] == 0)
return i;
return max;
}
CAMLprim value _cs_disasm(cs_arch arch, csh handle, const uint8_t * code, size_t code_len, uint64_t addr, size_t count)
{
CAMLparam0();
CAMLlocal5(list, cons, rec_insn, array, tmp);
CAMLlocal4(arch_info, op_info_val, tmp2, tmp3);
cs_insn *insn;
size_t c;
list = Val_emptylist;
c = cs_disasm(handle, code, code_len, addr, count, &insn);
if (c) {
//printf("Found %lu insn, addr: %lx\n", c, addr);
uint64_t j;
for (j = c; j > 0; j--) {
unsigned int lcount, i;
cons = caml_alloc(2, 0);
rec_insn = caml_alloc(10, 0);
Store_field(rec_insn, 0, Val_int(insn[j-1].id));
Store_field(rec_insn, 1, Val_int(insn[j-1].address));
Store_field(rec_insn, 2, Val_int(insn[j-1].size));
// copy raw bytes of instruction
lcount = insn[j-1].size;
if (lcount) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
Store_field(array, i, Val_int(insn[j-1].bytes[i]));
}
} else
array = Atom(0); // empty list
Store_field(rec_insn, 3, array);
Store_field(rec_insn, 4, caml_copy_string(insn[j-1].mnemonic));
Store_field(rec_insn, 5, caml_copy_string(insn[j-1].op_str));
// copy read registers
if (insn[0].detail) {
lcount = (insn[j-1]).detail->regs_read_count;
if (lcount) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
Store_field(array, i, Val_int(insn[j-1].detail->regs_read[i]));
}
} else
array = Atom(0); // empty list
} else
array = Atom(0); // empty list
Store_field(rec_insn, 6, array);
if (insn[0].detail) {
lcount = (insn[j-1]).detail->regs_write_count;
if (lcount) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
Store_field(array, i, Val_int(insn[j-1].detail->regs_write[i]));
}
} else
array = Atom(0); // empty list
} else
array = Atom(0); // empty list
Store_field(rec_insn, 7, array);
if (insn[0].detail) {
lcount = (insn[j-1]).detail->groups_count;
if (lcount) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
Store_field(array, i, Val_int(insn[j-1].detail->groups[i]));
}
} else
array = Atom(0); // empty list
} else
array = Atom(0); // empty list
Store_field(rec_insn, 8, array);
if (insn[j-1].detail) {
switch(arch) {
case CS_ARCH_ARM:
arch_info = caml_alloc(1, 0);
op_info_val = caml_alloc(10, 0);
Store_field(op_info_val, 0, Val_bool(insn[j-1].detail->arm.usermode));
Store_field(op_info_val, 1, Val_int(insn[j-1].detail->arm.vector_size));
Store_field(op_info_val, 2, Val_int(insn[j-1].detail->arm.vector_data));
Store_field(op_info_val, 3, Val_int(insn[j-1].detail->arm.cps_mode));
Store_field(op_info_val, 4, Val_int(insn[j-1].detail->arm.cps_flag));
Store_field(op_info_val, 5, Val_int(insn[j-1].detail->arm.cc));
Store_field(op_info_val, 6, Val_bool(insn[j-1].detail->arm.update_flags));
Store_field(op_info_val, 7, Val_bool(insn[j-1].detail->arm.writeback));
Store_field(op_info_val, 8, Val_int(insn[j-1].detail->arm.mem_barrier));
lcount = insn[j-1].detail->arm.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(6, 0);
switch(insn[j-1].detail->arm.operands[i].type) {
case ARM_OP_REG:
case ARM_OP_SYSREG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm.operands[i].reg));
break;
case ARM_OP_CIMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm.operands[i].imm));
break;
case ARM_OP_PIMM:
tmp = caml_alloc(1, 3);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm.operands[i].imm));
break;
case ARM_OP_IMM:
tmp = caml_alloc(1, 4);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm.operands[i].imm));
break;
case ARM_OP_FP:
tmp = caml_alloc(1, 5);
Store_field(tmp, 0, caml_copy_double(insn[j-1].detail->arm.operands[i].fp));
break;
case ARM_OP_MEM:
tmp = caml_alloc(1, 6);
tmp3 = caml_alloc(5, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->arm.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->arm.operands[i].mem.index));
Store_field(tmp3, 2, Val_int(insn[j-1].detail->arm.operands[i].mem.scale));
Store_field(tmp3, 3, Val_int(insn[j-1].detail->arm.operands[i].mem.disp));
Store_field(tmp3, 4, Val_int(insn[j-1].detail->arm.operands[i].mem.lshift));
Store_field(tmp, 0, tmp3);
break;
case ARM_OP_SETEND:
tmp = caml_alloc(1, 7);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm.operands[i].setend));
break;
default: break;
}
tmp3 = caml_alloc(2, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->arm.operands[i].shift.type));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->arm.operands[i].shift.value));
Store_field(tmp2, 0, Val_int(insn[j-1].detail->arm.operands[i].vector_index));
Store_field(tmp2, 1, tmp3);
Store_field(tmp2, 2, tmp);
Store_field(tmp2, 3, Val_bool(insn[j-1].detail->arm.operands[i].subtracted));
Store_field(tmp2, 4, Val_int(insn[j-1].detail->arm.operands[i].access));
Store_field(tmp2, 5, Val_int(insn[j-1].detail->arm.operands[i].neon_lane));
Store_field(array, i, tmp2);
}
} else // empty list
array = Atom(0);
Store_field(op_info_val, 9, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_ARM64:
arch_info = caml_alloc(1, 1);
op_info_val = caml_alloc(4, 0);
Store_field(op_info_val, 0, Val_int(insn[j-1].detail->arm64.cc));
Store_field(op_info_val, 1, Val_bool(insn[j-1].detail->arm64.update_flags));
Store_field(op_info_val, 2, Val_bool(insn[j-1].detail->arm64.writeback));
lcount = insn[j-1].detail->arm64.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(6, 0);
switch(insn[j-1].detail->arm64.operands[i].type) {
case ARM64_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].reg));
break;
case ARM64_OP_CIMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].imm));
break;
case ARM64_OP_IMM:
tmp = caml_alloc(1, 3);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].imm));
break;
case ARM64_OP_FP:
tmp = caml_alloc(1, 4);
Store_field(tmp, 0, caml_copy_double(insn[j-1].detail->arm64.operands[i].fp));
break;
case ARM64_OP_MEM:
tmp = caml_alloc(1, 5);
tmp3 = caml_alloc(3, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->arm64.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->arm64.operands[i].mem.index));
Store_field(tmp3, 2, Val_int(insn[j-1].detail->arm64.operands[i].mem.disp));
Store_field(tmp, 0, tmp3);
break;
case ARM64_OP_REG_MRS:
tmp = caml_alloc(1, 6);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].reg));
break;
case ARM64_OP_REG_MSR:
tmp = caml_alloc(1, 7);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].reg));
break;
case ARM64_OP_PSTATE:
tmp = caml_alloc(1, 8);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].pstate));
break;
case ARM64_OP_SYS:
tmp = caml_alloc(1, 9);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].sys));
break;
case ARM64_OP_PREFETCH:
tmp = caml_alloc(1, 10);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].prefetch));
break;
case ARM64_OP_BARRIER:
tmp = caml_alloc(1, 11);
Store_field(tmp, 0, Val_int(insn[j-1].detail->arm64.operands[i].barrier));
break;
default: break;
}
tmp3 = caml_alloc(2, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->arm64.operands[i].shift.type));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->arm64.operands[i].shift.value));
Store_field(tmp2, 0, Val_int(insn[j-1].detail->arm64.operands[i].vector_index));
Store_field(tmp2, 1, Val_int(insn[j-1].detail->arm64.operands[i].vas));
Store_field(tmp2, 2, Val_int(insn[j-1].detail->arm64.operands[i].vess));
Store_field(tmp2, 3, tmp3);
Store_field(tmp2, 4, Val_int(insn[j-1].detail->arm64.operands[i].ext));
Store_field(tmp2, 5, tmp);
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 3, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_MIPS:
arch_info = caml_alloc(1, 2);
op_info_val = caml_alloc(1, 0);
lcount = insn[j-1].detail->mips.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(1, 0);
switch(insn[j-1].detail->mips.operands[i].type) {
case MIPS_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->mips.operands[i].reg));
break;
case MIPS_OP_IMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->mips.operands[i].imm));
break;
case MIPS_OP_MEM:
tmp = caml_alloc(1, 3);
tmp3 = caml_alloc(2, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->mips.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->mips.operands[i].mem.disp));
Store_field(tmp, 0, tmp3);
break;
default: break;
}
Store_field(tmp2, 0, tmp);
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 0, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_X86:
arch_info = caml_alloc(1, 3);
op_info_val = caml_alloc(17, 0);
// fill prefix
lcount = list_count(insn[j-1].detail->x86.prefix, ARR_SIZE(insn[j-1].detail->x86.prefix));
if (lcount) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
Store_field(array, i, Val_int(insn[j-1].detail->x86.prefix[i]));
}
} else
array = Atom(0);
Store_field(op_info_val, 0, array);
// fill opcode
lcount = list_count(insn[j-1].detail->x86.opcode, ARR_SIZE(insn[j-1].detail->x86.opcode));
if (lcount) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
Store_field(array, i, Val_int(insn[j-1].detail->x86.opcode[i]));
}
} else
array = Atom(0);
Store_field(op_info_val, 1, array);
Store_field(op_info_val, 2, Val_int(insn[j-1].detail->x86.rex));
Store_field(op_info_val, 3, Val_int(insn[j-1].detail->x86.addr_size));
Store_field(op_info_val, 4, Val_int(insn[j-1].detail->x86.modrm));
Store_field(op_info_val, 5, Val_int(insn[j-1].detail->x86.sib));
Store_field(op_info_val, 6, Val_int(insn[j-1].detail->x86.disp));
Store_field(op_info_val, 7, Val_int(insn[j-1].detail->x86.sib_index));
Store_field(op_info_val, 8, Val_int(insn[j-1].detail->x86.sib_scale));
Store_field(op_info_val, 9, Val_int(insn[j-1].detail->x86.sib_base));
Store_field(op_info_val, 10, Val_int(insn[j-1].detail->x86.xop_cc));
Store_field(op_info_val, 11, Val_int(insn[j-1].detail->x86.sse_cc));
Store_field(op_info_val, 12, Val_int(insn[j-1].detail->x86.avx_cc));
Store_field(op_info_val, 13, Val_int(insn[j-1].detail->x86.avx_sae));
Store_field(op_info_val, 14, Val_int(insn[j-1].detail->x86.avx_rm));
Store_field(op_info_val, 15, Val_int(insn[j-1].detail->x86.eflags));
lcount = insn[j-1].detail->x86.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
switch(insn[j-1].detail->x86.operands[i].type) {
case X86_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->x86.operands[i].reg));
break;
case X86_OP_IMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->x86.operands[i].imm));
break;
case X86_OP_MEM:
tmp = caml_alloc(1, 3);
tmp2 = caml_alloc(5, 0);
Store_field(tmp2, 0, Val_int(insn[j-1].detail->x86.operands[i].mem.segment));
Store_field(tmp2, 1, Val_int(insn[j-1].detail->x86.operands[i].mem.base));
Store_field(tmp2, 2, Val_int(insn[j-1].detail->x86.operands[i].mem.index));
Store_field(tmp2, 3, Val_int(insn[j-1].detail->x86.operands[i].mem.scale));
Store_field(tmp2, 4, Val_int(insn[j-1].detail->x86.operands[i].mem.disp));
Store_field(tmp, 0, tmp2);
break;
default:
tmp = caml_alloc(1, 0); // X86_OP_INVALID
break;
}
tmp2 = caml_alloc(5, 0);
Store_field(tmp2, 0, tmp);
Store_field(tmp2, 1, Val_int(insn[j-1].detail->x86.operands[i].size));
Store_field(tmp2, 2, Val_int(insn[j-1].detail->x86.operands[i].access));
Store_field(tmp2, 3, Val_int(insn[j-1].detail->x86.operands[i].avx_bcast));
Store_field(tmp2, 4, Val_int(insn[j-1].detail->x86.operands[i].avx_zero_opmask));
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 16, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_PPC:
arch_info = caml_alloc(1, 4);
op_info_val = caml_alloc(4, 0);
Store_field(op_info_val, 0, Val_int(insn[j-1].detail->ppc.bc));
Store_field(op_info_val, 1, Val_int(insn[j-1].detail->ppc.bh));
Store_field(op_info_val, 2, Val_bool(insn[j-1].detail->ppc.update_cr0));
lcount = insn[j-1].detail->ppc.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(1, 0);
switch(insn[j-1].detail->ppc.operands[i].type) {
case PPC_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->ppc.operands[i].reg));
break;
case PPC_OP_IMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->ppc.operands[i].imm));
break;
case PPC_OP_MEM:
tmp = caml_alloc(1, 3);
tmp3 = caml_alloc(2, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->ppc.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->ppc.operands[i].mem.disp));
Store_field(tmp, 0, tmp3);
break;
case PPC_OP_CRX:
tmp = caml_alloc(1, 4);
tmp3 = caml_alloc(3, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->ppc.operands[i].crx.scale));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->ppc.operands[i].crx.reg));
Store_field(tmp3, 2, Val_int(insn[j-1].detail->ppc.operands[i].crx.cond));
Store_field(tmp, 0, tmp3);
break;
default: break;
}
Store_field(tmp2, 0, tmp);
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 3, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_SPARC:
arch_info = caml_alloc(1, 5);
op_info_val = caml_alloc(3, 0);
Store_field(op_info_val, 0, Val_int(insn[j-1].detail->sparc.cc));
Store_field(op_info_val, 1, Val_int(insn[j-1].detail->sparc.hint));
lcount = insn[j-1].detail->sparc.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(1, 0);
switch(insn[j-1].detail->sparc.operands[i].type) {
case SPARC_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->sparc.operands[i].reg));
break;
case SPARC_OP_IMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->sparc.operands[i].imm));
break;
case SPARC_OP_MEM:
tmp = caml_alloc(1, 3);
tmp3 = caml_alloc(3, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->sparc.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->sparc.operands[i].mem.index));
Store_field(tmp3, 2, Val_int(insn[j-1].detail->sparc.operands[i].mem.disp));
Store_field(tmp, 0, tmp3);
break;
default: break;
}
Store_field(tmp2, 0, tmp);
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 2, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_SYSZ:
arch_info = caml_alloc(1, 6);
op_info_val = caml_alloc(2, 0);
Store_field(op_info_val, 0, Val_int(insn[j-1].detail->sysz.cc));
lcount = insn[j-1].detail->sysz.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(1, 0);
switch(insn[j-1].detail->sysz.operands[i].type) {
case SYSZ_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->sysz.operands[i].reg));
break;
case SYSZ_OP_ACREG:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->sysz.operands[i].reg));
break;
case SYSZ_OP_IMM:
tmp = caml_alloc(1, 3);
Store_field(tmp, 0, Val_int(insn[j-1].detail->sysz.operands[i].imm));
break;
case SYSZ_OP_MEM:
tmp = caml_alloc(1, 4);
tmp3 = caml_alloc(4, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->sysz.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->sysz.operands[i].mem.index));
Store_field(tmp3, 2, caml_copy_int64(insn[j-1].detail->sysz.operands[i].mem.length));
Store_field(tmp3, 3, caml_copy_int64(insn[j-1].detail->sysz.operands[i].mem.disp));
Store_field(tmp, 0, tmp3);
break;
default: break;
}
Store_field(tmp2, 0, tmp);
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 1, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_XCORE:
arch_info = caml_alloc(1, 7);
op_info_val = caml_alloc(1, 0);
lcount = insn[j-1].detail->xcore.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(1, 0);
switch(insn[j-1].detail->xcore.operands[i].type) {
case XCORE_OP_REG:
tmp = caml_alloc(1, 1);
Store_field(tmp, 0, Val_int(insn[j-1].detail->xcore.operands[i].reg));
break;
case XCORE_OP_IMM:
tmp = caml_alloc(1, 2);
Store_field(tmp, 0, Val_int(insn[j-1].detail->xcore.operands[i].imm));
break;
case XCORE_OP_MEM:
tmp = caml_alloc(1, 3);
tmp3 = caml_alloc(4, 0);
Store_field(tmp3, 0, Val_int(insn[j-1].detail->xcore.operands[i].mem.base));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->xcore.operands[i].mem.index));
Store_field(tmp3, 2, caml_copy_int64(insn[j-1].detail->xcore.operands[i].mem.disp));
Store_field(tmp3, 3, caml_copy_int64(insn[j-1].detail->xcore.operands[i].mem.direct));
Store_field(tmp, 0, tmp3);
break;
default: break;
}
Store_field(tmp2, 0, tmp);
Store_field(array, i, tmp2);
}
} else // empty array
array = Atom(0);
Store_field(op_info_val, 0, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
case CS_ARCH_M680X:
arch_info = caml_alloc(1, 8);
op_info_val = caml_alloc(2, 0); // struct cs_m680x
Store_field(op_info_val, 0, Val_int(insn[j-1].detail->m680x.flags));
lcount = insn[j-1].detail->m680x.op_count;
if (lcount > 0) {
array = caml_alloc(lcount, 0);
for (i = 0; i < lcount; i++) {
tmp2 = caml_alloc(3, 0); // m680x_op
switch(insn[j-1].detail->m680x.operands[i].type) {
case M680X_OP_IMMEDIATE:
tmp = caml_alloc(1, 1); // imm
Store_field(tmp, 0, Val_int(insn[j-1].detail->m680x.operands[i].imm));
break;
case M680X_OP_REGISTER:
tmp = caml_alloc(1, 2); // reg
Store_field(tmp, 0, Val_int(insn[j-1].detail->m680x.operands[i].reg));
break;
case M680X_OP_INDEXED:
tmp = caml_alloc(1, 3);
tmp3 = caml_alloc(7, 0); // m680x_op_idx
Store_field(tmp3, 0, Val_int(insn[j-1].detail->m680x.operands[i].idx.base_reg));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->m680x.operands[i].idx.offset_reg));
Store_field(tmp3, 2, Val_int(insn[j-1].detail->m680x.operands[i].idx.offset));
Store_field(tmp3, 3, Val_int(insn[j-1].detail->m680x.operands[i].idx.offset_addr));
Store_field(tmp3, 4, Val_int(insn[j-1].detail->m680x.operands[i].idx.offset_bits));
Store_field(tmp3, 5, Val_int(insn[j-1].detail->m680x.operands[i].idx.inc_dec));
Store_field(tmp3, 6, Val_int(insn[j-1].detail->m680x.operands[i].idx.flags));
Store_field(tmp, 0, tmp3);
break;
case M680X_OP_RELATIVE:
tmp = caml_alloc(1, 4);
tmp3 = caml_alloc(2, 0); // m680x_op_rel
Store_field(tmp3, 0, Val_int(insn[j-1].detail->m680x.operands[i].rel.address));
Store_field(tmp3, 1, Val_int(insn[j-1].detail->m680x.operands[i].rel.offset));
Store_field(tmp, 0, tmp3);
break;
case M680X_OP_EXTENDED:
tmp = caml_alloc(1, 5);
tmp3 = caml_alloc(2, 0); // m680x_op_ext
Store_field(tmp3, 0, Val_int(insn[j-1].detail->m680x.operands[i].ext.address));
Store_field(tmp3, 1, Val_bool(insn[j-1].detail->m680x.operands[i].ext.indirect));
Store_field(tmp, 0, tmp3);
break;
case M680X_OP_DIRECT:
tmp = caml_alloc(1, 6); // direct_addr
Store_field(tmp, 0, Val_int(insn[j-1].detail->m680x.operands[i].direct_addr));
break;
case M680X_OP_CONSTANT:
tmp = caml_alloc(1, 7); // const_val
Store_field(tmp, 0, Val_int(insn[j-1].detail->m680x.operands[i].const_val));
break;
default: break;
}
Store_field(tmp2, 0, tmp); // add union
Store_field(tmp2, 1, Val_int(insn[j-1].detail->m680x.operands[i].size));
Store_field(tmp2, 2, Val_int(insn[j-1].detail->m680x.operands[i].access));
Store_field(array, i, tmp2); // add operand to operand array
}
} else // empty list
array = Atom(0);
Store_field(op_info_val, 1, array);
// finally, insert this into arch_info
Store_field(arch_info, 0, op_info_val);
Store_field(rec_insn, 9, arch_info);
break;
default: break;
}
}
Store_field(cons, 0, rec_insn); // head
Store_field(cons, 1, list); // tail
list = cons;
}
cs_free(insn, count);
}
// do not free the handle here
//cs_close(&handle);
CAMLreturn(list);
}
CAMLprim value ocaml_cs_disasm(value _arch, value _mode, value _code, value _addr, value _count)
{
CAMLparam5(_arch, _mode, _code, _addr, _count);
CAMLlocal1(head);
csh handle;
cs_arch arch;
cs_mode mode = 0;
const uint8_t *code;
uint64_t addr;
size_t count, code_len;
switch (Int_val(_arch)) {
case 0:
arch = CS_ARCH_ARM;
break;
case 1:
arch = CS_ARCH_ARM64;
break;
case 2:
arch = CS_ARCH_MIPS;
break;
case 3:
arch = CS_ARCH_X86;
break;
case 4:
arch = CS_ARCH_PPC;
break;
case 5:
arch = CS_ARCH_SPARC;
break;
case 6:
arch = CS_ARCH_SYSZ;
break;
case 7:
arch = CS_ARCH_XCORE;
break;
case 8:
arch = CS_ARCH_M68K;
break;
case 9:
arch = CS_ARCH_TMS320C64X;
break;
case 10:
arch = CS_ARCH_M680X;
break;
default:
caml_invalid_argument("Invalid arch");
return Val_emptylist;
}
while (_mode != Val_emptylist) {
head = Field(_mode, 0); /* accessing the head */
switch (Int_val(head)) {
case 0:
mode |= CS_MODE_LITTLE_ENDIAN;
break;
case 1:
mode |= CS_MODE_ARM;
break;
case 2:
mode |= CS_MODE_16;
break;
case 3:
mode |= CS_MODE_32;
break;
case 4:
mode |= CS_MODE_64;
break;
case 5:
mode |= CS_MODE_THUMB;
break;
case 6:
mode |= CS_MODE_MCLASS;
break;
case 7:
mode |= CS_MODE_V8;
break;
case 8:
mode |= CS_MODE_MICRO;
break;
case 9:
mode |= CS_MODE_MIPS3;
break;
case 10:
mode |= CS_MODE_MIPS32R6;
break;
case 11:
mode |= CS_MODE_MIPS2;
break;
case 12:
mode |= CS_MODE_V9;
break;
case 13:
mode |= CS_MODE_BIG_ENDIAN;
break;
case 14:
mode |= CS_MODE_MIPS32;
break;
case 15:
mode |= CS_MODE_MIPS64;
break;
case 16:
mode |= CS_MODE_QPX;
break;
case 17:
mode |= CS_MODE_M680X_6301;
break;
case 18:
mode |= CS_MODE_M680X_6309;
break;
case 19:
mode |= CS_MODE_M680X_6800;
break;
case 20:
mode |= CS_MODE_M680X_6801;
break;
case 21:
mode |= CS_MODE_M680X_6805;
break;
case 22:
mode |= CS_MODE_M680X_6808;
break;
case 23:
mode |= CS_MODE_M680X_6809;
break;
case 24:
mode |= CS_MODE_M680X_6811;
break;
case 25:
mode |= CS_MODE_M680X_CPU12;
break;
case 26:
mode |= CS_MODE_M680X_HCS08;
break;
default:
caml_invalid_argument("Invalid mode");
return Val_emptylist;
}
_mode = Field(_mode, 1); /* point to the tail for next loop */
}
cs_err ret = cs_open(arch, mode, &handle);
if (ret != CS_ERR_OK) {
return Val_emptylist;
}
code = (uint8_t *)String_val(_code);
code_len = caml_string_length(_code);
addr = Int64_val(_addr);
count = Int64_val(_count);
CAMLreturn(_cs_disasm(arch, handle, code, code_len, addr, count));
}
CAMLprim value ocaml_cs_disasm_internal(value _arch, value _handle, value _code, value _addr, value _count)
{
CAMLparam5(_arch, _handle, _code, _addr, _count);
csh handle;
cs_arch arch;
const uint8_t *code;
uint64_t addr, count, code_len;
handle = Int64_val(_handle);
arch = Int_val(_arch);
code = (uint8_t *)String_val(_code);
code_len = caml_string_length(_code);
addr = Int64_val(_addr);
count = Int64_val(_count);
CAMLreturn(_cs_disasm(arch, handle, code, code_len, addr, count));
}
CAMLprim value ocaml_open(value _arch, value _mode)
{
CAMLparam2(_arch, _mode);
CAMLlocal2(list, head);
csh handle;
cs_arch arch;
cs_mode mode = 0;
list = Val_emptylist;
switch (Int_val(_arch)) {
case 0:
arch = CS_ARCH_ARM;
break;
case 1:
arch = CS_ARCH_ARM64;
break;
case 2:
arch = CS_ARCH_MIPS;
break;
case 3:
arch = CS_ARCH_X86;
break;
case 4:
arch = CS_ARCH_PPC;
break;
case 5:
arch = CS_ARCH_SPARC;
break;
case 6:
arch = CS_ARCH_SYSZ;
break;
case 7:
arch = CS_ARCH_XCORE;
break;
case 8:
arch = CS_ARCH_M68K;
break;
case 9:
arch = CS_ARCH_TMS320C64X;
break;
case 10:
arch = CS_ARCH_M680X;
break;
default:
caml_invalid_argument("Invalid arch");
return Val_emptylist;
}
while (_mode != Val_emptylist) {
head = Field(_mode, 0); /* accessing the head */
switch (Int_val(head)) {
case 0:
mode |= CS_MODE_LITTLE_ENDIAN;
break;
case 1:
mode |= CS_MODE_ARM;
break;
case 2:
mode |= CS_MODE_16;
break;
case 3:
mode |= CS_MODE_32;
break;
case 4:
mode |= CS_MODE_64;
break;
case 5:
mode |= CS_MODE_THUMB;
break;
case 6:
mode |= CS_MODE_MCLASS;
break;
case 7:
mode |= CS_MODE_V8;
break;
case 8:
mode |= CS_MODE_MICRO;
break;
case 9:
mode |= CS_MODE_MIPS3;
break;
case 10:
mode |= CS_MODE_MIPS32R6;
break;
case 11:
mode |= CS_MODE_MIPS2;
break;
case 12:
mode |= CS_MODE_V9;
break;
case 13:
mode |= CS_MODE_BIG_ENDIAN;
break;
case 14:
mode |= CS_MODE_MIPS32;
break;
case 15:
mode |= CS_MODE_MIPS64;
break;
case 16:
mode |= CS_MODE_QPX;
break;
case 17:
mode |= CS_MODE_M680X_6301;
break;
case 18:
mode |= CS_MODE_M680X_6309;
break;
case 19:
mode |= CS_MODE_M680X_6800;
break;
case 20:
mode |= CS_MODE_M680X_6801;
break;
case 21:
mode |= CS_MODE_M680X_6805;
break;
case 22:
mode |= CS_MODE_M680X_6808;
break;
case 23:
mode |= CS_MODE_M680X_6809;
break;
case 24:
mode |= CS_MODE_M680X_6811;
break;
case 25:
mode |= CS_MODE_M680X_CPU12;
break;
case 26:
mode |= CS_MODE_M680X_HCS08;
break;
default:
caml_invalid_argument("Invalid mode");
return Val_emptylist;
}
_mode = Field(_mode, 1); /* point to the tail for next loop */
}
if (cs_open(arch, mode, &handle) != 0)
CAMLreturn(Val_int(0));
CAMLlocal1(result);
result = caml_alloc(1, 0);
Store_field(result, 0, caml_copy_int64(handle));
CAMLreturn(result);
}
CAMLprim value ocaml_option(value _handle, value _opt, value _value)
{
CAMLparam3(_handle, _opt, _value);
cs_opt_type opt;
int err;
switch (Int_val(_opt)) {
case 0:
opt = CS_OPT_SYNTAX;
break;
case 1:
opt = CS_OPT_DETAIL;
break;
case 2:
opt = CS_OPT_MODE;
break;
case 3:
opt = CS_OPT_MEM;
break;
case 4:
opt = CS_OPT_SKIPDATA;
break;
case 5:
opt = CS_OPT_SKIPDATA_SETUP;
break;
default:
caml_invalid_argument("Invalid option");
CAMLreturn(Val_int(CS_ERR_OPTION));
}
err = cs_option(Int64_val(_handle), opt, Int64_val(_value));
CAMLreturn(Val_int(err));
}
CAMLprim value ocaml_register_name(value _handle, value _reg)
{
const char *name = cs_reg_name(Int64_val(_handle), Int_val(_reg));
if (!name) {
caml_invalid_argument("invalid reg_id");
name = "invalid";
}
return caml_copy_string(name);
}
CAMLprim value ocaml_instruction_name(value _handle, value _insn)
{
const char *name = cs_insn_name(Int64_val(_handle), Int_val(_insn));
if (!name) {
caml_invalid_argument("invalid insn_id");
name = "invalid";
}
return caml_copy_string(name);
}
CAMLprim value ocaml_group_name(value _handle, value _insn)
{
const char *name = cs_group_name(Int64_val(_handle), Int_val(_insn));
if (!name) {
caml_invalid_argument("invalid insn_id");
name = "invalid";
}
return caml_copy_string(name);
}
CAMLprim value ocaml_version(void)
{
int version = cs_version(NULL, NULL);
return Val_int(version);
}
CAMLprim value ocaml_close(value _handle)
{
CAMLparam1(_handle);
csh h;
h = Int64_val(_handle);
CAMLreturn(Val_int(cs_close(&h)));
}