//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class extends MCInstrInfo to allow Hexagon specific MCInstr queries // //===----------------------------------------------------------------------===// #include "HexagonMCInstrInfo.h" #include "Hexagon.h" #include "HexagonBaseInfo.h" #include "HexagonMCChecker.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCSubtargetInfo.h" namespace llvm_ks { void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value, MCContext &Context) { MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context))); } void HexagonMCInstrInfo::addConstExtender(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI) { assert(HexagonMCInstrInfo::isBundle(MCB)); MCOperand const &exOp = MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI)); // Create the extender. MCInst *XMCI = new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp)); MCB.addOperand(MCOperand::createInst(XMCI)); } iterator_range HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) { assert(isBundle(MCI)); return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end()); } size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) { if (HexagonMCInstrInfo::isBundle(MCI)) return (MCI.size() - bundleInstructionsOffset); else return (1); } bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCContext &Context, MCInst &MCB, HexagonMCChecker *Check) { // Examine the packet and convert pairs of instructions to compound // instructions when possible. if (!HexagonDisableCompound) HexagonMCInstrInfo::tryCompound(MCII, Context, MCB); // Check the bundle for errors. bool CheckOk = Check ? Check->check() : true; if (!CheckOk) return false; HexagonMCShuffle(MCII, STI, MCB); // Examine the packet and convert pairs of instructions to duplex // instructions when possible. MCInst InstBundlePreDuplex = MCInst(MCB); if (!HexagonDisableDuplex) { SmallVector possibleDuplexes; possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB); HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes); } // Examines packet and pad the packet, if needed, when an // end-loop is in the bundle. HexagonMCInstrInfo::padEndloop(Context, MCB); // If compounding and duplexing didn't reduce the size below // 4 or less we have a packet that is too big. if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE) return false; HexagonMCShuffle(MCII, STI, MCB); return true; } void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII, MCContext &Context, MCInst &MCI) { assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) || HexagonMCInstrInfo::isExtended(MCII, MCI)); MCOperand &exOp = MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI)); // If the extended value is a constant, then use it for the extended and // for the extender instructions, masking off the lower 6 bits and // including the assumed bits. int64_t Value; if (exOp.getExpr()->evaluateAsAbsolute(Value)) { unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI); exOp.setExpr(MCConstantExpr::create((Value & 0x3f) << Shift, Context)); } } MCInst HexagonMCInstrInfo::createBundle() { MCInst Result; Result.setOpcode(Hexagon::BUNDLE); Result.addOperand(MCOperand::createImm(0)); return Result; } MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass, MCInst const &inst0, MCInst const &inst1) { assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf"); MCInst *duplexInst = new (Context) MCInst; duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass); MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0)); MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1)); duplexInst->addOperand(MCOperand::createInst(SubInst0)); duplexInst->addOperand(MCOperand::createInst(SubInst1)); return duplexInst; } MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII, MCInst const &Inst, MCOperand const &MO) { assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) || HexagonMCInstrInfo::isExtended(MCII, Inst)); MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst); MCInst XMI; XMI.setOpcode((Desc.isBranch() || Desc.isCall() || HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR) ? Hexagon::A4_ext_b : Hexagon::A4_ext); if (MO.isImm()) XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f))); else if (MO.isExpr()) XMI.addOperand(MCOperand::createExpr(MO.getExpr())); else llvm_unreachable("invalid extendable operand"); return XMI; } MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB, size_t Index) { assert(Index <= bundleSize(MCB)); if (Index == 0) return nullptr; MCInst const *Inst = MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst(); if (isImmext(*Inst)) return Inst; return nullptr; } void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context, MCInstrInfo const &MCII, MCInst &MCB, MCInst const &MCI, bool MustExtend) { if (isConstExtended(MCII, MCI) || MustExtend) addConstExtender(Context, MCII, MCB, MCI); } HexagonII::MemAccessSize HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask)); } unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); } // Return constant extended operand number. unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); } MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII, MCInst const &MCI) { return (MCII.get(MCI.getOpcode())); } unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask); } MCOperand const & HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII, MCInst const &MCI) { unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI); MCOperand const &MO = MCI.getOperand(O); assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) || HexagonMCInstrInfo::isExtended(MCII, MCI)) && (MO.isImm() || MO.isExpr())); return (MO); } unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask); } unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask); } // Return the max value that a constant extendable operand can have // without being extended. int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return ~(-1U << (bits - 1)); else return ~(-1U << bits); } // Return the min value that a constant extendable operand can have // without being extended. int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; unsigned isSigned = (F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask; unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask; if (isSigned) // if value is signed return -1U << (bits - 1); else return 0; } char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII, MCInst const &MCI) { return MCII.getName(MCI.getOpcode()); } unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask); } MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; unsigned const O = (F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask; MCOperand const &MCO = MCI.getOperand(O); assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || HexagonMCInstrInfo::hasNewValue(MCII, MCI)) && MCO.isReg()); return (MCO); } /// Return the new value or the newly produced value. unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2); } MCOperand const & HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII, MCInst const &MCI) { unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI); MCOperand const &MCO = MCI.getOperand(O); assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) || HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) && MCO.isReg()); return (MCO); } int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; HexagonII::SubTarget Target = static_cast( (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask); switch (Target) { default: return Hexagon::ArchV4; case HexagonII::HasV5SubT: return Hexagon::ArchV5; } } // Return the Hexagon ISA class for the insn. unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::TypePos) & HexagonII::TypeMask); } unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst const &MCI) { const InstrItinerary *II = STI.getSchedModel().InstrItineraries; int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); return ((II[SchedClass].FirstStage + HexagonStages)->getUnits()); } bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) { if (!HexagonMCInstrInfo::isBundle(MCI)) return false; for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) { auto MI = I.getInst(); if (isImmext(*MI)) return true; } return false; } bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) { return extenderForIndex(MCB, Index) != nullptr; } // Return whether the instruction is a legal new-value producer. bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask); } /// Return whether the insn produces a second value. bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2); } MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) { assert(isBundle(MCB)); assert(Index < HEXAGON_PACKET_SIZE); return *MCB.getOperand(bundleInstructionsOffset + Index).getInst(); } bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) { auto Result = Hexagon::BUNDLE == MCI.getOpcode(); assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm())); return Result; } // Return whether the insn is an actual insn. bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) { return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() && !HexagonMCInstrInfo::isPrefix(MCII, MCI) && HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP); } bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII, MCInst const &MCI) { return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND); } bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) { return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) || (Reg >= Hexagon::D8 && Reg <= Hexagon::D11)); } bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) { return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI); } // Return whether the instruction needs to be constant extended. // 1) Always return true if the instruction has 'isExtended' flag set. // // isExtendable: // 2) For immediate extended operands, return true only if the value is // out-of-range. // 3) For global address, always return true. bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII, MCInst const &MCI) { if (HexagonMCInstrInfo::isExtended(MCII, MCI)) return true; // Branch insns are handled as necessary by relaxation. if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) || (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND && HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) || (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV && HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch())) return false; // Otherwise loop instructions and other CR insts are handled by relaxation else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) && (MCI.getOpcode() != Hexagon::C4_addipc)) return false; else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI)) return false; MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI); // We could be using an instruction with an extendable immediate and shoehorn // a global address into it. If it is a global address it will be constant // extended. We do this for COMBINE. // We currently only handle isGlobal() because it is the only kind of // object we are going to end up with here for now. // In the future we probably should add isSymbol(), etc. assert(!MO.isImm()); int64_t Value; if (!MO.getExpr()->evaluateAsAbsolute(Value)) return true; int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI); int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI); return (MinValue > Value || Value > MaxValue); } bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask; } bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII, MCInst const &MCI) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask; } bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::FPPos) & HexagonII::FPMask); } bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) { auto Op = MCI.getOpcode(); return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c || Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext); } bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) { assert(isBundle(MCI)); int64_t Flags = MCI.getOperand(0).getImm(); return (Flags & innerLoopMask) != 0; } bool HexagonMCInstrInfo::isIntReg(unsigned Reg) { return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31); } bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) { return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) || (Reg >= Hexagon::R16 && Reg <= Hexagon::R23)); } // Return whether the insn is a new-value consumer. bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask); } // Return whether the operand can be constant extended. bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII, MCInst const &MCI, unsigned short OperandNum) { uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) == OperandNum; } bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) { assert(isBundle(MCI)); int64_t Flags = MCI.getOperand(0).getImm(); return (Flags & outerLoopMask) != 0; } bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask); } bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask); } /// Return whether the insn is newly predicated. bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask); } bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ( !((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask)); } bool HexagonMCInstrInfo::isPredReg(unsigned Reg) { return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0); } bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) { return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX); } bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask); } bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) { assert(isBundle(MCI)); auto Flags = MCI.getOperand(0).getImm(); return (Flags & memReorderDisabledMask) != 0; } bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) { assert(isBundle(MCI)); auto Flags = MCI.getOperand(0).getImm(); return (Flags & memStoreReorderEnabledMask) != 0; } bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask); } bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII, MCInst const &MCI) { const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags; return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask); } bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) { if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) && (getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST)) return true; return false; } int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) { auto Sentinal = static_cast(std::numeric_limits::max()) << 8; if (MCI.size() <= Index) return Sentinal; MCOperand const &MCO = MCI.getOperand(Index); if (!MCO.isExpr()) return Sentinal; int64_t Value; if (!MCO.getExpr()->evaluateAsAbsolute(Value)) return Sentinal; return Value; } void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) { MCInst Nop; Nop.setOpcode(Hexagon::A2_nop); assert(isBundle(MCB)); while ((HexagonMCInstrInfo::isInnerLoop(MCB) && (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) || ((HexagonMCInstrInfo::isOuterLoop(MCB) && (HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE)))) MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop))); } bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII, MCInst const &MCI) { if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) return false; unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass(); switch (SchedClass) { case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123: case Hexagon::Sched::ALU64_tc_2_SLOT23: case Hexagon::Sched::ALU64_tc_3x_SLOT23: case Hexagon::Sched::M_tc_2_SLOT23: case Hexagon::Sched::M_tc_3x_SLOT23: case Hexagon::Sched::S_2op_tc_2_SLOT23: case Hexagon::Sched::S_3op_tc_2_SLOT23: case Hexagon::Sched::S_3op_tc_3x_SLOT23: return true; } return false; } void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB, DuplexCandidate Candidate) { assert(Candidate.packetIndexI < MCB.size()); assert(Candidate.packetIndexJ < MCB.size()); assert(isBundle(MCB)); MCInst *Duplex = deriveDuplex(Context, Candidate.iClass, *MCB.getOperand(Candidate.packetIndexJ).getInst(), *MCB.getOperand(Candidate.packetIndexI).getInst()); assert(Duplex != nullptr); MCB.getOperand(Candidate.packetIndexI).setInst(Duplex); MCB.erase(MCB.begin() + Candidate.packetIndexJ); } void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) { assert(isBundle(MCI)); MCOperand &Operand = MCI.getOperand(0); Operand.setImm(Operand.getImm() | innerLoopMask); } void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) { assert(isBundle(MCI)); MCOperand &Operand = MCI.getOperand(0); Operand.setImm(Operand.getImm() | memReorderDisabledMask); assert(isMemReorderDisabled(MCI)); } void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) { assert(isBundle(MCI)); MCOperand &Operand = MCI.getOperand(0); Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask); assert(isMemStoreReorderEnabled(MCI)); } void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) { assert(isBundle(MCI)); MCOperand &Operand = MCI.getOperand(0); Operand.setImm(Operand.getImm() | outerLoopMask); } }