//===- AsmParser.cpp - Parser for Assembly Files --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This class implements the parser for assembly files. // //===----------------------------------------------------------------------===// #include "llvm/ADT/APFloat.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCDwarf.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInstrInfo.h" #include "llvm/MC/MCObjectFileInfo.h" #include "llvm/MC/MCParser/AsmCond.h" #include "llvm/MC/MCParser/AsmLexer.h" #include "llvm/MC/MCParser/MCAsmParser.h" #include "llvm/MC/MCParser/MCAsmParserUtils.h" #include "llvm/MC/MCParser/MCParsedAsmOperand.h" #include "llvm/MC/MCParser/MCTargetAsmParser.h" #include "llvm/MC/MCRegisterInfo.h" #include "llvm/MC/MCSectionMachO.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/MC/MCValue.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/MemoryBuffer.h" #include "llvm/Support/SourceMgr.h" #include "llvm/Support/raw_ostream.h" #include #include #include #include #include #include //#include using namespace llvm_ks; MCAsmParserSemaCallback::~MCAsmParserSemaCallback() {} namespace { /// \brief Helper types for tracking macro definitions. typedef std::vector MCAsmMacroArgument; typedef std::vector MCAsmMacroArguments; struct MCAsmMacroParameter { StringRef Name; MCAsmMacroArgument Value; bool Required; bool Vararg; MCAsmMacroParameter() : Required(false), Vararg(false) {} }; typedef std::vector MCAsmMacroParameters; struct MCAsmMacro { StringRef Name; StringRef Body; MCAsmMacroParameters Parameters; public: MCAsmMacro(StringRef N, StringRef B, MCAsmMacroParameters P) : Name(N), Body(B), Parameters(std::move(P)) {} }; /// \brief Helper class for storing information about an active macro /// instantiation. struct MacroInstantiation { /// The location of the instantiation. SMLoc InstantiationLoc; /// The buffer where parsing should resume upon instantiation completion. int ExitBuffer; /// The location where parsing should resume upon instantiation completion. SMLoc ExitLoc; /// The depth of TheCondStack at the start of the instantiation. size_t CondStackDepth; public: MacroInstantiation(SMLoc IL, int EB, SMLoc EL, size_t CondStackDepth); }; struct ParseStatementInfo { // error code for Keystone unsigned int KsError; /// \brief The parsed operands from the last parsed statement. SmallVector, 8> ParsedOperands; /// \brief The opcode from the last parsed instruction. unsigned Opcode; /// \brief Was there an error parsing the inline assembly? bool ParseError; SmallVectorImpl *AsmRewrites; ParseStatementInfo() : KsError(0), Opcode(~0U), ParseError(false), AsmRewrites(nullptr) {} ParseStatementInfo(SmallVectorImpl *rewrites) : Opcode(~0), ParseError(false), AsmRewrites(rewrites) {} }; /// \brief The concrete assembly parser instance. class AsmParser : public MCAsmParser { AsmParser(const AsmParser &) = delete; void operator=(const AsmParser &) = delete; private: AsmLexer Lexer; MCContext &Ctx; MCStreamer &Out; const MCAsmInfo &MAI; SourceMgr &SrcMgr; SourceMgr::DiagHandlerTy SavedDiagHandler; void *SavedDiagContext; std::unique_ptr PlatformParser; /// This is the current buffer index we're lexing from as managed by the /// SourceMgr object. unsigned CurBuffer; AsmCond TheCondState; std::vector TheCondStack; /// \brief maps directive names to handler methods in parser /// extensions. Extensions register themselves in this map by calling /// addDirectiveHandler. StringMap ExtensionDirectiveMap; /// \brief Map of currently defined macros. StringMap MacroMap; /// \brief Stack of active macro instantiations. std::vector ActiveMacros; /// \brief List of bodies of anonymous macros. std::deque MacroLikeBodies; /// Boolean tracking whether macro substitution is enabled. unsigned MacrosEnabledFlag : 1; /// \brief Keeps track of how many .macro's have been instantiated. unsigned NumOfMacroInstantiations; /// Flag tracking whether any errors have been encountered. bool HadError; /// The values from the last parsed cpp hash file line comment if any. StringRef CppHashFilename; int64_t CppHashLineNumber; SMLoc CppHashLoc; unsigned CppHashBuf; /// When generating dwarf for assembly source files we need to calculate the /// logical line number based on the last parsed cpp hash file line comment /// and current line. Since this is slow and messes up the SourceMgr's /// cache we save the last info we queried with SrcMgr.FindLineNumber(). SMLoc LastQueryIDLoc; /// AssemblerDialect. ~OU means unset value and use value provided by MAI. unsigned AssemblerDialect; /// \brief is Darwin compatibility enabled? bool IsDarwin; /// \brief Are we parsing ms-style inline assembly? bool ParsingInlineAsm; /// \brief Should we use PC relative offsets by default? bool NasmDefaultRel; // Keystone syntax support int KsSyntax; public: AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI); ~AsmParser() override; size_t Run(bool NoInitialTextSection, uint64_t Address, bool NoFinalize = false) override; void addDirectiveHandler(StringRef Directive, ExtensionDirectiveHandler Handler) override { ExtensionDirectiveMap[Directive] = Handler; } void addAliasForDirective(StringRef Directive, StringRef Alias) override { DirectiveKindMap[Directive] = DirectiveKindMap[Alias]; } public: /// @name MCAsmParser Interface /// { SourceMgr &getSourceManager() override { return SrcMgr; } MCAsmLexer &getLexer() override { return Lexer; } MCContext &getContext() override { return Ctx; } MCStreamer &getStreamer() override { return Out; } unsigned getAssemblerDialect() override { if (AssemblerDialect == ~0U) return MAI.getAssemblerDialect(); else return AssemblerDialect; } void setAssemblerDialect(unsigned i) override { AssemblerDialect = i; } void Note(SMLoc L, const Twine &Msg, ArrayRef Ranges = None) override; bool Warning(SMLoc L, const Twine &Msg, ArrayRef Ranges = None) override; bool Error(SMLoc L, const Twine &Msg, ArrayRef Ranges = None) override; const AsmToken &Lex() override; void setParsingInlineAsm(bool V) override { ParsingInlineAsm = V; } bool isParsingInlineAsm() override { return ParsingInlineAsm; } void setNasmDefaultRel(bool V) override { NasmDefaultRel = V; } bool isNasmDefaultRel() override { return NasmDefaultRel; } bool parseMSInlineAsm(void *AsmLoc, std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, SmallVectorImpl > &OpDecls, SmallVectorImpl &Constraints, SmallVectorImpl &Clobbers, const MCInstrInfo *MII, MCAsmParserSemaCallback &SI, uint64_t &Address) override; bool parseExpression(const MCExpr *&Res); bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override; bool parsePrimaryExprAux(const MCExpr *&Res, SMLoc &EndLoc, unsigned int depth); bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override; bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override; bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, SMLoc &EndLoc) override; bool parseAbsoluteExpression(int64_t &Res) override; /// \brief Parse an identifier or string (as a quoted identifier) /// and set \p Res to the identifier contents. bool parseIdentifier(StringRef &Res) override; void eatToEndOfStatement() override; void checkForValidSection() override; void initializeDirectiveKindMap(int syntax) override; // Keystone NASM support /// } private: bool parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI, uint64_t &Address); void eatToEndOfLine(); bool parseCppHashLineFilenameComment(SMLoc L); void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, ArrayRef Parameters); bool expandMacro(raw_svector_ostream &OS, StringRef Body, ArrayRef Parameters, ArrayRef A, bool EnableAtPseudoVariable, SMLoc L); /// \brief Are macros enabled in the parser? bool areMacrosEnabled() {return MacrosEnabledFlag;} /// \brief Control a flag in the parser that enables or disables macros. void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;} /// \brief Lookup a previously defined macro. /// \param Name Macro name. /// \returns Pointer to macro. NULL if no such macro was defined. const MCAsmMacro* lookupMacro(StringRef Name); /// \brief Define a new macro with the given name and information. void defineMacro(StringRef Name, MCAsmMacro Macro); /// \brief Undefine a macro. If no such macro was defined, it's a no-op. void undefineMacro(StringRef Name); /// \brief Are we inside a macro instantiation? bool isInsideMacroInstantiation() {return !ActiveMacros.empty();} /// \brief Handle entry to macro instantiation. /// /// \param M The macro. /// \param NameLoc Instantiation location. bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc); /// \brief Handle exit from macro instantiation. void handleMacroExit(); /// \brief Extract AsmTokens for a macro argument. bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg); /// \brief Parse all macro arguments for a given macro. bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A); void printMacroInstantiations(); void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg, ArrayRef Ranges = None) const { SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges); } static void DiagHandler(const SMDiagnostic &Diag, void *Context); /// \brief Enter the specified file. This returns true on failure. bool enterIncludeFile(const std::string &Filename); /// \brief Process the specified file for the .incbin directive. /// This returns true on failure. bool processIncbinFile(const std::string &Filename); /// \brief Reset the current lexer position to that given by \p Loc. The /// current token is not set; clients should ensure Lex() is called /// subsequently. /// /// \param InBuffer If not 0, should be the known buffer id that contains the /// location. void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0); /// \brief Parse up to the end of statement and a return the contents from the /// current token until the end of the statement; the current token on exit /// will be either the EndOfStatement or EOF. StringRef parseStringToEndOfStatement() override; /// \brief Parse until the end of a statement or a comma is encountered, /// return the contents from the current token up to the end or comma. StringRef parseStringToComma(); bool parseAssignment(StringRef Name, bool allow_redef, bool NoDeadStrip = false); unsigned getBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind); bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc); bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc); bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc); bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc); // Generic (target and platform independent) directive parsing. enum DirectiveKind { DK_NO_DIRECTIVE, // Placeholder DK_SET, DK_EQU, DK_EQUIV, DK_ASCII, DK_ASCIZ, DK_STRING, DK_BYTE, DK_SHORT, DK_RELOC, DK_VALUE, DK_2BYTE, DK_LONG, DK_INT, DK_4BYTE, DK_QUAD, DK_8BYTE, DK_OCTA, DK_SINGLE, DK_FLOAT, DK_DOUBLE, DK_ALIGN, DK_ALIGN32, DK_BALIGN, DK_BALIGNW, DK_BALIGNL, DK_P2ALIGN, DK_P2ALIGNW, DK_P2ALIGNL, DK_ORG, DK_FILL, DK_ENDR, DK_BUNDLE_ALIGN_MODE, DK_BUNDLE_LOCK, DK_BUNDLE_UNLOCK, DK_ZERO, DK_EXTERN, DK_GLOBL, DK_GLOBAL, DK_LAZY_REFERENCE, DK_NO_DEAD_STRIP, DK_SYMBOL_RESOLVER, DK_PRIVATE_EXTERN, DK_REFERENCE, DK_WEAK_DEFINITION, DK_WEAK_REFERENCE, DK_WEAK_DEF_CAN_BE_HIDDEN, DK_COMM, DK_COMMON, DK_LCOMM, DK_ABORT, DK_INCLUDE, DK_INCBIN, DK_CODE16, DK_CODE16GCC, DK_REPT, DK_IRP, DK_IRPC, DK_IF, DK_IFEQ, DK_IFGE, DK_IFGT, DK_IFLE, DK_IFLT, DK_IFNE, DK_IFB, DK_IFNB, DK_IFC, DK_IFEQS, DK_IFNC, DK_IFNES, DK_IFDEF, DK_IFNDEF, DK_IFNOTDEF, DK_ELSEIF, DK_ELSE, DK_ENDIF, DK_SPACE, DK_SKIP, DK_FILE, DK_LINE, DK_LOC, DK_STABS, DK_CV_FILE, DK_CV_LOC, DK_CV_LINETABLE, DK_CV_INLINE_LINETABLE, DK_CV_STRINGTABLE, DK_CV_FILECHECKSUMS, DK_CFI_SECTIONS, DK_CFI_STARTPROC, DK_CFI_ENDPROC, DK_CFI_DEF_CFA, DK_CFI_DEF_CFA_OFFSET, DK_CFI_ADJUST_CFA_OFFSET, DK_CFI_DEF_CFA_REGISTER, DK_CFI_OFFSET, DK_CFI_REL_OFFSET, DK_CFI_PERSONALITY, DK_CFI_LSDA, DK_CFI_REMEMBER_STATE, DK_CFI_RESTORE_STATE, DK_CFI_SAME_VALUE, DK_CFI_RESTORE, DK_CFI_ESCAPE, DK_CFI_SIGNAL_FRAME, DK_CFI_UNDEFINED, DK_CFI_REGISTER, DK_CFI_WINDOW_SAVE, DK_MACROS_ON, DK_MACROS_OFF, DK_MACRO, DK_EXITM, DK_ENDM, DK_ENDMACRO, DK_PURGEM, DK_SLEB128, DK_ULEB128, DK_ERR, DK_ERROR, DK_WARNING, DK_NASM_BITS, // NASM directive 'bits' DK_NASM_DEFAULT, // NASM directive 'default' DK_NASM_USE32, // NASM directive 'use32' DK_END }; /// \brief Maps directive name --> DirectiveKind enum, for /// directives parsed by this class. StringMap DirectiveKindMap; // ".ascii", ".asciz", ".string" bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated); bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc" bool parseDirectiveValue(unsigned Size, unsigned int &KsError); // ".byte", ".long", ... bool parseDirectiveOctaValue(unsigned int &KsError); // ".octa" bool parseDirectiveRealValue(const fltSemantics &); // ".single", ... bool parseDirectiveFill(); // ".fill" bool parseDirectiveZero(); // ".zero" // ".set", ".equ", ".equiv" bool parseDirectiveSet(StringRef IDVal, bool allow_redef); bool parseDirectiveOrg(); // ".org" // ".align{,32}", ".p2align{,w,l}" bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize); // ".file", ".line", ".loc", ".stabs" bool parseDirectiveFile(SMLoc DirectiveLoc); bool parseDirectiveLine(); bool parseDirectiveLoc(); bool parseDirectiveStabs(); // ".cv_file", ".cv_loc", ".cv_linetable", "cv_inline_linetable" bool parseDirectiveCVFile(); bool parseDirectiveCVLoc(); bool parseDirectiveCVLinetable(); bool parseDirectiveCVInlineLinetable(); bool parseDirectiveCVStringTable(); bool parseDirectiveCVFileChecksums(); // .cfi directives bool parseDirectiveCFIRegister(SMLoc DirectiveLoc); bool parseDirectiveCFIWindowSave(); bool parseDirectiveCFISections(); bool parseDirectiveCFIStartProc(); bool parseDirectiveCFIEndProc(); bool parseDirectiveCFIDefCfaOffset(); bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc); bool parseDirectiveCFIAdjustCfaOffset(); bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc); bool parseDirectiveCFIOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc); bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality); bool parseDirectiveCFIRememberState(); bool parseDirectiveCFIRestoreState(); bool parseDirectiveCFISameValue(SMLoc DirectiveLoc); bool parseDirectiveCFIRestore(SMLoc DirectiveLoc); bool parseDirectiveCFIEscape(); bool parseDirectiveCFISignalFrame(); bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc); // macro directives bool parseDirectivePurgeMacro(SMLoc DirectiveLoc); bool parseDirectiveExitMacro(StringRef Directive); bool parseDirectiveEndMacro(StringRef Directive); bool parseDirectiveMacro(SMLoc DirectiveLoc); bool parseDirectiveMacrosOnOff(StringRef Directive); // ".bundle_align_mode" bool parseDirectiveBundleAlignMode(); // ".bundle_lock" bool parseDirectiveBundleLock(); // ".bundle_unlock" bool parseDirectiveBundleUnlock(); // ".space", ".skip" bool parseDirectiveSpace(StringRef IDVal); // .sleb128 (Signed=true) and .uleb128 (Signed=false) bool parseDirectiveLEB128(bool Signed); /// \brief Parse a directive like ".globl" which /// accepts a single symbol (which should be a label or an external). bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr); bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm" bool parseDirectiveAbort(); // ".abort" bool parseDirectiveInclude(); // ".include" bool parseDirectiveIncbin(); // ".incbin" // ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne" bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind); // ".ifb" or ".ifnb", depending on ExpectBlank. bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank); // ".ifc" or ".ifnc", depending on ExpectEqual. bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual); // ".ifeqs" or ".ifnes", depending on ExpectEqual. bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual); // ".ifdef" or ".ifndef", depending on expect_defined bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined); bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif" bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else" bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif bool parseEscapedString(std::string &Data) override; const MCExpr *applyModifierToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant); // Macro-like directives MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc); void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, raw_svector_ostream &OS); bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive); bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp" bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc" bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr" // "_emit" or "__emit" bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info, size_t Len); // "align" bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info); // "end" bool parseDirectiveEnd(SMLoc DirectiveLoc); // ".err" or ".error" bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage); // ".warning" bool parseDirectiveWarning(SMLoc DirectiveLoc); // "bits" (Nasm) bool parseNasmDirectiveBits(); // "use32" (Nasm) bool parseNasmDirectiveUse32(); // "default" (Nasm) bool parseNasmDirectiveDefault(); bool isNasmDirective(StringRef str); // is this str a NASM directive? bool isDirective(StringRef str); // is this str a directive? }; } namespace llvm_ks { extern MCAsmParserExtension *createDarwinAsmParser(); extern MCAsmParserExtension *createELFAsmParser(); extern MCAsmParserExtension *createCOFFAsmParser(); } enum { DEFAULT_ADDRSPACE = 0 }; AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out, const MCAsmInfo &MAI) : Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM), PlatformParser(nullptr), CurBuffer(SM.getMainFileID()), MacrosEnabledFlag(true), HadError(false), CppHashLineNumber(0), AssemblerDialect(~0U), IsDarwin(false), ParsingInlineAsm(false), NasmDefaultRel(false) { // Save the old handler. SavedDiagHandler = SrcMgr.getDiagHandler(); SavedDiagContext = SrcMgr.getDiagContext(); // Set our own handler which calls the saved handler. SrcMgr.setDiagHandler(DiagHandler, this); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); // Initialize the platform / file format parser. PlatformParser.reset(createDarwinAsmParser()); IsDarwin = true; #if 0 switch (Ctx.getObjectFileInfo()->getObjectFileType()) { case MCObjectFileInfo::IsCOFF: PlatformParser.reset(createCOFFAsmParser()); break; case MCObjectFileInfo::IsMachO: PlatformParser.reset(createDarwinAsmParser()); IsDarwin = true; break; case MCObjectFileInfo::IsELF: PlatformParser.reset(createELFAsmParser()); break; } #endif PlatformParser->Initialize(*this); initializeDirectiveKindMap(0); NumOfMacroInstantiations = 0; } AsmParser::~AsmParser() { assert((HadError || ActiveMacros.empty()) && "Unexpected active macro instantiation!"); // Restore the saved diagnostics handler and context for use during // finalization SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext); } void AsmParser::printMacroInstantiations() { // Print the active macro instantiation stack. for (std::vector::const_reverse_iterator it = ActiveMacros.rbegin(), ie = ActiveMacros.rend(); it != ie; ++it) printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note, "while in macro instantiation"); } void AsmParser::Note(SMLoc L, const Twine &Msg, ArrayRef Ranges) { printMessage(L, SourceMgr::DK_Note, Msg, Ranges); printMacroInstantiations(); } bool AsmParser::Warning(SMLoc L, const Twine &Msg, ArrayRef Ranges) { if(getTargetParser().getTargetOptions().MCNoWarn) return false; if (getTargetParser().getTargetOptions().MCFatalWarnings) return Error(L, Msg, Ranges); printMessage(L, SourceMgr::DK_Warning, Msg, Ranges); printMacroInstantiations(); return false; } bool AsmParser::Error(SMLoc L, const Twine &Msg, ArrayRef Ranges) { HadError = true; printMessage(L, SourceMgr::DK_Error, Msg, Ranges); printMacroInstantiations(); return true; } bool AsmParser::enterIncludeFile(const std::string &Filename) { std::string IncludedFile; unsigned NewBuf = SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); if (!NewBuf) return true; CurBuffer = NewBuf; Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); return false; } /// Process the specified .incbin file by searching for it in the include paths /// then just emitting the byte contents of the file to the streamer. This /// returns true on failure. bool AsmParser::processIncbinFile(const std::string &Filename) { std::string IncludedFile; unsigned NewBuf = SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile); if (!NewBuf) return true; // Pick up the bytes from the file and emit them. getStreamer().EmitBytes(SrcMgr.getMemoryBuffer(NewBuf)->getBuffer()); return false; } void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) { CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(), Loc.getPointer()); } const AsmToken &AsmParser::Lex() { const AsmToken *tok = &Lexer.Lex(); if (tok->is(AsmToken::Eof)) { // If this is the end of an included file, pop the parent file off the // include stack. SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer); if (ParentIncludeLoc != SMLoc()) { jumpToLoc(ParentIncludeLoc); tok = &Lexer.Lex(); // qq } } //if (tok->is(AsmToken::Error)) // Error(Lexer.getErrLoc(), Lexer.getErr()); return *tok; } size_t AsmParser::Run(bool NoInitialTextSection, uint64_t Address, bool NoFinalize) { // count number of statement size_t count = 0; // Create the initial section, if requested. if (!NoInitialTextSection) Out.InitSections(false); // Prime the lexer. Lex(); if (!Lexer.isNot(AsmToken::Error)) { KsError = KS_ERR_ASM_TOKEN_INVALID; return 0; } HadError = false; AsmCond StartingCondState = TheCondState; // If we are generating dwarf for assembly source files save the initial text // section and generate a .file directive. if (getContext().getGenDwarfForAssembly()) { MCSection *Sec = getStreamer().getCurrentSection().first; if (!Sec->getBeginSymbol()) { MCSymbol *SectionStartSym = getContext().createTempSymbol(); getStreamer().EmitLabel(SectionStartSym); Sec->setBeginSymbol(SectionStartSym); } bool InsertResult = getContext().addGenDwarfSection(Sec); assert(InsertResult && ".text section should not have debug info yet"); (void)InsertResult; getContext().setGenDwarfFileNumber(getStreamer().EmitDwarfFileDirective( 0, StringRef(), getContext().getMainFileName())); } // While we have input, parse each statement. while (Lexer.isNot(AsmToken::Eof)) { ParseStatementInfo Info; if (!parseStatement(Info, nullptr, Address)) { count++; continue; } //printf(">> 222 error = %u\n", Info.KsError); if (!KsError) { KsError = Info.KsError; return 0; } // We had an error, validate that one was emitted and recover by skipping to // the next line. // assert(HadError && "Parse statement returned an error, but none emitted!"); //eatToEndOfStatement(); } if (TheCondState.TheCond != StartingCondState.TheCond || TheCondState.Ignore != StartingCondState.Ignore) { //return TokError("unmatched .ifs or .elses"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return 0; } // Check to see that all assembler local symbols were actually defined. // Targets that don't do subsections via symbols may not want this, though, // so conservatively exclude them. Only do this if we're finalizing, though, // as otherwise we won't necessarilly have seen everything yet. if (!NoFinalize && MAI.hasSubsectionsViaSymbols()) { for (const auto &TableEntry : getContext().getSymbols()) { MCSymbol *Sym = TableEntry.getValue(); // Variable symbols may not be marked as defined, so check those // explicitly. If we know it's a variable, we have a definition for // the purposes of this check. if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined()) { // FIXME: We would really like to refer back to where the symbol was // first referenced for a source location. We need to add something // to track that. Currently, we just point to the end of the file. //return Error(getLexer().getLoc(), "assembler local symbol '" + // Sym->getName() + "' not defined"); // qq: set KsError, then return 0 KsError = KS_ERR_ASM_SYMBOL_MISSING; return 0; } } } // Finalize the output stream if there are no errors and if the client wants // us to. if (!KsError) { if (!HadError && !NoFinalize) KsError = Out.Finish(); } else Out.Finish(); //return HadError || getContext().hadError(); return count; } void AsmParser::checkForValidSection() { #if 0 if (!ParsingInlineAsm && !getStreamer().getCurrentSection().first) { TokError("expected section directive before assembly directive"); Out.InitSections(false); } #endif } /// \brief Throw away the rest of the line for testing purposes. void AsmParser::eatToEndOfStatement() { while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) Lex(); // Eat EOL. if (Lexer.is(AsmToken::EndOfStatement)) Lex(); } StringRef AsmParser::parseStringToEndOfStatement() { const char *Start = getTok().getLoc().getPointer(); while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof)) Lex(); const char *End = getTok().getLoc().getPointer(); return StringRef(Start, End - Start); } StringRef AsmParser::parseStringToComma() { const char *Start = getTok().getLoc().getPointer(); while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof)) Lex(); const char *End = getTok().getLoc().getPointer(); return StringRef(Start, End - Start); } /// \brief Parse a paren expression and return it. /// NOTE: This assumes the leading '(' has already been consumed. /// /// parenexpr ::= expr) /// bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) { if (parseExpression(Res)) return true; if (Lexer.isNot(AsmToken::RParen)) //return TokError("expected ')' in parentheses expression"); return true; EndLoc = Lexer.getTok().getEndLoc(); Lex(); return false; } /// \brief Parse a bracket expression and return it. /// NOTE: This assumes the leading '[' has already been consumed. /// /// bracketexpr ::= expr] /// bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) { if (parseExpression(Res)) return true; if (Lexer.isNot(AsmToken::RBrac)) { //return TokError("expected ']' in brackets expression"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } EndLoc = Lexer.getTok().getEndLoc(); Lex(); return false; } bool AsmParser::parsePrimaryExprAux(const MCExpr *&Res, SMLoc &EndLoc, unsigned int depth) { if (depth > 0x100) { KsError = KS_ERR_ASM_EXPR_TOKEN; return true; } SMLoc FirstTokenLoc = getLexer().getLoc(); AsmToken::TokenKind FirstTokenKind = Lexer.getKind(); switch (FirstTokenKind) { default: //return TokError("unknown token in expression"); KsError = KS_ERR_ASM_EXPR_TOKEN; return true; // If we have an error assume that we've already handled it. case AsmToken::Error: return true; case AsmToken::Exclaim: Lex(); // Eat the operator. if (parsePrimaryExprAux(Res, EndLoc, depth+1)) return true; Res = MCUnaryExpr::createLNot(Res, getContext()); return false; case AsmToken::Dollar: case AsmToken::At: case AsmToken::String: case AsmToken::Identifier: { StringRef Identifier; if (parseIdentifier(Identifier)) { if (FirstTokenKind == AsmToken::Dollar) { if (Lexer.getMAI().getDollarIsPC()) { // This is a '$' reference, which references the current PC. Emit a // temporary label to the streamer and refer to it. MCSymbol *Sym = Ctx.createTempSymbol(); Out.EmitLabel(Sym); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); EndLoc = FirstTokenLoc; return false; } //return Error(FirstTokenLoc, "invalid token in expression"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } } // Parse symbol variant std::pair Split; if (!MAI.useParensForSymbolVariant()) { if (FirstTokenKind == AsmToken::String) { if (Lexer.is(AsmToken::At)) { Lexer.Lex(); // eat @ //SMLoc AtLoc = getLexer().getLoc(); StringRef VName; if (parseIdentifier(VName)) { //return Error(AtLoc, "expected symbol variant after '@'"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } Split = std::make_pair(Identifier, VName); } } else { Split = Identifier.split('@'); } } else if (Lexer.is(AsmToken::LParen)) { Lexer.Lex(); // eat ( StringRef VName; parseIdentifier(VName); if (Lexer.isNot(AsmToken::RParen)) { //return Error(Lexer.getTok().getLoc(), // "unexpected token in variant, expected ')'"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } Lexer.Lex(); // eat ) Split = std::make_pair(Identifier, VName); } EndLoc = SMLoc::getFromPointer(Identifier.end()); // This is a symbol reference. StringRef SymbolName = Identifier; MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; // Lookup the symbol variant if used. if (Split.second.size()) { Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); if (Variant != MCSymbolRefExpr::VK_Invalid) { SymbolName = Split.first; } else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) { Variant = MCSymbolRefExpr::VK_None; } else { //return Error(SMLoc::getFromPointer(Split.second.begin()), // "invalid variant '" + Split.second + "'"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } } if (SymbolName.empty()) { return true; } MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName); // If this is an absolute variable reference, substitute it now to preserve // semantics in the face of reassignment. if (Sym->isVariable() && isa(Sym->getVariableValue(/*SetUsed*/ false))) { if (Variant) { //return Error(EndLoc, "unexpected modifier on variable reference"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } Res = Sym->getVariableValue(/*SetUsed*/ false); return false; } // Otherwise create a symbol ref. Res = MCSymbolRefExpr::create(Sym, Variant, getContext()); return false; } case AsmToken::BigNum: // return TokError("literal value out of range for directive"); KsError = KS_ERR_ASM_DIRECTIVE_VALUE_RANGE; return true; case AsmToken::Integer: { //SMLoc Loc = getTok().getLoc(); bool valid; int64_t IntVal = getTok().getIntVal(valid); if (!valid) { return true; } Res = MCConstantExpr::create(IntVal, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat token. // Look for 'b' or 'f' following an Integer as a directional label if (Lexer.getKind() == AsmToken::Identifier) { StringRef IDVal = getTok().getString(); // Lookup the symbol variant if used. std::pair Split = IDVal.split('@'); MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None; if (Split.first.size() != IDVal.size()) { Variant = MCSymbolRefExpr::getVariantKindForName(Split.second); if (Variant == MCSymbolRefExpr::VK_Invalid) { // return TokError("invalid variant '" + Split.second + "'"); KsError = KS_ERR_ASM_VARIANT_INVALID; return true; } IDVal = Split.first; } if (IDVal == "f" || IDVal == "b") { bool valid; MCSymbol *Sym = Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b", valid); if (!valid) return true; Res = MCSymbolRefExpr::create(Sym, Variant, getContext()); if (IDVal == "b" && Sym->isUndefined()) { //return Error(Loc, "invalid reference to undefined symbol"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat identifier. } } return false; } case AsmToken::Real: { APFloat RealVal(APFloat::IEEEdouble, getTok().getString()); uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue(); Res = MCConstantExpr::create(IntVal, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat token. return false; } case AsmToken::Dot: { // This is a '.' reference, which references the current PC. Emit a // temporary label to the streamer and refer to it. MCSymbol *Sym = Ctx.createTempSymbol(); Out.EmitLabel(Sym); Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext()); EndLoc = Lexer.getTok().getEndLoc(); Lex(); // Eat identifier. return false; } case AsmToken::LParen: Lex(); // Eat the '('. return parseParenExpr(Res, EndLoc); case AsmToken::LBrac: if (!PlatformParser->HasBracketExpressions()) { // return TokError("brackets expression not supported on this target"); KsError = KS_ERR_ASM_EXPR_BRACKET; return true; } Lex(); // Eat the '['. return parseBracketExpr(Res, EndLoc); case AsmToken::Minus: Lex(); // Eat the operator. if (parsePrimaryExprAux(Res, EndLoc, depth+1)) return true; Res = MCUnaryExpr::createMinus(Res, getContext()); return false; case AsmToken::Plus: Lex(); // Eat the operator. if (parsePrimaryExprAux(Res, EndLoc, depth+1)) return true; Res = MCUnaryExpr::createPlus(Res, getContext()); return false; case AsmToken::Tilde: Lex(); // Eat the operator. if (parsePrimaryExprAux(Res, EndLoc, depth+1)) return true; Res = MCUnaryExpr::createNot(Res, getContext()); return false; } } /// \brief Parse a primary expression and return it. /// primaryexpr ::= (parenexpr /// primaryexpr ::= symbol /// primaryexpr ::= number /// primaryexpr ::= '.' /// primaryexpr ::= ~,+,- primaryexpr bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) { return parsePrimaryExprAux(Res, EndLoc, 0); } bool AsmParser::parseExpression(const MCExpr *&Res) { SMLoc EndLoc; return parseExpression(Res, EndLoc); } const MCExpr * AsmParser::applyModifierToExpr(const MCExpr *E, MCSymbolRefExpr::VariantKind Variant) { // Ask the target implementation about this expression first. const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx); if (NewE) return NewE; // Recurse over the given expression, rebuilding it to apply the given variant // if there is exactly one symbol. switch (E->getKind()) { case MCExpr::Target: case MCExpr::Constant: return nullptr; case MCExpr::SymbolRef: { const MCSymbolRefExpr *SRE = cast(E); if (SRE->getKind() != MCSymbolRefExpr::VK_None) { //TokError("invalid variant on expression '" + getTok().getIdentifier() + // "' (already modified)"); return E; } return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext()); } case MCExpr::Unary: { const MCUnaryExpr *UE = cast(E); const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant); if (!Sub) return nullptr; return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext()); } case MCExpr::Binary: { const MCBinaryExpr *BE = cast(E); const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant); const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant); if (!LHS && !RHS) return nullptr; if (!LHS) LHS = BE->getLHS(); if (!RHS) RHS = BE->getRHS(); return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext()); } } llvm_unreachable("Invalid expression kind!"); } /// \brief Parse an expression and return it. /// /// expr ::= expr &&,|| expr -> lowest. /// expr ::= expr |,^,&,! expr /// expr ::= expr ==,!=,<>,<,<=,>,>= expr /// expr ::= expr <<,>> expr /// expr ::= expr +,- expr /// expr ::= expr *,/,% expr -> highest. /// expr ::= primaryexpr /// bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) { // Parse the expression. Res = nullptr; if (parsePrimaryExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc)) return true; // As a special case, we support 'a op b @ modifier' by rewriting the // expression to include the modifier. This is inefficient, but in general we // expect users to use 'a@modifier op b'. if (Lexer.getKind() == AsmToken::At) { Lex(); if (Lexer.isNot(AsmToken::Identifier)) { // return TokError("unexpected symbol modifier following '@'"); KsError = KS_ERR_ASM_SYMBOL_MODIFIER; return true; } MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier()); if (Variant == MCSymbolRefExpr::VK_Invalid) { // return TokError("invalid variant '" + getTok().getIdentifier() + "'"); KsError = KS_ERR_ASM_VARIANT_INVALID; return true; } const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant); if (!ModifiedRes) { // return TokError("invalid modifier '" + getTok().getIdentifier() + // "' (no symbols present)"); KsError = KS_ERR_ASM_VARIANT_INVALID; return true; } Res = ModifiedRes; Lex(); } // Try to constant fold it up front, if possible. int64_t Value; if (Res->evaluateAsAbsolute(Value)) Res = MCConstantExpr::create(Value, getContext()); return false; } bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) { Res = nullptr; return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc); } bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res, SMLoc &EndLoc) { if (parseParenExpr(Res, EndLoc)) return true; for (; ParenDepth > 0; --ParenDepth) { if (parseBinOpRHS(1, Res, EndLoc)) return true; // We don't Lex() the last RParen. // This is the same behavior as parseParenExpression(). if (ParenDepth - 1 > 0) { if (Lexer.isNot(AsmToken::RParen)) { // return TokError("expected ')' in parentheses expression"); KsError = KS_ERR_ASM_RPAREN; return true; } EndLoc = Lexer.getTok().getEndLoc(); Lex(); } } return false; } bool AsmParser::parseAbsoluteExpression(int64_t &Res) { const MCExpr *Expr; //SMLoc StartLoc = Lexer.getLoc(); if (parseExpression(Expr)) return true; if (!Expr->evaluateAsAbsolute(Res)) { //return Error(StartLoc, "expected absolute expression"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } return false; } static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind, bool ShouldUseLogicalShr) { switch (K) { default: return 0; // not a binop. // Lowest Precedence: &&, || case AsmToken::AmpAmp: Kind = MCBinaryExpr::LAnd; return 1; case AsmToken::PipePipe: Kind = MCBinaryExpr::LOr; return 1; // Low Precedence: |, &, ^ // // FIXME: gas seems to support '!' as an infix operator? case AsmToken::Pipe: Kind = MCBinaryExpr::Or; return 2; case AsmToken::Caret: Kind = MCBinaryExpr::Xor; return 2; case AsmToken::Amp: Kind = MCBinaryExpr::And; return 2; // Low Intermediate Precedence: ==, !=, <>, <, <=, >, >= case AsmToken::EqualEqual: Kind = MCBinaryExpr::EQ; return 3; case AsmToken::ExclaimEqual: case AsmToken::LessGreater: Kind = MCBinaryExpr::NE; return 3; case AsmToken::Less: Kind = MCBinaryExpr::LT; return 3; case AsmToken::LessEqual: Kind = MCBinaryExpr::LTE; return 3; case AsmToken::Greater: Kind = MCBinaryExpr::GT; return 3; case AsmToken::GreaterEqual: Kind = MCBinaryExpr::GTE; return 3; // Intermediate Precedence: <<, >> case AsmToken::LessLess: Kind = MCBinaryExpr::Shl; return 4; case AsmToken::GreaterGreater: Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; return 4; // High Intermediate Precedence: +, - case AsmToken::Plus: Kind = MCBinaryExpr::Add; return 5; case AsmToken::Minus: Kind = MCBinaryExpr::Sub; return 5; // Highest Precedence: *, /, % case AsmToken::Star: Kind = MCBinaryExpr::Mul; return 6; case AsmToken::Slash: Kind = MCBinaryExpr::Div; return 6; case AsmToken::Percent: Kind = MCBinaryExpr::Mod; return 6; } } static unsigned getGNUBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind, bool ShouldUseLogicalShr) { switch (K) { default: return 0; // not a binop. // Lowest Precedence: &&, || case AsmToken::AmpAmp: Kind = MCBinaryExpr::LAnd; return 2; case AsmToken::PipePipe: Kind = MCBinaryExpr::LOr; return 1; // Low Precedence: ==, !=, <>, <, <=, >, >= case AsmToken::EqualEqual: Kind = MCBinaryExpr::EQ; return 3; case AsmToken::ExclaimEqual: case AsmToken::LessGreater: Kind = MCBinaryExpr::NE; return 3; case AsmToken::Less: Kind = MCBinaryExpr::LT; return 3; case AsmToken::LessEqual: Kind = MCBinaryExpr::LTE; return 3; case AsmToken::Greater: Kind = MCBinaryExpr::GT; return 3; case AsmToken::GreaterEqual: Kind = MCBinaryExpr::GTE; return 3; // Low Intermediate Precedence: +, - case AsmToken::Plus: Kind = MCBinaryExpr::Add; return 4; case AsmToken::Minus: Kind = MCBinaryExpr::Sub; return 4; // High Intermediate Precedence: |, &, ^ // // FIXME: gas seems to support '!' as an infix operator? case AsmToken::Pipe: Kind = MCBinaryExpr::Or; return 5; case AsmToken::Caret: Kind = MCBinaryExpr::Xor; return 5; case AsmToken::Amp: Kind = MCBinaryExpr::And; return 5; // Highest Precedence: *, /, %, <<, >> case AsmToken::Star: Kind = MCBinaryExpr::Mul; return 6; case AsmToken::Slash: Kind = MCBinaryExpr::Div; return 6; case AsmToken::Percent: Kind = MCBinaryExpr::Mod; return 6; case AsmToken::LessLess: Kind = MCBinaryExpr::Shl; return 6; case AsmToken::GreaterGreater: Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr; return 6; } } unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K, MCBinaryExpr::Opcode &Kind) { bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr(); return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr) : getGNUBinOpPrecedence(K, Kind, ShouldUseLogicalShr); } /// \brief Parse all binary operators with precedence >= 'Precedence'. /// Res contains the LHS of the expression on input. bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc) { while (1) { MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add; unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind); // If the next token is lower precedence than we are allowed to eat, return // successfully with what we ate already. if (TokPrec < Precedence) return false; Lex(); // Eat the next primary expression. const MCExpr *RHS; if (parsePrimaryExpr(RHS, EndLoc)) return true; // If BinOp binds less tightly with RHS than the operator after RHS, let // the pending operator take RHS as its LHS. MCBinaryExpr::Opcode Dummy; unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy); if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc)) return true; // Merge LHS and RHS according to operator. Res = MCBinaryExpr::create(Kind, Res, RHS, getContext()); } } bool AsmParser::isNasmDirective(StringRef IDVal) { return (DirectiveKindMap.find(IDVal.lower()) != DirectiveKindMap.end()); } bool AsmParser::isDirective(StringRef IDVal) { if (KsSyntax == KS_OPT_SYNTAX_NASM) return isNasmDirective(IDVal); else // Directives start with "." return (!IDVal.empty() && IDVal[0] == '.' && IDVal != "."); } /// ParseStatement: /// ::= EndOfStatement /// ::= Label* Directive ...Operands... EndOfStatement /// ::= Label* Identifier OperandList* EndOfStatement // return true on error bool AsmParser::parseStatement(ParseStatementInfo &Info, MCAsmParserSemaCallback *SI, uint64_t &Address) { KsError = 0; if (Lexer.is(AsmToken::EndOfStatement)) { Out.AddBlankLine(); Lex(); return false; } // Statements always start with an identifier or are a full line comment. AsmToken ID = getTok(); //printf(">>> parseStatement:ID = %s\n", ID.getString().str().c_str()); SMLoc IDLoc = ID.getLoc(); StringRef IDVal; int64_t LocalLabelVal = -1; // A full line comment is a '#' as the first token. if (Lexer.is(AsmToken::Hash)) return parseCppHashLineFilenameComment(IDLoc); // Allow an integer followed by a ':' as a directional local label. if (Lexer.is(AsmToken::Integer)) { bool valid; LocalLabelVal = getTok().getIntVal(valid); if (!valid) { return true; } if (LocalLabelVal < 0) { if (!TheCondState.Ignore) { // return TokError("unexpected token at start of statement"); Info.KsError = KS_ERR_ASM_STAT_TOKEN; return true; } IDVal = ""; } else { IDVal = getTok().getString(); Lex(); // Consume the integer token to be used as an identifier token. if (Lexer.getKind() != AsmToken::Colon) { if (!TheCondState.Ignore) { // return TokError("unexpected token at start of statement"); Info.KsError = KS_ERR_ASM_STAT_TOKEN; return true; } } } } else if (Lexer.is(AsmToken::Dot)) { // Treat '.' as a valid identifier in this context. Lex(); IDVal = "."; } else if (Lexer.is(AsmToken::LCurly)) { // Treat '{' as a valid identifier in this context. Lex(); IDVal = "{"; } else if (Lexer.is(AsmToken::RCurly)) { // Treat '}' as a valid identifier in this context. Lex(); IDVal = "}"; } else if (KsSyntax == KS_OPT_SYNTAX_NASM && Lexer.is(AsmToken::LBrac)) { // [bits xx] Lex(); ID = Lexer.getTok(); if (ID.getString().lower() == "bits") { Lex(); if (parseNasmDirectiveBits()) { Info.KsError = KS_ERR_ASM_DIRECTIVE_ID; return true; } else { return false; } } else { Info.KsError = KS_ERR_ASM_DIRECTIVE_ID; return true; } } else if (KsSyntax == KS_OPT_SYNTAX_NASM && isNasmDirective(ID.getString())) { Lex(); IDVal = ID.getString(); } else if (parseIdentifier(IDVal)) { if (!TheCondState.Ignore) { // return TokError("unexpected token at start of statement"); Info.KsError = KS_ERR_ASM_STAT_TOKEN; return true; } IDVal = ""; } // Handle conditional assembly here before checking for skipping. We // have to do this so that .endif isn't skipped in a ".if 0" block for // example. StringMap::const_iterator DirKindIt = DirectiveKindMap.find(IDVal.lower()); DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end()) ? DK_NO_DIRECTIVE : DirKindIt->getValue(); switch (DirKind) { default: break; case DK_IF: case DK_IFEQ: case DK_IFGE: case DK_IFGT: case DK_IFLE: case DK_IFLT: case DK_IFNE: return parseDirectiveIf(IDLoc, DirKind); case DK_IFB: return parseDirectiveIfb(IDLoc, true); case DK_IFNB: return parseDirectiveIfb(IDLoc, false); case DK_IFC: return parseDirectiveIfc(IDLoc, true); case DK_IFEQS: return parseDirectiveIfeqs(IDLoc, true); case DK_IFNC: return parseDirectiveIfc(IDLoc, false); case DK_IFNES: return parseDirectiveIfeqs(IDLoc, false); case DK_IFDEF: return parseDirectiveIfdef(IDLoc, true); case DK_IFNDEF: case DK_IFNOTDEF: return parseDirectiveIfdef(IDLoc, false); case DK_ELSEIF: return parseDirectiveElseIf(IDLoc); case DK_ELSE: return parseDirectiveElse(IDLoc); case DK_ENDIF: return parseDirectiveEndIf(IDLoc); } // Ignore the statement if in the middle of inactive conditional // (e.g. ".if 0"). if (TheCondState.Ignore) { eatToEndOfStatement(); return false; } // FIXME: Recurse on local labels? // See what kind of statement we have. switch (Lexer.getKind()) { case AsmToken::Colon: { bool valid; if (!getTargetParser().isLabel(ID, valid)) break; if (!valid) { Info.KsError = KS_ERR_ASM_LABEL_INVALID; return true; } checkForValidSection(); // identifier ':' -> Label. Lex(); // Diagnose attempt to use '.' as a label. if (IDVal == ".") { //return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label"); KsError = KS_ERR_ASM_INVALIDOPERAND; return true; } // Diagnose attempt to use a variable as a label. // // FIXME: Diagnostics. Note the location of the definition as a label. // FIXME: This doesn't diagnose assignment to a symbol which has been // implicitly marked as external. MCSymbol *Sym; if (LocalLabelVal == -1) { if (ParsingInlineAsm && SI) { StringRef RewrittenLabel = SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true); assert(RewrittenLabel.size() && "We should have an internal name here."); Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(), RewrittenLabel); IDVal = RewrittenLabel; } if (IDVal.empty()) { return true; } Sym = getContext().getOrCreateSymbol(IDVal); } else { bool valid; Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal, valid); if (!valid) { Info.KsError = KS_ERR_ASM_LABEL_INVALID; return true; } } Sym->redefineIfPossible(); if (!Sym->isUndefined() || Sym->isVariable()) { //return Error(IDLoc, "invalid symbol redefinition"); Info.KsError = KS_ERR_ASM_SYMBOL_REDEFINED; return true; } // Emit the label. if (!ParsingInlineAsm) Out.EmitLabel(Sym); getTargetParser().onLabelParsed(Sym); // Consume any end of statement token, if present, to avoid spurious // AddBlankLine calls(). if (Lexer.is(AsmToken::EndOfStatement)) { Lex(); if (Lexer.is(AsmToken::Eof)) return false; } return false; } case AsmToken::Equal: if (!getTargetParser().equalIsAsmAssignment()) break; // identifier '=' ... -> assignment statement Lex(); if (parseAssignment(IDVal, true)) { Info.KsError = KS_ERR_ASM_DIRECTIVE_EQU; return true; } return false; default: // Normal instruction or directive. break; } // If macros are enabled, check to see if this is a macro instantiation. if (areMacrosEnabled()) if (const MCAsmMacro *M = lookupMacro(IDVal)) { return handleMacroEntry(M, IDLoc); } // Otherwise, we have a normal instruction or directive. if (isDirective(IDVal)) { // There are several entities interested in parsing directives: // // 1. The target-specific assembly parser. Some directives are target // specific or may potentially behave differently on certain targets. // 2. Asm parser extensions. For example, platform-specific parsers // (like the ELF parser) register themselves as extensions. // 3. The generic directive parser implemented by this class. These are // all the directives that behave in a target and platform independent // manner, or at least have a default behavior that's shared between // all targets and platforms. // First query the target-specific parser. It will return 'true' if it // isn't interested in this directive. uint64_t BytesInFragment = getStreamer().getCurrentFragmentSize(); if (!getTargetParser().ParseDirective(ID)){ // increment the address for the next statement if the directive // has emitted any value to the streamer. Address += getStreamer().getCurrentFragmentSize() - BytesInFragment; return false; } // Next, check the extension directive map to see if any extension has // registered itself to parse this directive. std::pair Handler = ExtensionDirectiveMap.lookup(IDVal); if (Handler.first) return (*Handler.second)(Handler.first, IDVal, IDLoc); // Finally, if no one else is interested in this directive, it must be // generic and familiar to this class. switch (DirKind) { default: break; case DK_SET: case DK_EQU: return parseDirectiveSet(IDVal, true); case DK_EQUIV: return parseDirectiveSet(IDVal, false); case DK_ASCII: return parseDirectiveAscii(IDVal, false); case DK_ASCIZ: case DK_STRING: return parseDirectiveAscii(IDVal, true); case DK_BYTE: return parseDirectiveValue(1, Info.KsError); case DK_SHORT: case DK_VALUE: case DK_2BYTE: return parseDirectiveValue(2, Info.KsError); case DK_LONG: case DK_INT: case DK_4BYTE: return parseDirectiveValue(4, Info.KsError); case DK_QUAD: case DK_8BYTE: return parseDirectiveValue(8, Info.KsError); case DK_OCTA: return parseDirectiveOctaValue(Info.KsError); case DK_SINGLE: case DK_FLOAT: return parseDirectiveRealValue(APFloat::IEEEsingle); case DK_DOUBLE: return parseDirectiveRealValue(APFloat::IEEEdouble); case DK_ALIGN: { bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); return parseDirectiveAlign(IsPow2, /*ExprSize=*/1); } case DK_ALIGN32: { bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes(); return parseDirectiveAlign(IsPow2, /*ExprSize=*/4); } case DK_BALIGN: return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1); case DK_BALIGNW: return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2); case DK_BALIGNL: return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4); case DK_P2ALIGN: return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1); case DK_P2ALIGNW: return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2); case DK_P2ALIGNL: return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4); case DK_ORG: return parseDirectiveOrg(); case DK_FILL: return parseDirectiveFill(); case DK_ZERO: return parseDirectiveZero(); case DK_EXTERN: eatToEndOfStatement(); // .extern is the default, ignore it. return false; case DK_GLOBL: case DK_GLOBAL: return parseDirectiveSymbolAttribute(MCSA_Global); case DK_LAZY_REFERENCE: return parseDirectiveSymbolAttribute(MCSA_LazyReference); case DK_NO_DEAD_STRIP: return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip); case DK_SYMBOL_RESOLVER: return parseDirectiveSymbolAttribute(MCSA_SymbolResolver); case DK_PRIVATE_EXTERN: return parseDirectiveSymbolAttribute(MCSA_PrivateExtern); case DK_REFERENCE: return parseDirectiveSymbolAttribute(MCSA_Reference); case DK_WEAK_DEFINITION: return parseDirectiveSymbolAttribute(MCSA_WeakDefinition); case DK_WEAK_REFERENCE: return parseDirectiveSymbolAttribute(MCSA_WeakReference); case DK_WEAK_DEF_CAN_BE_HIDDEN: return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate); case DK_COMM: case DK_COMMON: return parseDirectiveComm(/*IsLocal=*/false); case DK_LCOMM: return parseDirectiveComm(/*IsLocal=*/true); case DK_ABORT: return parseDirectiveAbort(); case DK_INCLUDE: return parseDirectiveInclude(); case DK_INCBIN: return parseDirectiveIncbin(); case DK_CODE16: case DK_CODE16GCC: // return TokError(Twine(IDVal) + " not supported yet"); Info.KsError = KS_ERR_ASM_UNSUPPORTED; return true; case DK_REPT: return parseDirectiveRept(IDLoc, IDVal); case DK_IRP: return parseDirectiveIrp(IDLoc); case DK_IRPC: return parseDirectiveIrpc(IDLoc); case DK_ENDR: return parseDirectiveEndr(IDLoc); case DK_BUNDLE_ALIGN_MODE: return parseDirectiveBundleAlignMode(); case DK_BUNDLE_LOCK: return parseDirectiveBundleLock(); case DK_BUNDLE_UNLOCK: return parseDirectiveBundleUnlock(); case DK_SLEB128: return parseDirectiveLEB128(true); case DK_ULEB128: return parseDirectiveLEB128(false); case DK_SPACE: case DK_SKIP: return parseDirectiveSpace(IDVal); case DK_FILE: return parseDirectiveFile(IDLoc); case DK_LINE: return parseDirectiveLine(); case DK_LOC: return parseDirectiveLoc(); case DK_STABS: return parseDirectiveStabs(); case DK_CV_FILE: return parseDirectiveCVFile(); case DK_CV_LOC: return parseDirectiveCVLoc(); case DK_CV_LINETABLE: return parseDirectiveCVLinetable(); case DK_CV_INLINE_LINETABLE: return parseDirectiveCVInlineLinetable(); case DK_CV_STRINGTABLE: return parseDirectiveCVStringTable(); case DK_CV_FILECHECKSUMS: return parseDirectiveCVFileChecksums(); case DK_CFI_SECTIONS: return parseDirectiveCFISections(); case DK_CFI_STARTPROC: return parseDirectiveCFIStartProc(); case DK_CFI_ENDPROC: return parseDirectiveCFIEndProc(); case DK_CFI_DEF_CFA: return parseDirectiveCFIDefCfa(IDLoc); case DK_CFI_DEF_CFA_OFFSET: return parseDirectiveCFIDefCfaOffset(); case DK_CFI_ADJUST_CFA_OFFSET: return parseDirectiveCFIAdjustCfaOffset(); case DK_CFI_DEF_CFA_REGISTER: return parseDirectiveCFIDefCfaRegister(IDLoc); case DK_CFI_OFFSET: return parseDirectiveCFIOffset(IDLoc); case DK_CFI_REL_OFFSET: return parseDirectiveCFIRelOffset(IDLoc); case DK_CFI_PERSONALITY: return parseDirectiveCFIPersonalityOrLsda(true); case DK_CFI_LSDA: return parseDirectiveCFIPersonalityOrLsda(false); case DK_CFI_REMEMBER_STATE: return parseDirectiveCFIRememberState(); case DK_CFI_RESTORE_STATE: return parseDirectiveCFIRestoreState(); case DK_CFI_SAME_VALUE: return parseDirectiveCFISameValue(IDLoc); case DK_CFI_RESTORE: return parseDirectiveCFIRestore(IDLoc); case DK_CFI_ESCAPE: return parseDirectiveCFIEscape(); case DK_CFI_SIGNAL_FRAME: return parseDirectiveCFISignalFrame(); case DK_CFI_UNDEFINED: return parseDirectiveCFIUndefined(IDLoc); case DK_CFI_REGISTER: return parseDirectiveCFIRegister(IDLoc); case DK_CFI_WINDOW_SAVE: return parseDirectiveCFIWindowSave(); case DK_MACROS_ON: case DK_MACROS_OFF: return parseDirectiveMacrosOnOff(IDVal); case DK_MACRO: return parseDirectiveMacro(IDLoc); case DK_EXITM: return parseDirectiveExitMacro(IDVal); case DK_ENDM: case DK_ENDMACRO: return parseDirectiveEndMacro(IDVal); case DK_PURGEM: return parseDirectivePurgeMacro(IDLoc); case DK_END: return parseDirectiveEnd(IDLoc); case DK_ERR: return parseDirectiveError(IDLoc, false); case DK_ERROR: return parseDirectiveError(IDLoc, true); case DK_WARNING: return parseDirectiveWarning(IDLoc); case DK_RELOC: return parseDirectiveReloc(IDLoc); case DK_NASM_BITS: if (parseNasmDirectiveBits()) { Info.KsError = KS_ERR_ASM_DIRECTIVE_ID; return true; } else { return false; } case DK_NASM_USE32: return parseNasmDirectiveUse32(); case DK_NASM_DEFAULT: if (parseNasmDirectiveDefault()) { Info.KsError = KS_ERR_ASM_DIRECTIVE_ID; return true; } else { return false; } } //return Error(IDLoc, "unknown directive"); KsError = KS_ERR_ASM_DIRECTIVE_UNKNOWN; return true; } // __asm _emit or __asm __emit if (ParsingInlineAsm && (IDVal == "_emit" || IDVal == "__emit" || IDVal == "_EMIT" || IDVal == "__EMIT")) return parseDirectiveMSEmit(IDLoc, Info, IDVal.size()); // __asm align if (ParsingInlineAsm && (IDVal == "align" || IDVal == "ALIGN")) return parseDirectiveMSAlign(IDLoc, Info); if (ParsingInlineAsm && (IDVal == "even")) Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4); checkForValidSection(); // Canonicalize the opcode to lower case. std::string OpcodeStr = IDVal.lower(); ParseInstructionInfo IInfo(Info.AsmRewrites); //printf(">> Going to ParseInstruction()\n"); bool HadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID, Info.ParsedOperands, Info.KsError); Info.ParseError = HadError; // If parsing succeeded, match the instruction. if (!HadError) { uint64_t ErrorInfo; //printf(">> Going to MatchAndEmitInstruction()\n"); return getTargetParser().MatchAndEmitInstruction(IDLoc, Info.Opcode, Info.ParsedOperands, Out, ErrorInfo, ParsingInlineAsm, Info.KsError, Address); } return true; } /// eatToEndOfLine uses the Lexer to eat the characters to the end of the line /// since they may not be able to be tokenized to get to the end of line token. void AsmParser::eatToEndOfLine() { if (!Lexer.is(AsmToken::EndOfStatement)) Lexer.LexUntilEndOfLine(); // Eat EOL. Lex(); } /// parseCppHashLineFilenameComment as this: /// ::= # number "filename" /// or just as a full line comment if it doesn't have a number and a string. bool AsmParser::parseCppHashLineFilenameComment(SMLoc L) { Lex(); // Eat the hash token. if (getLexer().isNot(AsmToken::Integer)) { // Consume the line since in cases it is not a well-formed line directive, // as if were simply a full line comment. eatToEndOfLine(); return false; } bool valid; int64_t LineNumber = getTok().getIntVal(valid); if (!valid) { return true; } Lex(); if (getLexer().isNot(AsmToken::String)) { eatToEndOfLine(); return false; } StringRef Filename = getTok().getString(); // Get rid of the enclosing quotes. Filename = Filename.substr(1, Filename.size() - 2); // Save the SMLoc, Filename and LineNumber for later use by diagnostics. CppHashLoc = L; CppHashFilename = Filename; CppHashLineNumber = LineNumber; CppHashBuf = CurBuffer; // Ignore any trailing characters, they're just comment. eatToEndOfLine(); return false; } /// \brief will use the last parsed cpp hash line filename comment /// for the Filename and LineNo if any in the diagnostic. void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) { const AsmParser *Parser = static_cast(Context); raw_ostream &OS = errs(); const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr(); SMLoc DiagLoc = Diag.getLoc(); unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); unsigned CppHashBuf = Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashLoc); // Like SourceMgr::printMessage() we need to print the include stack if any // before printing the message. unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc); if (!Parser->SavedDiagHandler && DiagCurBuffer && DiagCurBuffer != DiagSrcMgr.getMainFileID()) { SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer); DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS); } // If we have not parsed a cpp hash line filename comment or the source // manager changed or buffer changed (like in a nested include) then just // print the normal diagnostic using its Filename and LineNo. if (!Parser->CppHashLineNumber || &DiagSrcMgr != &Parser->SrcMgr || DiagBuf != CppHashBuf) { if (Parser->SavedDiagHandler) Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext); else Diag.print(nullptr, OS); return; } // Use the CppHashFilename and calculate a line number based on the // CppHashLoc and CppHashLineNumber relative to this Diag's SMLoc for // the diagnostic. const std::string &Filename = Parser->CppHashFilename; int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf); int CppHashLocLineNo = Parser->SrcMgr.FindLineNumber(Parser->CppHashLoc, CppHashBuf); int LineNo = Parser->CppHashLineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo); SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo, Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(), Diag.getLineContents(), Diag.getRanges()); if (Parser->SavedDiagHandler) Parser->SavedDiagHandler(NewDiag, Parser->SavedDiagContext); else NewDiag.print(nullptr, OS); } // FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The // difference being that that function accepts '@' as part of identifiers and // we can't do that. AsmLexer.cpp should probably be changed to handle // '@' as a special case when needed. static bool isIdentifierChar(char c) { return isalnum(static_cast(c)) || c == '_' || c == '$' || c == '.'; } bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body, ArrayRef Parameters, ArrayRef A, bool EnableAtPseudoVariable, SMLoc L) { unsigned NParameters = Parameters.size(); bool HasVararg = NParameters ? Parameters.back().Vararg : false; if ((!IsDarwin || NParameters != 0) && NParameters != A.size()) //return Error(L, "Wrong number of arguments"); return true; // A macro without parameters is handled differently on Darwin: // gas accepts no arguments and does no substitutions while (!Body.empty()) { // Scan for the next substitution. std::size_t End = Body.size(), Pos = 0; for (; Pos != End; ++Pos) { // Check for a substitution or escape. if (IsDarwin && !NParameters) { // This macro has no parameters, look for $0, $1, etc. if (Body[Pos] != '$' || Pos + 1 == End) continue; char Next = Body[Pos + 1]; if (Next == '$' || Next == 'n' || isdigit(static_cast(Next))) break; } else { // This macro has parameters, look for \foo, \bar, etc. if (Body[Pos] == '\\' && Pos + 1 != End) break; } } // Add the prefix. OS << Body.slice(0, Pos); // Check if we reached the end. if (Pos == End) break; if (IsDarwin && !NParameters) { switch (Body[Pos + 1]) { // $$ => $ case '$': OS << '$'; break; // $n => number of arguments case 'n': OS << A.size(); break; // $[0-9] => argument default: { // Missing arguments are ignored. unsigned Index = Body[Pos + 1] - '0'; if (Index >= A.size()) break; // Otherwise substitute with the token values, with spaces eliminated. for (const AsmToken &Token : A[Index]) OS << Token.getString(); break; } } Pos += 2; } else { unsigned I = Pos + 1; // Check for the \@ pseudo-variable. if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End) ++I; else while (isIdentifierChar(Body[I]) && I + 1 != End) ++I; const char *Begin = Body.data() + Pos + 1; StringRef Argument(Begin, I - (Pos + 1)); unsigned Index = 0; if (Argument == "@") { OS << NumOfMacroInstantiations; Pos += 2; } else { for (; Index < NParameters; ++Index) if (Parameters[Index].Name == Argument) break; if (Index == NParameters) { if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') Pos += 3; else { OS << '\\' << Argument; Pos = I; } } else { bool VarargParameter = HasVararg && Index == (NParameters - 1); for (const AsmToken &Token : A[Index]) // We expect no quotes around the string's contents when // parsing for varargs. if (Token.getKind() != AsmToken::String || VarargParameter) OS << Token.getString(); else { bool valid; OS << Token.getStringContents(valid); if (!valid) { return true; } } Pos += 1 + Argument.size(); } } } // Update the scan point. Body = Body.substr(Pos); } return false; } MacroInstantiation::MacroInstantiation(SMLoc IL, int EB, SMLoc EL, size_t CondStackDepth) : InstantiationLoc(IL), ExitBuffer(EB), ExitLoc(EL), CondStackDepth(CondStackDepth) {} static bool isOperator(AsmToken::TokenKind kind) { switch (kind) { default: return false; case AsmToken::Plus: case AsmToken::Minus: case AsmToken::Tilde: case AsmToken::Slash: case AsmToken::Star: case AsmToken::Dot: case AsmToken::Equal: case AsmToken::EqualEqual: case AsmToken::Pipe: case AsmToken::PipePipe: case AsmToken::Caret: case AsmToken::Amp: case AsmToken::AmpAmp: case AsmToken::Exclaim: case AsmToken::ExclaimEqual: case AsmToken::Percent: case AsmToken::Less: case AsmToken::LessEqual: case AsmToken::LessLess: case AsmToken::LessGreater: case AsmToken::Greater: case AsmToken::GreaterEqual: case AsmToken::GreaterGreater: return true; } } namespace { class AsmLexerSkipSpaceRAII { public: AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) { Lexer.setSkipSpace(SkipSpace); } ~AsmLexerSkipSpaceRAII() { Lexer.setSkipSpace(true); } private: AsmLexer &Lexer; }; } bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg) { if (Vararg) { if (Lexer.isNot(AsmToken::EndOfStatement)) { StringRef Str = parseStringToEndOfStatement(); MA.emplace_back(AsmToken::String, Str); } return false; } unsigned ParenLevel = 0; unsigned AddTokens = 0; // Darwin doesn't use spaces to delmit arguments. AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin); for (;;) { if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) { // return TokError("unexpected token in macro instantiation"); KsError = KS_ERR_ASM_MACRO_TOKEN; return true; } if (ParenLevel == 0 && Lexer.is(AsmToken::Comma)) break; if (Lexer.is(AsmToken::Space)) { Lex(); // Eat spaces // Spaces can delimit parameters, but could also be part an expression. // If the token after a space is an operator, add the token and the next // one into this argument if (!IsDarwin) { if (isOperator(Lexer.getKind())) { // Check to see whether the token is used as an operator, // or part of an identifier const char *NextChar = getTok().getEndLoc().getPointer(); if (*NextChar == ' ') AddTokens = 2; } if (!AddTokens && ParenLevel == 0) { break; } } } // handleMacroEntry relies on not advancing the lexer here // to be able to fill in the remaining default parameter values if (Lexer.is(AsmToken::EndOfStatement)) break; // Adjust the current parentheses level. if (Lexer.is(AsmToken::LParen)) ++ParenLevel; else if (Lexer.is(AsmToken::RParen) && ParenLevel) --ParenLevel; // Append the token to the current argument list. MA.push_back(getTok()); if (AddTokens) AddTokens--; Lex(); } if (ParenLevel != 0) { // return TokError("unbalanced parentheses in macro argument"); KsError = KS_ERR_ASM_MACRO_PAREN; return true; } return false; } // Parse the macro instantiation arguments. bool AsmParser::parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A) { const unsigned NParameters = M ? M->Parameters.size() : 0; bool NamedParametersFound = false; SmallVector FALocs; A.resize(NParameters); FALocs.resize(NParameters); // Parse two kinds of macro invocations: // - macros defined without any parameters accept an arbitrary number of them // - macros defined with parameters accept at most that many of them bool HasVararg = NParameters ? M->Parameters.back().Vararg : false; for (unsigned Parameter = 0; !NParameters || Parameter < NParameters; ++Parameter) { //SMLoc IDLoc = Lexer.getLoc(); MCAsmMacroParameter FA; if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) { if (parseIdentifier(FA.Name)) { //Error(IDLoc, "invalid argument identifier for formal argument"); eatToEndOfStatement(); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!Lexer.is(AsmToken::Equal)) { //TokError("expected '=' after formal parameter identifier"); eatToEndOfStatement(); KsError = KS_ERR_ASM_MACRO_EQU; return true; } Lex(); NamedParametersFound = true; } if (NamedParametersFound && FA.Name.empty()) { //Error(IDLoc, "cannot mix positional and keyword arguments"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; eatToEndOfStatement(); return true; } bool Vararg = HasVararg && Parameter == (NParameters - 1); if (parseMacroArgument(FA.Value, Vararg)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } unsigned PI = Parameter; if (!FA.Name.empty()) { unsigned FAI = 0; for (FAI = 0; FAI < NParameters; ++FAI) if (M->Parameters[FAI].Name == FA.Name) break; if (FAI >= NParameters) { //assert(M && "expected macro to be defined"); //Error(IDLoc, // "parameter named '" + FA.Name + "' does not exist for macro '" + // M->Name + "'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } PI = FAI; } if (!FA.Value.empty()) { if (A.size() <= PI) A.resize(PI + 1); A[PI] = FA.Value; if (FALocs.size() <= PI) FALocs.resize(PI + 1); FALocs[PI] = Lexer.getLoc(); } // At the end of the statement, fill in remaining arguments that have // default values. If there aren't any, then the next argument is // required but missing if (Lexer.is(AsmToken::EndOfStatement)) { bool Failure = false; for (unsigned FAI = 0; FAI < NParameters; ++FAI) { if (A[FAI].empty()) { if (M->Parameters[FAI].Required) { //Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(), // "missing value for required parameter " // "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; Failure = true; } if (!M->Parameters[FAI].Value.empty()) A[FAI] = M->Parameters[FAI].Value; } } return Failure; } if (Lexer.is(AsmToken::Comma)) Lex(); } // return TokError("too many positional arguments"); KsError = KS_ERR_ASM_MACRO_ARGS; return true; } const MCAsmMacro *AsmParser::lookupMacro(StringRef Name) { StringMap::iterator I = MacroMap.find(Name); return (I == MacroMap.end()) ? nullptr : &I->getValue(); } void AsmParser::defineMacro(StringRef Name, MCAsmMacro Macro) { MacroMap.insert(std::make_pair(Name, std::move(Macro))); } void AsmParser::undefineMacro(StringRef Name) { MacroMap.erase(Name); } bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc) { // Arbitrarily limit macro nesting depth, to match 'as'. We can eliminate // this, although we should protect against infinite loops. if (ActiveMacros.size() == 20) { // return TokError("macros cannot be nested more than 20 levels deep"); KsError = KS_ERR_ASM_MACRO_LEVELS_EXCEED; return true; } MCAsmMacroArguments A; if (parseMacroArguments(M, A)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; StringRef Body = M->Body; raw_svector_ostream OS(Buf); if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc())) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // We include the .endmacro in the buffer as our cue to exit the macro // instantiation. OS << ".endmacro\n"; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Create the macro instantiation object and add to the current macro // instantiation stack. MacroInstantiation *MI = new MacroInstantiation( NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()); ActiveMacros.push_back(MI); ++NumOfMacroInstantiations; // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); Lex(); return false; } void AsmParser::handleMacroExit() { // Jump to the EndOfStatement we should return to, and consume it. jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer); Lex(); // Pop the instantiation entry. delete ActiveMacros.back(); ActiveMacros.pop_back(); } bool AsmParser::parseAssignment(StringRef Name, bool allow_redef, bool NoDeadStrip) { MCSymbol *Sym; const MCExpr *Value; if (MCParserUtils::parseAssignmentExpression(Name, allow_redef, *this, Sym, Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!Sym) { // In the case where we parse an expression starting with a '.', we will // not generate an error, nor will we create a symbol. In this case we // should just return out. return false; } // Do the assignment. if (!Out.EmitAssignment(Sym, Value)) { KsError = KS_ERR_ASM_DIRECTIVE_ID; return true; } if (NoDeadStrip) Out.EmitSymbolAttribute(Sym, MCSA_NoDeadStrip); return false; } /// parseIdentifier: /// ::= identifier /// ::= string bool AsmParser::parseIdentifier(StringRef &Res) { // The assembler has relaxed rules for accepting identifiers, in particular we // allow things like '.globl $foo' and '.def @feat.00', which would normally be // separate tokens. At this level, we have already lexed so we cannot (currently) // handle this as a context dependent token, instead we detect adjacent tokens // and return the combined identifier. if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) { SMLoc PrefixLoc = getLexer().getLoc(); // Consume the prefix character, and check for a following identifier. Lex(); if (Lexer.isNot(AsmToken::Identifier)) { KsError = KS_ERR_ASM_MACRO_INVALID; return true; } // We have a '$' or '@' followed by an identifier, make sure they are adjacent. if (PrefixLoc.getPointer() + 1 != getTok().getLoc().getPointer()) { KsError = KS_ERR_ASM_MACRO_INVALID; return true; } // Construct the joined identifier and consume the token. Res = StringRef(PrefixLoc.getPointer(), getTok().getIdentifier().size() + 1); Lex(); return false; } if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) { KsError = KS_ERR_ASM_MACRO_INVALID; return true; } Res = getTok().getIdentifier(); Lex(); // Consume the identifier token. return false; } /// parseDirectiveSet: /// ::= .equ identifier ',' expression /// ::= .equiv identifier ',' expression /// ::= .set identifier ',' expression bool AsmParser::parseDirectiveSet(StringRef IDVal, bool allow_redef) { StringRef Name; if (parseIdentifier(Name)) { // return TokError("expected identifier after '" + Twine(IDVal) + "'"); KsError = KS_ERR_ASM_DIRECTIVE_ID; return true; } if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in '" + Twine(IDVal) + "'"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); return parseAssignment(Name, allow_redef, true); } bool AsmParser::parseEscapedString(std::string &Data) { if (!getLexer().is(AsmToken::String)) { KsError = KS_ERR_ASM_ESC_STR; return true; } Data = ""; bool valid; StringRef Str = getTok().getStringContents(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } for (unsigned i = 0, e = Str.size(); i != e; ++i) { if (Str[i] != '\\') { Data += Str[i]; continue; } // Recognize escaped characters. Note that this escape semantics currently // loosely follows Darwin 'as'. Notably, it doesn't support hex escapes. ++i; if (i == e) { // return TokError("unexpected backslash at end of string"); KsError = KS_ERR_ASM_ESC_BACKSLASH; return true; } // Recognize octal sequences. if ((unsigned)(Str[i] - '0') <= 7) { // Consume up to three octal characters. unsigned Value = Str[i] - '0'; if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { ++i; Value = Value * 8 + (Str[i] - '0'); if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) { ++i; Value = Value * 8 + (Str[i] - '0'); } } if (Value > 255) { // return TokError("invalid octal escape sequence (out of range)"); KsError = KS_ERR_ASM_ESC_BACKSLASH; return true; } Data += (unsigned char)Value; continue; } // Otherwise recognize individual escapes. switch (Str[i]) { default: // Just reject invalid escape sequences for now. // return TokError("invalid escape sequence (unrecognized character)"); KsError = KS_ERR_ASM_ESC_SEQUENCE; return true; case 'b': Data += '\b'; break; case 'f': Data += '\f'; break; case 'n': Data += '\n'; break; case 'r': Data += '\r'; break; case 't': Data += '\t'; break; case '"': Data += '"'; break; case '\\': Data += '\\'; break; } } return false; } /// parseDirectiveAscii: /// ::= ( .ascii | .asciz | .string ) [ "string" ( , "string" )* ] bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated) { if (getLexer().isNot(AsmToken::EndOfStatement)) { checkForValidSection(); for (;;) { if (getLexer().isNot(AsmToken::String)) { // return TokError("expected string in '" + Twine(IDVal) + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_STR; return true; } std::string Data; if (parseEscapedString(Data)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } getStreamer().EmitBytes(Data); if (ZeroTerminated) getStreamer().EmitBytes(StringRef("\0", 1)); Lex(); if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); } } Lex(); return false; } /// parseDirectiveReloc /// ::= .reloc expression , identifier [ , expression ] bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc) { const MCExpr *Offset; const MCExpr *Expr = nullptr; //SMLoc OffsetLoc = Lexer.getTok().getLoc(); if (parseExpression(Offset)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // We can only deal with constant expressions at the moment. int64_t OffsetValue; if (!Offset->evaluateAsAbsolute(OffsetValue)) { //return Error(OffsetLoc, "expression is not a constant value"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (OffsetValue < 0) { //return Error(OffsetLoc, "expression is negative"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Lexer.isNot(AsmToken::Comma)) { // return TokError("expected comma"); KsError = KS_ERR_ASM_DIRECTIVE_COMMA; return true; } Lexer.Lex(); if (Lexer.isNot(AsmToken::Identifier)) { // return TokError("expected relocation name"); KsError = KS_ERR_ASM_DIRECTIVE_RELOC_NAME; return true; } //SMLoc NameLoc = Lexer.getTok().getLoc(); StringRef Name = Lexer.getTok().getIdentifier(); Lexer.Lex(); if (Lexer.is(AsmToken::Comma)) { Lexer.Lex(); //SMLoc ExprLoc = Lexer.getLoc(); if (parseExpression(Expr)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } MCValue Value; if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) { //return Error(ExprLoc, "expression must be relocatable"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } if (Lexer.isNot(AsmToken::EndOfStatement)) { // return TokError("unexpected token in .reloc directive"); KsError = KS_ERR_ASM_DIRECTIVE_RELOC_TOKEN; return true; } if (getStreamer().EmitRelocDirective(*Offset, Name, Expr, DirectiveLoc)) { //return Error(NameLoc, "unknown relocation name"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } return false; } /// parseDirectiveValue /// ::= (.byte | .short | ... ) [ expression (, expression)* ] bool AsmParser::parseDirectiveValue(unsigned Size, unsigned int &KsError) { if (getLexer().isNot(AsmToken::EndOfStatement)) { checkForValidSection(); for (;;) { const MCExpr *Value; SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Special case constant expressions to match code generator. if (const MCConstantExpr *MCE = dyn_cast(Value)) { assert(Size <= 8 && "Invalid size"); uint64_t IntValue = MCE->getValue(); if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) { // return Error(ExprLoc, "literal value out of range for directive"); KsError = KS_ERR_ASM_DIRECTIVE_VALUE_RANGE; return true; } bool Error; getStreamer().EmitIntValue(IntValue, Size, Error); if (Error) { KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } } else getStreamer().EmitValue(Value, Size, ExprLoc); if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); } } Lex(); return false; } /// ParseDirectiveOctaValue /// ::= .octa [ hexconstant (, hexconstant)* ] bool AsmParser::parseDirectiveOctaValue(unsigned int &KsError) { if (getLexer().isNot(AsmToken::EndOfStatement)) { checkForValidSection(); for (;;) { if (Lexer.getKind() == AsmToken::Error) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Lexer.getKind() != AsmToken::Integer && Lexer.getKind() != AsmToken::BigNum) { // return TokError("unknown token in expression"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } // SMLoc ExprLoc = getLexer().getLoc(); bool valid; APInt IntValue = getTok().getAPIntVal(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); uint64_t hi, lo; if (IntValue.isIntN(64)) { hi = 0; lo = IntValue.getZExtValue(); } else if (IntValue.isIntN(128)) { // It might actually have more than 128 bits, but the top ones are zero. hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue(); lo = IntValue.getLoBits(64).getZExtValue(); } else { // return Error(ExprLoc, "literal value out of range for directive"); KsError = KS_ERR_ASM_DIRECTIVE_VALUE_RANGE; return true; } bool Error; if (MAI.isLittleEndian()) { getStreamer().EmitIntValue(lo, 8, Error); getStreamer().EmitIntValue(hi, 8, Error); } else { getStreamer().EmitIntValue(hi, 8, Error); getStreamer().EmitIntValue(lo, 8, Error); } if (getLexer().is(AsmToken::EndOfStatement)) break; // FIXME: Improve diagnostic. if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); } } Lex(); return false; } /// parseDirectiveRealValue /// ::= (.single | .double) [ expression (, expression)* ] bool AsmParser::parseDirectiveRealValue(const fltSemantics &Semantics) { if (getLexer().isNot(AsmToken::EndOfStatement)) { checkForValidSection(); for (;;) { // We don't truly support arithmetic on floating point expressions, so we // have to manually parse unary prefixes. bool IsNeg = false; if (getLexer().is(AsmToken::Minus)) { Lex(); IsNeg = true; } else if (getLexer().is(AsmToken::Plus)) Lex(); if (getLexer().isNot(AsmToken::Integer) && getLexer().isNot(AsmToken::Real) && getLexer().isNot(AsmToken::Identifier)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } // Convert to an APFloat. APFloat Value(Semantics); StringRef IDVal = getTok().getString(); if (getLexer().is(AsmToken::Identifier)) { if (!IDVal.compare_lower("infinity") || !IDVal.compare_lower("inf")) Value = APFloat::getInf(Semantics); else if (!IDVal.compare_lower("nan")) Value = APFloat::getNaN(Semantics, false, ~0); else { // return TokError("invalid floating point literal"); KsError = KS_ERR_ASM_DIRECTIVE_FPOINT; return true; } } else if (Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) == APFloat::opInvalidOp) { // return TokError("invalid floating point literal"); KsError = KS_ERR_ASM_DIRECTIVE_FPOINT; return true; } if (IsNeg) Value.changeSign(); // Consume the numeric token. Lex(); // Emit the value as an integer. APInt AsInt = Value.bitcastToAPInt(); bool Error; getStreamer().EmitIntValue(AsInt.getLimitedValue(), AsInt.getBitWidth() / 8, Error); if (Error) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); } } Lex(); return false; } /// parseDirectiveZero /// ::= .zero expression bool AsmParser::parseDirectiveZero() { checkForValidSection(); int64_t NumBytes; if (parseAbsoluteExpression(NumBytes)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } int64_t Val = 0; if (getLexer().is(AsmToken::Comma)) { Lex(); if (parseAbsoluteExpression(Val)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { // return TokError("unexpected token in '.zero' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); getStreamer().EmitFill(NumBytes, Val); return false; } /// parseDirectiveFill /// ::= .fill expression [ , expression [ , expression ] ] bool AsmParser::parseDirectiveFill() { checkForValidSection(); SMLoc RepeatLoc = getLexer().getLoc(); int64_t NumValues; if (parseAbsoluteExpression(NumValues)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (NumValues < 0) { Warning(RepeatLoc, "'.fill' directive with negative repeat count has no effect"); NumValues = 0; } int64_t FillSize = 1; int64_t FillExpr = 0; SMLoc SizeLoc, ExprLoc; if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in '.fill' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); SizeLoc = getLexer().getLoc(); if (parseAbsoluteExpression(FillSize)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in '.fill' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); ExprLoc = getLexer().getLoc(); if (parseAbsoluteExpression(FillExpr)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { // return TokError("unexpected token in '.fill' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); } } if (FillSize < 0) { Warning(SizeLoc, "'.fill' directive with negative size has no effect"); NumValues = 0; } if (FillSize > 8) { Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8"); FillSize = 8; } if (!isUInt<32>(FillExpr) && FillSize > 4) Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits"); if (NumValues > 0) { int64_t NonZeroFillSize = FillSize > 4 ? 4 : FillSize; FillExpr &= ~0ULL >> (64 - NonZeroFillSize * 8); bool Error; for (uint64_t i = 0, e = NumValues; i != e; ++i) { getStreamer().EmitIntValue(FillExpr, NonZeroFillSize, Error); if (Error) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (NonZeroFillSize < FillSize) { getStreamer().EmitIntValue(0, FillSize - NonZeroFillSize, Error); if (Error) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } } } return false; } /// parseDirectiveOrg /// ::= .org expression [ , expression ] bool AsmParser::parseDirectiveOrg() { checkForValidSection(); const MCExpr *Offset; if (parseExpression(Offset)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Parse optional fill expression. int64_t FillExpr = 0; if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in '.org' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); if (parseAbsoluteExpression(FillExpr)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { // return TokError("unexpected token in '.org' directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } } Lex(); getStreamer().emitValueToOffset(Offset, FillExpr); return false; } /// parseDirectiveAlign /// ::= {.align, ...} expression [ , expression [ , expression ]] bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize) { checkForValidSection(); //SMLoc AlignmentLoc = getLexer().getLoc(); int64_t Alignment; if (parseAbsoluteExpression(Alignment)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } SMLoc MaxBytesLoc; bool HasFillExpr = false; int64_t FillExpr = 0; int64_t MaxBytesToFill = 0; if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); // The fill expression can be omitted while specifying a maximum number of // alignment bytes, e.g: // .align 3,,4 if (getLexer().isNot(AsmToken::Comma)) { HasFillExpr = true; if (parseAbsoluteExpression(FillExpr)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } Lex(); MaxBytesLoc = getLexer().getLoc(); if (parseAbsoluteExpression(MaxBytesToFill)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { // return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_TOKEN; return true; } } } Lex(); if (!HasFillExpr) FillExpr = 0; // Compute alignment in bytes. if (IsPow2) { // FIXME: Diagnose overflow. if (Alignment >= 32) { //Error(AlignmentLoc, "invalid alignment value"); Alignment = 31; } Alignment = 1ULL << Alignment; } else { // Reject alignments that aren't either a power of two or zero, // for gas compatibility. Alignment of zero is silently rounded // up to one. if (Alignment == 0) Alignment = 1; if (!isPowerOf2_64(Alignment)) { //Error(AlignmentLoc, "alignment must be a power of 2"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } // Diagnose non-sensical max bytes to align. if (MaxBytesLoc.isValid()) { if (MaxBytesToFill < 1) { //Error(MaxBytesLoc, "alignment directive can never be satisfied in this " // "many bytes, ignoring maximum bytes expression"); MaxBytesToFill = 0; } if (MaxBytesToFill >= Alignment) { Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and " "has no effect"); MaxBytesToFill = 0; } } // Check whether we should use optimal code alignment for this .align // directive. const MCSection *Section = getStreamer().getCurrentSection().first; assert(Section && "must have section to emit alignment"); bool UseCodeAlign = Section->UseCodeAlign(); if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) && ValueSize == 1 && UseCodeAlign) { getStreamer().EmitCodeAlignment(Alignment, MaxBytesToFill); } else { // FIXME: Target specific behavior about how the "extra" bytes are filled. getStreamer().EmitValueToAlignment(Alignment, FillExpr, ValueSize, MaxBytesToFill); } return false; } /// parseDirectiveFile /// ::= .file [number] filename /// ::= .file number directory filename bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc) { // FIXME: I'm not sure what this is. int64_t FileNumber = -1; //SMLoc FileNumberLoc = getLexer().getLoc(); if (getLexer().is(AsmToken::Integer)) { bool valid; FileNumber = getTok().getIntVal(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); if (FileNumber < 1) { //return TokError("file number less than one"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } if (getLexer().isNot(AsmToken::String)) { //return TokError("unexpected token in '.file' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Usually the directory and filename together, otherwise just the directory. // Allow the strings to have escaped octal character sequence. std::string Path = getTok().getString(); if (parseEscapedString(Path)) return true; Lex(); StringRef Directory; StringRef Filename; std::string FilenameData; if (getLexer().is(AsmToken::String)) { if (FileNumber == -1) //return TokError("explicit path specified, but no file number"); return true; if (parseEscapedString(FilenameData)) return true; Filename = FilenameData; Directory = Path; Lex(); } else { Filename = Path; } if (getLexer().isNot(AsmToken::EndOfStatement)) //return TokError("unexpected token in '.file' directive"); return true; if (FileNumber == -1) getStreamer().EmitFileDirective(Filename); else { if (getContext().getGenDwarfForAssembly()) //Error(DirectiveLoc, // "input can't have .file dwarf directives when -g is " // "used to generate dwarf debug info for assembly code"); return true; if (getStreamer().EmitDwarfFileDirective(FileNumber, Directory, Filename) == 0) //Error(FileNumberLoc, "file number already allocated"); return true; } return false; } /// parseDirectiveLine /// ::= .line [number] bool AsmParser::parseDirectiveLine() { if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Integer)) { //return TokError("unexpected token in '.line' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } bool valid; int64_t LineNumber = getTok().getIntVal(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } (void)LineNumber; Lex(); // FIXME: Do something with the .line. } if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.line' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } return false; } /// parseDirectiveLoc /// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end] /// [epilogue_begin] [is_stmt VALUE] [isa VALUE] /// The first number is a file number, must have been previously assigned with /// a .file directive, the second number is the line number and optionally the /// third number is a column position (zero if not specified). The remaining /// optional items are .loc sub-directives. bool AsmParser::parseDirectiveLoc() { if (getLexer().isNot(AsmToken::Integer)) { //return TokError("unexpected token in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } bool valid; int64_t FileNumber = getTok().getIntVal(valid); if (!valid) { return true; } if (FileNumber < 1) { //return TokError("file number less than one in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!getContext().isValidDwarfFileNumber(FileNumber)) { //return TokError("unassigned file number in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); int64_t LineNumber = 0; if (getLexer().is(AsmToken::Integer)) { bool valid; LineNumber = getTok().getIntVal(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (LineNumber < 0) { //return TokError("line number less than zero in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); } int64_t ColumnPos = 0; if (getLexer().is(AsmToken::Integer)) { bool valid; ColumnPos = getTok().getIntVal(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (ColumnPos < 0) { //return TokError("column position less than zero in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); } unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0; unsigned Isa = 0; int64_t Discriminator = 0; if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { if (getLexer().is(AsmToken::EndOfStatement)) break; StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) { //return TokError("unexpected token in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Name == "basic_block") Flags |= DWARF2_FLAG_BASIC_BLOCK; else if (Name == "prologue_end") Flags |= DWARF2_FLAG_PROLOGUE_END; else if (Name == "epilogue_begin") Flags |= DWARF2_FLAG_EPILOGUE_BEGIN; else if (Name == "is_stmt") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // The expression must be the constant 0 or 1. if (const MCConstantExpr *MCE = dyn_cast(Value)) { int Value = MCE->getValue(); if (Value == 0) Flags &= ~DWARF2_FLAG_IS_STMT; else if (Value == 1) Flags |= DWARF2_FLAG_IS_STMT; else { //return Error(Loc, "is_stmt value not 0 or 1"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } else { //return Error(Loc, "is_stmt value not the constant value of 0 or 1"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } else if (Name == "isa") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // The expression must be a constant greater or equal to 0. if (const MCConstantExpr *MCE = dyn_cast(Value)) { int Value = MCE->getValue(); if (Value < 0) { //return Error(Loc, "isa number less than zero"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Isa = Value; } else { //return Error(Loc, "isa number not a constant value"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } else if (Name == "discriminator") { if (parseAbsoluteExpression(Discriminator)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } else { //return Error(Loc, "unknown sub-directive in '.loc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().is(AsmToken::EndOfStatement)) break; } } getStreamer().EmitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags, Isa, Discriminator, StringRef()); return false; } /// parseDirectiveStabs /// ::= .stabs string, number, number, number bool AsmParser::parseDirectiveStabs() { //return TokError("unsupported directive '.stabs'"); return true; } /// parseDirectiveCVFile /// ::= .cv_file number filename bool AsmParser::parseDirectiveCVFile() { //SMLoc FileNumberLoc = getLexer().getLoc(); if (getLexer().isNot(AsmToken::Integer)) //return TokError("expected file number in '.cv_file' directive"); return true; bool valid; int64_t FileNumber = getTok().getIntVal(valid); if (!valid) { return true; } Lex(); if (FileNumber < 1) //return TokError("file number less than one"); return true; if (getLexer().isNot(AsmToken::String)) //return TokError("unexpected token in '.cv_file' directive"); return true; // Usually the directory and filename together, otherwise just the directory. // Allow the strings to have escaped octal character sequence. std::string Filename; if (parseEscapedString(Filename)) return true; Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) //return TokError("unexpected token in '.cv_file' directive"); return true; if (getStreamer().EmitCVFileDirective(FileNumber, Filename) == 0) //Error(FileNumberLoc, "file number already allocated"); return true; return false; } /// parseDirectiveCVLoc /// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end] /// [is_stmt VALUE] /// The first number is a file number, must have been previously assigned with /// a .file directive, the second number is the line number and optionally the /// third number is a column position (zero if not specified). The remaining /// optional items are .loc sub-directives. bool AsmParser::parseDirectiveCVLoc() { if (getLexer().isNot(AsmToken::Integer)) //return TokError("unexpected token in '.cv_loc' directive"); return true; bool valid; int64_t FunctionId = getTok().getIntVal(valid); if (!valid) { return true; } if (FunctionId < 0) //return TokError("function id less than zero in '.cv_loc' directive"); return true; Lex(); int64_t FileNumber = getTok().getIntVal(valid); if (!valid) { return true; } if (FileNumber < 1) //return TokError("file number less than one in '.cv_loc' directive"); return true; if (!getContext().isValidCVFileNumber(FileNumber)) //return TokError("unassigned file number in '.cv_loc' directive"); return true; Lex(); int64_t LineNumber = 0; if (getLexer().is(AsmToken::Integer)) { LineNumber = getTok().getIntVal(valid); if (!valid) { return true; } if (LineNumber < 0) //return TokError("line number less than zero in '.cv_loc' directive"); return true; Lex(); } int64_t ColumnPos = 0; if (getLexer().is(AsmToken::Integer)) { ColumnPos = getTok().getIntVal(valid); if (!valid) { return true; } if (ColumnPos < 0) //return TokError("column position less than zero in '.cv_loc' directive"); return true; Lex(); } bool PrologueEnd = false; uint64_t IsStmt = 0; while (getLexer().isNot(AsmToken::EndOfStatement)) { StringRef Name; SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) //return TokError("unexpected token in '.cv_loc' directive"); return true; if (Name == "prologue_end") PrologueEnd = true; else if (Name == "is_stmt") { Loc = getTok().getLoc(); const MCExpr *Value; if (parseExpression(Value)) return true; // The expression must be the constant 0 or 1. IsStmt = ~0ULL; if (const auto *MCE = dyn_cast(Value)) IsStmt = MCE->getValue(); if (IsStmt > 1) //return Error(Loc, "is_stmt value not 0 or 1"); return true; } else { //return Error(Loc, "unknown sub-directive in '.cv_loc' directive"); return true; } } getStreamer().EmitCVLocDirective(FunctionId, FileNumber, LineNumber, ColumnPos, PrologueEnd, IsStmt, StringRef()); return false; } /// parseDirectiveCVLinetable /// ::= .cv_linetable FunctionId, FnStart, FnEnd bool AsmParser::parseDirectiveCVLinetable() { bool valid; int64_t FunctionId = getTok().getIntVal(valid); if (!valid) { return true; } if (FunctionId < 0) //return TokError("function id less than zero in '.cv_linetable' directive"); return true; Lex(); if (Lexer.isNot(AsmToken::Comma)) //return TokError("unexpected token in '.cv_linetable' directive"); return true; Lex(); SMLoc Loc = getLexer().getLoc(); StringRef FnStartName; if (parseIdentifier(FnStartName)) //return Error(Loc, "expected identifier in directive"); return true; if (Lexer.isNot(AsmToken::Comma)) //return TokError("unexpected token in '.cv_linetable' directive"); return true; Lex(); Loc = getLexer().getLoc(); StringRef FnEndName; if (parseIdentifier(FnEndName)) //return Error(Loc, "expected identifier in directive"); return true; if (FnStartName.empty() || FnEndName.empty()) { return true; } MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName); MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName); getStreamer().EmitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym); return false; } /// parseDirectiveCVInlineLinetable /// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum /// ("contains" SecondaryFunctionId+)? bool AsmParser::parseDirectiveCVInlineLinetable() { bool valid; int64_t PrimaryFunctionId = getTok().getIntVal(valid); if (!valid) { return true; } if (PrimaryFunctionId < 0) //return TokError( // "function id less than zero in '.cv_inline_linetable' directive"); return true; Lex(); int64_t SourceFileId = getTok().getIntVal(valid); if (!valid) { return true; } if (SourceFileId <= 0) //return TokError( // "File id less than zero in '.cv_inline_linetable' directive"); return true; Lex(); int64_t SourceLineNum = getTok().getIntVal(valid); if (!valid) { return true; } if (SourceLineNum < 0) //return TokError( // "Line number less than zero in '.cv_inline_linetable' directive"); return true; Lex(); SmallVector SecondaryFunctionIds; if (getLexer().is(AsmToken::Identifier)) { if (getTok().getIdentifier() != "contains") //return TokError( // "unexpected identifier in '.cv_inline_linetable' directive"); return true; Lex(); while (getLexer().isNot(AsmToken::EndOfStatement)) { int64_t SecondaryFunctionId = getTok().getIntVal(valid); if (!valid) { return true; } if (SecondaryFunctionId < 0) //return TokError( // "function id less than zero in '.cv_inline_linetable' directive"); return true; Lex(); SecondaryFunctionIds.push_back(SecondaryFunctionId); } } getStreamer().EmitCVInlineLinetableDirective( PrimaryFunctionId, SourceFileId, SourceLineNum, SecondaryFunctionIds); return false; } /// parseDirectiveCVStringTable /// ::= .cv_stringtable bool AsmParser::parseDirectiveCVStringTable() { getStreamer().EmitCVStringTableDirective(); return false; } /// parseDirectiveCVFileChecksums /// ::= .cv_filechecksums bool AsmParser::parseDirectiveCVFileChecksums() { getStreamer().EmitCVFileChecksumsDirective(); return false; } /// parseDirectiveCFISections /// ::= .cfi_sections section [, section] bool AsmParser::parseDirectiveCFISections() { StringRef Name; bool EH = false; bool Debug = false; if (parseIdentifier(Name)) //return TokError("Expected an identifier"); return true; if (Name == ".eh_frame") EH = true; else if (Name == ".debug_frame") Debug = true; if (getLexer().is(AsmToken::Comma)) { Lex(); if (parseIdentifier(Name)) //return TokError("Expected an identifier"); return true; if (Name == ".eh_frame") EH = true; else if (Name == ".debug_frame") Debug = true; } getStreamer().EmitCFISections(EH, Debug); return false; } /// parseDirectiveCFIStartProc /// ::= .cfi_startproc [simple] bool AsmParser::parseDirectiveCFIStartProc() { StringRef Simple; if (getLexer().isNot(AsmToken::EndOfStatement)) if (parseIdentifier(Simple) || Simple != "simple") //return TokError("unexpected token in .cfi_startproc directive"); return true; getStreamer().EmitCFIStartProc(!Simple.empty()); return false; } /// parseDirectiveCFIEndProc /// ::= .cfi_endproc bool AsmParser::parseDirectiveCFIEndProc() { getStreamer().EmitCFIEndProc(); return false; } /// \brief parse register name or number. bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc) { unsigned RegNo; unsigned int ErrorCode; if (getLexer().isNot(AsmToken::Integer)) { if (getTargetParser().ParseRegister(RegNo, DirectiveLoc, DirectiveLoc, ErrorCode)) return true; Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true); } else return parseAbsoluteExpression(Register); return false; } /// parseDirectiveCFIDefCfa /// ::= .cfi_def_cfa register, offset bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; if (getLexer().isNot(AsmToken::Comma)) //return TokError("unexpected token in directive"); return true; Lex(); int64_t Offset = 0; if (parseAbsoluteExpression(Offset)) return true; getStreamer().EmitCFIDefCfa(Register, Offset); return false; } /// parseDirectiveCFIDefCfaOffset /// ::= .cfi_def_cfa_offset offset bool AsmParser::parseDirectiveCFIDefCfaOffset() { int64_t Offset = 0; if (parseAbsoluteExpression(Offset)) return true; getStreamer().EmitCFIDefCfaOffset(Offset); return false; } /// parseDirectiveCFIRegister /// ::= .cfi_register register, register bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc) { int64_t Register1 = 0; if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc)) return true; if (getLexer().isNot(AsmToken::Comma)) //return TokError("unexpected token in directive"); return true; Lex(); int64_t Register2 = 0; if (parseRegisterOrRegisterNumber(Register2, DirectiveLoc)) return true; getStreamer().EmitCFIRegister(Register1, Register2); return false; } /// parseDirectiveCFIWindowSave /// ::= .cfi_window_save bool AsmParser::parseDirectiveCFIWindowSave() { getStreamer().EmitCFIWindowSave(); return false; } /// parseDirectiveCFIAdjustCfaOffset /// ::= .cfi_adjust_cfa_offset adjustment bool AsmParser::parseDirectiveCFIAdjustCfaOffset() { int64_t Adjustment = 0; if (parseAbsoluteExpression(Adjustment)) return true; getStreamer().EmitCFIAdjustCfaOffset(Adjustment); return false; } /// parseDirectiveCFIDefCfaRegister /// ::= .cfi_def_cfa_register register bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().EmitCFIDefCfaRegister(Register); return false; } /// parseDirectiveCFIOffset /// ::= .cfi_offset register, offset bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc) { int64_t Register = 0; int64_t Offset = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; if (getLexer().isNot(AsmToken::Comma)) //return TokError("unexpected token in directive"); return true; Lex(); if (parseAbsoluteExpression(Offset)) return true; getStreamer().EmitCFIOffset(Register, Offset); return false; } /// parseDirectiveCFIRelOffset /// ::= .cfi_rel_offset register, offset bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; if (getLexer().isNot(AsmToken::Comma)) //return TokError("unexpected token in directive"); return true; Lex(); int64_t Offset = 0; if (parseAbsoluteExpression(Offset)) return true; getStreamer().EmitCFIRelOffset(Register, Offset); return false; } static bool isValidEncoding(int64_t Encoding) { if (Encoding & ~0xff) return false; if (Encoding == dwarf::DW_EH_PE_omit) return true; const unsigned Format = Encoding & 0xf; if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 && Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 && Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 && Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed) return false; const unsigned Application = Encoding & 0x70; if (Application != dwarf::DW_EH_PE_absptr && Application != dwarf::DW_EH_PE_pcrel) return false; return true; } /// parseDirectiveCFIPersonalityOrLsda /// IsPersonality true for cfi_personality, false for cfi_lsda /// ::= .cfi_personality encoding, [symbol_name] /// ::= .cfi_lsda encoding, [symbol_name] bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) { int64_t Encoding = 0; if (parseAbsoluteExpression(Encoding)) return true; if (Encoding == dwarf::DW_EH_PE_omit) return false; if (!isValidEncoding(Encoding)) //return TokError("unsupported encoding."); return true; if (getLexer().isNot(AsmToken::Comma)) //return TokError("unexpected token in directive"); return true; Lex(); StringRef Name; if (parseIdentifier(Name)) //return TokError("expected identifier in directive"); return true; if (Name.empty()) { return true; } MCSymbol *Sym = getContext().getOrCreateSymbol(Name); if (IsPersonality) getStreamer().EmitCFIPersonality(Sym, Encoding); else getStreamer().EmitCFILsda(Sym, Encoding); return false; } /// parseDirectiveCFIRememberState /// ::= .cfi_remember_state bool AsmParser::parseDirectiveCFIRememberState() { getStreamer().EmitCFIRememberState(); return false; } /// parseDirectiveCFIRestoreState /// ::= .cfi_remember_state bool AsmParser::parseDirectiveCFIRestoreState() { getStreamer().EmitCFIRestoreState(); return false; } /// parseDirectiveCFISameValue /// ::= .cfi_same_value register bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().EmitCFISameValue(Register); return false; } /// parseDirectiveCFIRestore /// ::= .cfi_restore register bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().EmitCFIRestore(Register); return false; } /// parseDirectiveCFIEscape /// ::= .cfi_escape expression[,...] bool AsmParser::parseDirectiveCFIEscape() { std::string Values; int64_t CurrValue; if (parseAbsoluteExpression(CurrValue)) return true; Values.push_back((uint8_t)CurrValue); while (getLexer().is(AsmToken::Comma)) { Lex(); if (parseAbsoluteExpression(CurrValue)) return true; Values.push_back((uint8_t)CurrValue); } getStreamer().EmitCFIEscape(Values); return false; } /// parseDirectiveCFISignalFrame /// ::= .cfi_signal_frame bool AsmParser::parseDirectiveCFISignalFrame() { if (getLexer().isNot(AsmToken::EndOfStatement)) //return Error(getLexer().getLoc(), // "unexpected token in '.cfi_signal_frame'"); return true; getStreamer().EmitCFISignalFrame(); return false; } /// parseDirectiveCFIUndefined /// ::= .cfi_undefined register bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) { int64_t Register = 0; if (parseRegisterOrRegisterNumber(Register, DirectiveLoc)) return true; getStreamer().EmitCFIUndefined(Register); return false; } /// parseDirectiveMacrosOnOff /// ::= .macros_on /// ::= .macros_off bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) { if (getLexer().isNot(AsmToken::EndOfStatement)) //return Error(getLexer().getLoc(), // "unexpected token in '" + Directive + "' directive"); return true; setMacrosEnabled(Directive == ".macros_on"); return false; } /// parseDirectiveMacro /// ::= .macro name[,] [parameters] bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc) { StringRef Name; if (parseIdentifier(Name)) { //return TokError("expected identifier in '.macro' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().is(AsmToken::Comma)) Lex(); MCAsmMacroParameters Parameters; while (getLexer().isNot(AsmToken::EndOfStatement)) { if (!Parameters.empty() && Parameters.back().Vararg) { //return Error(Lexer.getLoc(), // "Vararg parameter '" + Parameters.back().Name + // "' should be last one in the list of parameters."); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } MCAsmMacroParameter Parameter; if (parseIdentifier(Parameter.Name)) { //return TokError("expected identifier in '.macro' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Lexer.is(AsmToken::Colon)) { Lex(); // consume ':' SMLoc QualLoc; StringRef Qualifier; QualLoc = Lexer.getLoc(); if (parseIdentifier(Qualifier)) { //return Error(QualLoc, "missing parameter qualifier for " // "'" + Parameter.Name + "' in macro '" + Name + "'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Qualifier == "req") Parameter.Required = true; else if (Qualifier == "vararg") Parameter.Vararg = true; else { //return Error(QualLoc, Qualifier + " is not a valid parameter qualifier " // "for '" + Parameter.Name + "' in macro '" + Name + "'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } if (getLexer().is(AsmToken::Equal)) { Lex(); SMLoc ParamLoc; ParamLoc = Lexer.getLoc(); if (parseMacroArgument(Parameter.Value, /*Vararg=*/false )) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Parameter.Required) Warning(ParamLoc, "pointless default value for required parameter " "'" + Parameter.Name + "' in macro '" + Name + "'"); } Parameters.push_back(std::move(Parameter)); if (getLexer().is(AsmToken::Comma)) Lex(); } // Eat the end of statement. Lex(); AsmToken EndToken, StartToken = getTok(); unsigned MacroDepth = 0; // Lex the macro definition. for (;;) { // Check whether we have reached the end of the file. if (getLexer().is(AsmToken::Eof)) { //return Error(DirectiveLoc, "no matching '.endmacro' in definition"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Otherwise, check whether we have reach the .endmacro. if (getLexer().is(AsmToken::Identifier)) { if (getTok().getIdentifier() == ".endm" || getTok().getIdentifier() == ".endmacro") { if (MacroDepth == 0) { // Outermost macro. EndToken = getTok(); Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '" + EndToken.getIdentifier() + // "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } break; } else { // Otherwise we just found the end of an inner macro. --MacroDepth; } } else if (getTok().getIdentifier() == ".macro") { // We allow nested macros. Those aren't instantiated until the outermost // macro is expanded so just ignore them for now. ++MacroDepth; } } // Otherwise, scan til the end of the statement. eatToEndOfStatement(); } if (lookupMacro(Name)) { //return Error(DirectiveLoc, "macro '" + Name + "' is already defined"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } const char *BodyStart = StartToken.getLoc().getPointer(); const char *BodyEnd = EndToken.getLoc().getPointer(); StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); checkForBadMacro(DirectiveLoc, Name, Body, Parameters); defineMacro(Name, MCAsmMacro(Name, Body, std::move(Parameters))); return false; } /// checkForBadMacro /// /// With the support added for named parameters there may be code out there that /// is transitioning from positional parameters. In versions of gas that did /// not support named parameters they would be ignored on the macro definition. /// But to support both styles of parameters this is not possible so if a macro /// definition has named parameters but does not use them and has what appears /// to be positional parameters, strings like $1, $2, ... and $n, then issue a /// warning that the positional parameter found in body which have no effect. /// Hoping the developer will either remove the named parameters from the macro /// definition so the positional parameters get used if that was what was /// intended or change the macro to use the named parameters. It is possible /// this warning will trigger when the none of the named parameters are used /// and the strings like $1 are infact to simply to be passed trough unchanged. void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body, ArrayRef Parameters) { // If this macro is not defined with named parameters the warning we are // checking for here doesn't apply. unsigned NParameters = Parameters.size(); if (NParameters == 0) return; bool NamedParametersFound = false; bool PositionalParametersFound = false; // Look at the body of the macro for use of both the named parameters and what // are likely to be positional parameters. This is what expandMacro() is // doing when it finds the parameters in the body. while (!Body.empty()) { // Scan for the next possible parameter. std::size_t End = Body.size(), Pos = 0; for (; Pos != End; ++Pos) { // Check for a substitution or escape. // This macro is defined with parameters, look for \foo, \bar, etc. if (Body[Pos] == '\\' && Pos + 1 != End) break; // This macro should have parameters, but look for $0, $1, ..., $n too. if (Body[Pos] != '$' || Pos + 1 == End) continue; char Next = Body[Pos + 1]; if (Next == '$' || Next == 'n' || isdigit(static_cast(Next))) break; } // Check if we reached the end. if (Pos == End) break; if (Body[Pos] == '$') { switch (Body[Pos + 1]) { // $$ => $ case '$': break; // $n => number of arguments case 'n': PositionalParametersFound = true; break; // $[0-9] => argument default: { PositionalParametersFound = true; break; } } Pos += 2; } else { unsigned I = Pos + 1; while (isIdentifierChar(Body[I]) && I + 1 != End) ++I; const char *Begin = Body.data() + Pos + 1; StringRef Argument(Begin, I - (Pos + 1)); unsigned Index = 0; for (; Index < NParameters; ++Index) if (Parameters[Index].Name == Argument) break; if (Index == NParameters) { if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')') Pos += 3; else { Pos = I; } } else { NamedParametersFound = true; Pos += 1 + Argument.size(); } } // Update the scan point. Body = Body.substr(Pos); } if (!NamedParametersFound && PositionalParametersFound) Warning(DirectiveLoc, "macro defined with named parameters which are not " "used in macro body, possible positional parameter " "found in body which will have no effect"); } /// parseDirectiveExitMacro /// ::= .exitm bool AsmParser::parseDirectiveExitMacro(StringRef Directive) { if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '" + Directive + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!isInsideMacroInstantiation()) { //return TokError("unexpected '" + Directive + "' in file, " // "no current macro definition"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Exit all conditionals that are active in the current macro. while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) { TheCondState = TheCondStack.back(); TheCondStack.pop_back(); } handleMacroExit(); return false; } /// parseDirectiveEndMacro /// ::= .endm /// ::= .endmacro bool AsmParser::parseDirectiveEndMacro(StringRef Directive) { if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '" + Directive + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // If we are inside a macro instantiation, terminate the current // instantiation. if (isInsideMacroInstantiation()) { handleMacroExit(); return false; } // Otherwise, this .endmacro is a stray entry in the file; well formed // .endmacro directives are handled during the macro definition parsing. //return TokError("unexpected '" + Directive + "' in file, " // "no current macro definition"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } /// parseDirectivePurgeMacro /// ::= .purgem bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc) { StringRef Name; if (parseIdentifier(Name)) { //return TokError("expected identifier in '.purgem' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.purgem' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!lookupMacro(Name)) { //return Error(DirectiveLoc, "macro '" + Name + "' is not defined"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } undefineMacro(Name); return false; } /// parseDirectiveBundleAlignMode /// ::= {.bundle_align_mode} expression bool AsmParser::parseDirectiveBundleAlignMode() { checkForValidSection(); // Expect a single argument: an expression that evaluates to a constant // in the inclusive range 0-30. //SMLoc ExprLoc = getLexer().getLoc(); int64_t AlignSizePow2; if (parseAbsoluteExpression(AlignSizePow2)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } else if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token after expression in" // " '.bundle_align_mode' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } else if (AlignSizePow2 < 0 || AlignSizePow2 > 30) { //return Error(ExprLoc, // "invalid bundle alignment size (expected between 0 and 30)"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); // Because of AlignSizePow2's verified range we can safely truncate it to // unsigned. getStreamer().EmitBundleAlignMode(static_cast(AlignSizePow2)); return false; } /// parseDirectiveBundleLock /// ::= {.bundle_lock} [align_to_end] bool AsmParser::parseDirectiveBundleLock() { checkForValidSection(); bool AlignToEnd = false; if (getLexer().isNot(AsmToken::EndOfStatement)) { StringRef Option; //SMLoc Loc = getTok().getLoc(); //const char *kInvalidOptionError = // "invalid option for '.bundle_lock' directive"; if (parseIdentifier(Option)) { //return Error(Loc, kInvalidOptionError); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Option != "align_to_end") { //return Error(Loc, kInvalidOptionError); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } else if (getLexer().isNot(AsmToken::EndOfStatement)) { //return Error(Loc, // "unexpected token after '.bundle_lock' directive option"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } AlignToEnd = true; } Lex(); getStreamer().EmitBundleLock(AlignToEnd); return false; } /// parseDirectiveBundleLock /// ::= {.bundle_lock} bool AsmParser::parseDirectiveBundleUnlock() { checkForValidSection(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.bundle_unlock' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); getStreamer().EmitBundleUnlock(); return false; } /// parseDirectiveSpace /// ::= (.skip | .space) expression [ , expression ] bool AsmParser::parseDirectiveSpace(StringRef IDVal) { checkForValidSection(); int64_t NumBytes; if (parseAbsoluteExpression(NumBytes)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } int64_t FillExpr = 0; if (getLexer().isNot(AsmToken::EndOfStatement)) { if (getLexer().isNot(AsmToken::Comma)) { //return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); if (parseAbsoluteExpression(FillExpr)) return true; if (getLexer().isNot(AsmToken::EndOfStatement)) //return TokError("unexpected token in '" + Twine(IDVal) + "' directive"); return true; } Lex(); if (NumBytes <= 0) { //return TokError("invalid number of bytes in '" + Twine(IDVal) + // "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0. getStreamer().EmitFill(NumBytes, FillExpr); return false; } /// parseDirectiveLEB128 /// ::= (.sleb128 | .uleb128) [ expression (, expression)* ] bool AsmParser::parseDirectiveLEB128(bool Signed) { checkForValidSection(); const MCExpr *Value; for (;;) { if (parseExpression(Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Signed) getStreamer().EmitSLEB128Value(Value); else getStreamer().EmitULEB128Value(Value); if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) { //return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); } return false; } /// parseDirectiveSymbolAttribute /// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ] bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr) { if (getLexer().isNot(AsmToken::EndOfStatement)) { for (;;) { StringRef Name; //SMLoc Loc = getTok().getLoc(); if (parseIdentifier(Name)) { //return Error(Loc, "expected identifier in directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Name.empty()) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } MCSymbol *Sym = getContext().getOrCreateSymbol(Name); // Assembler local symbols don't make any sense here. Complain loudly. if (Sym->isTemporary()) { //return Error(Loc, "non-local symbol required in directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!getStreamer().EmitSymbolAttribute(Sym, Attr)) { //return Error(Loc, "unable to emit symbol attribute"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().is(AsmToken::EndOfStatement)) break; if (getLexer().isNot(AsmToken::Comma)) { //return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); } } Lex(); return false; } /// parseDirectiveComm /// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ] bool AsmParser::parseDirectiveComm(bool IsLocal) { checkForValidSection(); //SMLoc IDLoc = getLexer().getLoc(); StringRef Name; if (parseIdentifier(Name)) { //return TokError("expected identifier in directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Name.empty()) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Handle the identifier as the key symbol. MCSymbol *Sym = getContext().getOrCreateSymbol(Name); if (getLexer().isNot(AsmToken::Comma)) { //return TokError("unexpected token in directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); int64_t Size; //SMLoc SizeLoc = getLexer().getLoc(); if (parseAbsoluteExpression(Size)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } int64_t Pow2Alignment = 0; SMLoc Pow2AlignmentLoc; if (getLexer().is(AsmToken::Comma)) { Lex(); Pow2AlignmentLoc = getLexer().getLoc(); if (parseAbsoluteExpression(Pow2Alignment)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType(); if (IsLocal && LCOMM == LCOMM::NoAlignment) { //return Error(Pow2AlignmentLoc, "alignment not supported on this target"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // If this target takes alignments in bytes (not log) validate and convert. if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) || (IsLocal && LCOMM == LCOMM::ByteAlignment)) { if (!isPowerOf2_64(Pow2Alignment)) { //return Error(Pow2AlignmentLoc, "alignment must be a power of 2"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Pow2Alignment = Log2_64(Pow2Alignment); } } if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.comm' or '.lcomm' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); // NOTE: a size of zero for a .comm should create a undefined symbol // but a size of .lcomm creates a bss symbol of size zero. if (Size < 0) { //return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't " // "be less than zero"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // NOTE: The alignment in the directive is a power of 2 value, the assembler // may internally end up wanting an alignment in bytes. // FIXME: Diagnose overflow. if (Pow2Alignment < 0) { //return Error(Pow2AlignmentLoc, "invalid '.comm' or '.lcomm' directive " // "alignment, can't be less than zero"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!Sym->isUndefined()) { //return Error(IDLoc, "invalid symbol redefinition"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Create the Symbol as a common or local common with Size and Pow2Alignment if (IsLocal) { getStreamer().EmitLocalCommonSymbol(Sym, Size, 1 << Pow2Alignment); return false; } getStreamer().EmitCommonSymbol(Sym, Size, 1 << Pow2Alignment); return false; } /// parseDirectiveAbort /// ::= .abort [... message ...] bool AsmParser::parseDirectiveAbort() { // FIXME: Use loc from directive. //SMLoc Loc = getLexer().getLoc(); StringRef Str = parseStringToEndOfStatement(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.abort' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); if (Str.empty()) { //Error(Loc, ".abort detected. Assembly stopping."); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } else { //Error(Loc, ".abort '" + Str + "' detected. Assembly stopping."); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // FIXME: Actually abort assembly here. return false; } /// parseDirectiveInclude /// ::= .include "filename" bool AsmParser::parseDirectiveInclude() { if (getLexer().isNot(AsmToken::String)) { //return TokError("expected string in '.include' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Allow the strings to have escaped octal character sequence. std::string Filename; if (parseEscapedString(Filename)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } //SMLoc IncludeLoc = getLexer().getLoc(); Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.include' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Attempt to switch the lexer to the included file before consuming the end // of statement to avoid losing it when we switch. if (enterIncludeFile(Filename)) { //Error(IncludeLoc, "Could not find include file '" + Filename + "'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } return false; } /// parseDirectiveIncbin /// ::= .incbin "filename" bool AsmParser::parseDirectiveIncbin() { if (getLexer().isNot(AsmToken::String)) { //return TokError("expected string in '.incbin' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Allow the strings to have escaped octal character sequence. std::string Filename; if (parseEscapedString(Filename)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } //SMLoc IncbinLoc = getLexer().getLoc(); Lex(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.incbin' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Attempt to process the included file. if (processIncbinFile(Filename)) { //Error(IncbinLoc, "Could not find incbin file '" + Filename + "'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } return false; } /// parseDirectiveIf /// ::= .if{,eq,ge,gt,le,lt,ne} expression bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { int64_t ExprValue; if (parseAbsoluteExpression(ExprValue)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.if' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); switch (DirKind) { default: llvm_unreachable("unsupported directive"); case DK_IF: case DK_IFNE: break; case DK_IFEQ: ExprValue = ExprValue == 0; break; case DK_IFGE: ExprValue = ExprValue >= 0; break; case DK_IFGT: ExprValue = ExprValue > 0; break; case DK_IFLE: ExprValue = ExprValue <= 0; break; case DK_IFLT: ExprValue = ExprValue < 0; break; } TheCondState.CondMet = ExprValue; TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfb /// ::= .ifb string bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { StringRef Str = parseStringToEndOfStatement(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.ifb' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); TheCondState.CondMet = ExpectBlank == Str.empty(); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfc /// ::= .ifc string1, string2 /// ::= .ifnc string1, string2 bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual) { TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { StringRef Str1 = parseStringToComma(); if (getLexer().isNot(AsmToken::Comma)) { //return TokError("unexpected token in '.ifc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); StringRef Str2 = parseStringToEndOfStatement(); if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.ifc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim()); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveIfeqs /// ::= .ifeqs string1, string2 bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual) { if (Lexer.isNot(AsmToken::String)) { //if (ExpectEqual) // TokError("expected string parameter for '.ifeqs' directive"); //else // TokError("expected string parameter for '.ifnes' directive"); eatToEndOfStatement(); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } bool valid; StringRef String1 = getTok().getStringContents(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); if (Lexer.isNot(AsmToken::Comma)) { //if (ExpectEqual) // TokError("expected comma after first string for '.ifeqs' directive"); //else // TokError("expected comma after first string for '.ifnes' directive"); eatToEndOfStatement(); return true; } Lex(); if (Lexer.isNot(AsmToken::String)) { //if (ExpectEqual) // TokError("expected string parameter for '.ifeqs' directive"); //else // TokError("expected string parameter for '.ifnes' directive"); eatToEndOfStatement(); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } StringRef String2 = getTok().getStringContents(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; TheCondState.CondMet = ExpectEqual == (String1 == String2); TheCondState.Ignore = !TheCondState.CondMet; return false; } /// parseDirectiveIfdef /// ::= .ifdef symbol bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) { StringRef Name; TheCondStack.push_back(TheCondState); TheCondState.TheCond = AsmCond::IfCond; if (TheCondState.Ignore) { eatToEndOfStatement(); } else { if (parseIdentifier(Name)) { //return TokError("expected identifier after '.ifdef'"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); MCSymbol *Sym = getContext().lookupSymbol(Name); if (expect_defined) TheCondState.CondMet = (Sym && !Sym->isUndefined()); else TheCondState.CondMet = (!Sym || Sym->isUndefined()); TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElseIf /// ::= .elseif expression bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc) { if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) { //Error(DirectiveLoc, "Encountered a .elseif that doesn't follow a .if or " // " an .elseif"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } TheCondState.TheCond = AsmCond::ElseIfCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) { TheCondState.Ignore = true; eatToEndOfStatement(); } else { int64_t ExprValue; if (parseAbsoluteExpression(ExprValue)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (getLexer().isNot(AsmToken::EndOfStatement)) //return TokError("unexpected token in '.elseif' directive"); return true; Lex(); TheCondState.CondMet = ExprValue; TheCondState.Ignore = !TheCondState.CondMet; } return false; } /// parseDirectiveElse /// ::= .else bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc) { if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.else' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); if (TheCondState.TheCond != AsmCond::IfCond && TheCondState.TheCond != AsmCond::ElseIfCond) { //Error(DirectiveLoc, "Encountered a .else that doesn't follow a .if or an " // ".elseif"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } TheCondState.TheCond = AsmCond::ElseCond; bool LastIgnoreState = false; if (!TheCondStack.empty()) LastIgnoreState = TheCondStack.back().Ignore; if (LastIgnoreState || TheCondState.CondMet) TheCondState.Ignore = true; else TheCondState.Ignore = false; return false; } /// parseDirectiveEnd /// ::= .end bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc) { if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.end' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); while (Lexer.isNot(AsmToken::Eof)) Lex(); return false; } /// parseDirectiveError /// ::= .err /// ::= .error [string] bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } if (!WithMessage) { //return Error(L, ".err encountered"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } StringRef Message = ".error directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (Lexer.isNot(AsmToken::String)) { //TokError(".error argument must be a string"); eatToEndOfStatement(); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } bool valid; Message = getTok().getStringContents(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); } //Error(L, Message); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } /// parseDirectiveWarning /// ::= .warning [string] bool AsmParser::parseDirectiveWarning(SMLoc L) { if (!TheCondStack.empty()) { if (TheCondStack.back().Ignore) { eatToEndOfStatement(); return false; } } StringRef Message = ".warning directive invoked in source file"; if (Lexer.isNot(AsmToken::EndOfStatement)) { if (Lexer.isNot(AsmToken::String)) { //TokError(".warning argument must be a string"); eatToEndOfStatement(); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } bool valid; Message = getTok().getStringContents(valid); if (!valid) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); } Warning(L, Message); return false; } bool AsmParser::parseNasmDirectiveBits() { int64_t bits = 0; if (parseAbsoluteExpression(bits)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } switch(bits) { default: // invalid parameter KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; case 16: { AsmToken bits(AsmToken::Identifier, StringRef(".code16"), 0); getTargetParser().ParseDirective(bits); break; } case 32: { AsmToken bits(AsmToken::Identifier, StringRef(".code32"), 0); getTargetParser().ParseDirective(bits); break; } case 64: { AsmToken bits(AsmToken::Identifier, StringRef(".code64"), 0); getTargetParser().ParseDirective(bits); break; } } return false; } bool AsmParser::parseNasmDirectiveUse32() { AsmToken bits(AsmToken::Identifier, StringRef(".code32"), 0); return getTargetParser().ParseDirective(bits); } bool AsmParser::parseNasmDirectiveDefault() { std::string flag = parseStringToEndOfStatement().lower(); if (flag == "rel") { setNasmDefaultRel(true); return false; } else if (flag == "abs") { setNasmDefaultRel(false); return false; } KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } /// parseDirectiveEndIf /// ::= .endif bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc) { if (getLexer().isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '.endif' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) { //Error(DirectiveLoc, "Encountered a .endif that doesn't follow a .if or " // ".else"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (!TheCondStack.empty()) { TheCondState = TheCondStack.back(); TheCondStack.pop_back(); } return false; } void AsmParser::initializeDirectiveKindMap(int syntax) { KsSyntax = syntax; if (syntax == KS_OPT_SYNTAX_NASM) { // NASM syntax DirectiveKindMap.clear(); DirectiveKindMap["db"] = DK_BYTE; DirectiveKindMap["dw"] = DK_SHORT; DirectiveKindMap["dd"] = DK_INT; DirectiveKindMap["dq"] = DK_QUAD; DirectiveKindMap["use16"] = DK_CODE16; DirectiveKindMap["use32"] = DK_NASM_USE32; DirectiveKindMap["global"] = DK_GLOBAL; DirectiveKindMap["bits"] = DK_NASM_BITS; DirectiveKindMap["default"] = DK_NASM_DEFAULT; } else { // default LLVM syntax DirectiveKindMap.clear(); DirectiveKindMap[".set"] = DK_SET; DirectiveKindMap[".equ"] = DK_EQU; DirectiveKindMap[".equiv"] = DK_EQUIV; DirectiveKindMap[".ascii"] = DK_ASCII; DirectiveKindMap[".asciz"] = DK_ASCIZ; DirectiveKindMap[".string"] = DK_STRING; DirectiveKindMap[".byte"] = DK_BYTE; DirectiveKindMap[".short"] = DK_SHORT; DirectiveKindMap[".value"] = DK_VALUE; DirectiveKindMap[".2byte"] = DK_2BYTE; DirectiveKindMap[".long"] = DK_LONG; DirectiveKindMap[".int"] = DK_INT; DirectiveKindMap[".4byte"] = DK_4BYTE; DirectiveKindMap[".quad"] = DK_QUAD; DirectiveKindMap[".8byte"] = DK_8BYTE; DirectiveKindMap[".octa"] = DK_OCTA; DirectiveKindMap[".single"] = DK_SINGLE; DirectiveKindMap[".float"] = DK_FLOAT; DirectiveKindMap[".double"] = DK_DOUBLE; DirectiveKindMap[".align"] = DK_ALIGN; DirectiveKindMap[".align32"] = DK_ALIGN32; DirectiveKindMap[".balign"] = DK_BALIGN; DirectiveKindMap[".balignw"] = DK_BALIGNW; DirectiveKindMap[".balignl"] = DK_BALIGNL; DirectiveKindMap[".p2align"] = DK_P2ALIGN; DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW; DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL; DirectiveKindMap[".org"] = DK_ORG; DirectiveKindMap[".fill"] = DK_FILL; DirectiveKindMap[".zero"] = DK_ZERO; DirectiveKindMap[".extern"] = DK_EXTERN; DirectiveKindMap[".globl"] = DK_GLOBL; DirectiveKindMap[".global"] = DK_GLOBAL; DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE; DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP; DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER; DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN; DirectiveKindMap[".reference"] = DK_REFERENCE; DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION; DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE; DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN; DirectiveKindMap[".comm"] = DK_COMM; DirectiveKindMap[".common"] = DK_COMMON; DirectiveKindMap[".lcomm"] = DK_LCOMM; DirectiveKindMap[".abort"] = DK_ABORT; DirectiveKindMap[".include"] = DK_INCLUDE; DirectiveKindMap[".incbin"] = DK_INCBIN; DirectiveKindMap[".code16"] = DK_CODE16; DirectiveKindMap[".code16gcc"] = DK_CODE16GCC; DirectiveKindMap[".rept"] = DK_REPT; DirectiveKindMap[".rep"] = DK_REPT; DirectiveKindMap[".irp"] = DK_IRP; DirectiveKindMap[".irpc"] = DK_IRPC; DirectiveKindMap[".endr"] = DK_ENDR; DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE; DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK; DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK; DirectiveKindMap[".if"] = DK_IF; DirectiveKindMap[".ifeq"] = DK_IFEQ; DirectiveKindMap[".ifge"] = DK_IFGE; DirectiveKindMap[".ifgt"] = DK_IFGT; DirectiveKindMap[".ifle"] = DK_IFLE; DirectiveKindMap[".iflt"] = DK_IFLT; DirectiveKindMap[".ifne"] = DK_IFNE; DirectiveKindMap[".ifb"] = DK_IFB; DirectiveKindMap[".ifnb"] = DK_IFNB; DirectiveKindMap[".ifc"] = DK_IFC; DirectiveKindMap[".ifeqs"] = DK_IFEQS; DirectiveKindMap[".ifnc"] = DK_IFNC; DirectiveKindMap[".ifnes"] = DK_IFNES; DirectiveKindMap[".ifdef"] = DK_IFDEF; DirectiveKindMap[".ifndef"] = DK_IFNDEF; DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF; DirectiveKindMap[".elseif"] = DK_ELSEIF; DirectiveKindMap[".else"] = DK_ELSE; DirectiveKindMap[".end"] = DK_END; DirectiveKindMap[".endif"] = DK_ENDIF; DirectiveKindMap[".skip"] = DK_SKIP; DirectiveKindMap[".space"] = DK_SPACE; DirectiveKindMap[".file"] = DK_FILE; DirectiveKindMap[".line"] = DK_LINE; DirectiveKindMap[".loc"] = DK_LOC; DirectiveKindMap[".stabs"] = DK_STABS; DirectiveKindMap[".cv_file"] = DK_CV_FILE; DirectiveKindMap[".cv_loc"] = DK_CV_LOC; DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE; DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE; DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE; DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS; DirectiveKindMap[".sleb128"] = DK_SLEB128; DirectiveKindMap[".uleb128"] = DK_ULEB128; DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS; DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC; DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC; DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA; DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET; DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET; DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER; DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET; DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET; DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY; DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA; DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE; DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE; DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE; DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE; DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE; DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME; DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED; DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER; DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE; DirectiveKindMap[".macros_on"] = DK_MACROS_ON; DirectiveKindMap[".macros_off"] = DK_MACROS_OFF; DirectiveKindMap[".macro"] = DK_MACRO; DirectiveKindMap[".exitm"] = DK_EXITM; DirectiveKindMap[".endm"] = DK_ENDM; DirectiveKindMap[".endmacro"] = DK_ENDMACRO; DirectiveKindMap[".purgem"] = DK_PURGEM; DirectiveKindMap[".err"] = DK_ERR; DirectiveKindMap[".error"] = DK_ERROR; DirectiveKindMap[".warning"] = DK_WARNING; DirectiveKindMap[".reloc"] = DK_RELOC; } } MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) { AsmToken EndToken, StartToken = getTok(); unsigned NestLevel = 0; for (;;) { // Check whether we have reached the end of the file. if (getLexer().is(AsmToken::Eof)) { //Error(DirectiveLoc, "no matching '.endr' in definition"); return nullptr; } if (Lexer.is(AsmToken::Identifier) && (getTok().getIdentifier() == ".rept")) { ++NestLevel; } // Otherwise, check whether we have reached the .endr. if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") { if (NestLevel == 0) { EndToken = getTok(); Lex(); if (Lexer.isNot(AsmToken::EndOfStatement)) { //TokError("unexpected token in '.endr' directive"); return nullptr; } break; } --NestLevel; } // Otherwise, scan till the end of the statement. eatToEndOfStatement(); } const char *BodyStart = StartToken.getLoc().getPointer(); const char *BodyEnd = EndToken.getLoc().getPointer(); StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart); // We Are Anonymous. MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters()); return &MacroLikeBodies.back(); } void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc, raw_svector_ostream &OS) { OS << ".endr\n"; std::unique_ptr Instantiation = MemoryBuffer::getMemBufferCopy(OS.str(), ""); // Create the macro instantiation object and add to the current macro // instantiation stack. MacroInstantiation *MI = new MacroInstantiation( DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size()); ActiveMacros.push_back(MI); // Jump to the macro instantiation and prime the lexer. CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc()); Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer()); Lex(); } /// parseDirectiveRept /// ::= .rep | .rept count bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir) { const MCExpr *CountExpr; //SMLoc CountLoc = getTok().getLoc(); if (parseExpression(CountExpr)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } int64_t Count; if (!CountExpr->evaluateAsAbsolute(Count)) { eatToEndOfStatement(); //return Error(CountLoc, "unexpected token in '" + Dir + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Count < 0) { //return Error(CountLoc, "Count is negative"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Lexer.isNot(AsmToken::EndOfStatement)) { //return TokError("unexpected token in '" + Dir + "' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Eat the end of statement. Lex(); // Lex the rept definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); while (Count--) { // Note that the AtPseudoVariable is disabled for instantiations of .rep(t). if (expandMacro(OS, M->Body, None, None, false, getTok().getLoc())) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } /// parseDirectiveIrp /// ::= .irp symbol,values bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc) { MCAsmMacroParameter Parameter; if (parseIdentifier(Parameter.Name)) { //return TokError("expected identifier in '.irp' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Lexer.isNot(AsmToken::Comma)) { //return TokError("expected comma in '.irp' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); MCAsmMacroArguments A; if (parseMacroArguments(nullptr, A)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Eat the end of statement. Lex(); // Lex the irp definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); for (const MCAsmMacroArgument &Arg : A) { // Note that the AtPseudoVariable is enabled for instantiations of .irp. // This is undocumented, but GAS seems to support it. if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } /// parseDirectiveIrpc /// ::= .irpc symbol,values bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc) { MCAsmMacroParameter Parameter; if (parseIdentifier(Parameter.Name)) { //return TokError("expected identifier in '.irpc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (Lexer.isNot(AsmToken::Comma)) { //return TokError("expected comma in '.irpc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Lex(); MCAsmMacroArguments A; if (parseMacroArguments(nullptr, A)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } if (A.size() != 1 || A.front().size() != 1) { //return TokError("unexpected token in '.irpc' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Eat the end of statement. Lex(); // Lex the irpc definition. MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc); if (!M) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // Macro instantiation is lexical, unfortunately. We construct a new buffer // to hold the macro body with substitutions. SmallString<256> Buf; raw_svector_ostream OS(Buf); StringRef Values = A.front().front().getString(); for (std::size_t I = 0, End = Values.size(); I != End; ++I) { MCAsmMacroArgument Arg; Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1)); // Note that the AtPseudoVariable is enabled for instantiations of .irpc. // This is undocumented, but GAS seems to support it. if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } } instantiateMacroLikeBody(M, DirectiveLoc, OS); return false; } bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc) { if (ActiveMacros.empty()) { //return TokError("unmatched '.endr' directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } // The only .repl that should get here are the ones created by // instantiateMacroLikeBody. assert(getLexer().is(AsmToken::EndOfStatement)); handleMacroExit(); return false; } bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info, size_t Len) { const MCExpr *Value; //SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) { //return Error(ExprLoc, "unexpected expression in _emit"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } uint64_t IntValue = MCE->getValue(); if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) { //return Error(ExprLoc, "literal value out of range for directive"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len); return false; } bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info) { const MCExpr *Value; //SMLoc ExprLoc = getLexer().getLoc(); if (parseExpression(Value)) { KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } const MCConstantExpr *MCE = dyn_cast(Value); if (!MCE) { //return Error(ExprLoc, "unexpected expression in align"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } uint64_t IntValue = MCE->getValue(); if (!isPowerOf2_64(IntValue)) { //return Error(ExprLoc, "literal value not a power of two greater then zero"); KsError = KS_ERR_ASM_DIRECTIVE_INVALID; return true; } Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue)); return false; } // We are comparing pointers, but the pointers are relative to a single string. // Thus, this should always be deterministic. static int rewritesSort(const AsmRewrite *AsmRewriteA, const AsmRewrite *AsmRewriteB) { if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer()) return -1; if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer()) return 1; // It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output // rewrite to the same location. Make sure the SizeDirective rewrite is // performed first, then the Imm/ImmPrefix and finally the Input/Output. This // ensures the sort algorithm is stable. if (AsmRewritePrecedence[AsmRewriteA->Kind] > AsmRewritePrecedence[AsmRewriteB->Kind]) return -1; if (AsmRewritePrecedence[AsmRewriteA->Kind] < AsmRewritePrecedence[AsmRewriteB->Kind]) return 1; llvm_unreachable("Unstable rewrite sort."); } bool AsmParser::parseMSInlineAsm( void *AsmLoc, std::string &AsmString, unsigned &NumOutputs, unsigned &NumInputs, SmallVectorImpl > &OpDecls, SmallVectorImpl &Constraints, SmallVectorImpl &Clobbers, const MCInstrInfo *MII, MCAsmParserSemaCallback &SI, uint64_t &Address) { SmallVector InputDecls; SmallVector OutputDecls; SmallVector InputDeclsAddressOf; SmallVector OutputDeclsAddressOf; SmallVector InputConstraints; SmallVector OutputConstraints; SmallVector ClobberRegs; SmallVector AsmStrRewrites; // Prime the lexer. Lex(); // While we have input, parse each statement. unsigned InputIdx = 0; unsigned OutputIdx = 0; while (getLexer().isNot(AsmToken::Eof)) { ParseStatementInfo Info(&AsmStrRewrites); if (parseStatement(Info, &SI, Address)) return true; if (Info.ParseError) return true; if (Info.Opcode == ~0U) continue; const MCInstrDesc &Desc = MII->get(Info.Opcode); // Build the list of clobbers, outputs and inputs. for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) { MCParsedAsmOperand &Operand = *Info.ParsedOperands[i]; // Immediate. if (Operand.isImm()) continue; // Register operand. if (Operand.isReg() && !Operand.needAddressOf() && !getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) { unsigned NumDefs = Desc.getNumDefs(); // Clobber. if (NumDefs && Operand.getMCOperandNum() < NumDefs) ClobberRegs.push_back(Operand.getReg()); continue; } // Expr/Input or Output. StringRef SymName = Operand.getSymName(); if (SymName.empty()) continue; void *OpDecl = Operand.getOpDecl(); if (!OpDecl) continue; bool isOutput = (i == 1) && Desc.mayStore(); SMLoc Start = SMLoc::getFromPointer(SymName.data()); if (isOutput) { ++InputIdx; OutputDecls.push_back(OpDecl); OutputDeclsAddressOf.push_back(Operand.needAddressOf()); OutputConstraints.push_back(("=" + Operand.getConstraint()).str()); AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size()); } else { InputDecls.push_back(OpDecl); InputDeclsAddressOf.push_back(Operand.needAddressOf()); InputConstraints.push_back(Operand.getConstraint().str()); AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size()); } } // Consider implicit defs to be clobbers. Think of cpuid and push. ArrayRef ImpDefs(Desc.getImplicitDefs(), Desc.getNumImplicitDefs()); ClobberRegs.insert(ClobberRegs.end(), ImpDefs.begin(), ImpDefs.end()); } // Set the number of Outputs and Inputs. NumOutputs = OutputDecls.size(); NumInputs = InputDecls.size(); // Set the unique clobbers. array_pod_sort(ClobberRegs.begin(), ClobberRegs.end()); ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()), ClobberRegs.end()); Clobbers.assign(ClobberRegs.size(), std::string()); for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) { raw_string_ostream OS(Clobbers[I]); //IP->printRegName(OS, ClobberRegs[I]); } // Merge the various outputs and inputs. Output are expected first. if (NumOutputs || NumInputs) { unsigned NumExprs = NumOutputs + NumInputs; OpDecls.resize(NumExprs); Constraints.resize(NumExprs); for (unsigned i = 0; i < NumOutputs; ++i) { OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]); Constraints[i] = OutputConstraints[i]; } for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) { OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]); Constraints[j] = InputConstraints[i]; } } // Build the IR assembly string. std::string AsmStringIR; raw_string_ostream OS(AsmStringIR); StringRef ASMString = SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer(); const char *AsmStart = ASMString.begin(); const char *AsmEnd = ASMString.end(); array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort); for (const AsmRewrite &AR : AsmStrRewrites) { AsmRewriteKind Kind = AR.Kind; if (Kind == AOK_Delete) continue; const char *Loc = AR.Loc.getPointer(); assert(Loc >= AsmStart && "Expected Loc to be at or after Start!"); // Emit everything up to the immediate/expression. if (unsigned Len = Loc - AsmStart) OS << StringRef(AsmStart, Len); // Skip the original expression. if (Kind == AOK_Skip) { AsmStart = Loc + AR.Len; continue; } unsigned AdditionalSkip = 0; // Rewrite expressions in $N notation. switch (Kind) { default: break; case AOK_Imm: OS << "$$" << AR.Val; break; case AOK_ImmPrefix: OS << "$$"; break; case AOK_Label: OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label; break; case AOK_Input: OS << '$' << InputIdx++; break; case AOK_Output: OS << '$' << OutputIdx++; break; case AOK_SizeDirective: switch (AR.Val) { default: break; case 8: OS << "byte ptr "; break; case 16: OS << "word ptr "; break; case 32: OS << "dword ptr "; break; case 64: OS << "qword ptr "; break; case 80: OS << "xword ptr "; break; case 128: OS << "xmmword ptr "; break; case 256: OS << "ymmword ptr "; break; } break; case AOK_Emit: OS << ".byte"; break; case AOK_Align: { // MS alignment directives are measured in bytes. If the native assembler // measures alignment in bytes, we can pass it straight through. OS << ".align"; if (getContext().getAsmInfo()->getAlignmentIsInBytes()) break; // Alignment is in log2 form, so print that instead and skip the original // immediate. unsigned Val = AR.Val; OS << ' ' << Val; assert(Val < 10 && "Expected alignment less then 2^10."); AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4; break; } case AOK_EVEN: OS << ".even"; break; case AOK_DotOperator: // Insert the dot if the user omitted it. OS.flush(); if (AsmStringIR.back() != '.') OS << '.'; OS << AR.Val; break; } // Skip the original expression. AsmStart = Loc + AR.Len + AdditionalSkip; } // Emit the remainder of the asm string. if (AsmStart != AsmEnd) OS << StringRef(AsmStart, AsmEnd - AsmStart); AsmString = OS.str(); return false; } namespace llvm_ks { namespace MCParserUtils { /// Returns whether the given symbol is used anywhere in the given expression, /// or subexpressions. static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) { switch (Value->getKind()) { case MCExpr::Binary: { const MCBinaryExpr *BE = static_cast(Value); return isSymbolUsedInExpression(Sym, BE->getLHS()) || isSymbolUsedInExpression(Sym, BE->getRHS()); } case MCExpr::Target: case MCExpr::Constant: return false; case MCExpr::SymbolRef: { const MCSymbol &S = static_cast(Value)->getSymbol(); if (S.isVariable()) return isSymbolUsedInExpression(Sym, S.getVariableValue()); return &S == Sym; } case MCExpr::Unary: return isSymbolUsedInExpression( Sym, static_cast(Value)->getSubExpr()); } llvm_unreachable("Unknown expr kind!"); } bool parseAssignmentExpression(StringRef Name, bool allow_redef, MCAsmParser &Parser, MCSymbol *&Sym, const MCExpr *&Value) { MCAsmLexer &Lexer = Parser.getLexer(); // FIXME: Use better location, we should use proper tokens. //SMLoc EqualLoc = Lexer.getLoc(); if (Parser.parseExpression(Value)) { //Parser.TokError("missing expression"); Parser.eatToEndOfStatement(); return true; } // Note: we don't count b as used in "a = b". This is to allow // a = b // b = c if (Lexer.isNot(AsmToken::EndOfStatement)) //return Parser.TokError("unexpected token in assignment"); return true; // Eat the end of statement marker. Parser.Lex(); // Validate that the LHS is allowed to be a variable (either it has not been // used as a symbol, or it is an absolute symbol). Sym = Parser.getContext().lookupSymbol(Name); if (Sym) { // Diagnose assignment to a label. // // FIXME: Diagnostics. Note the location of the definition as a label. // FIXME: Diagnose assignment to protected identifier (e.g., register name). if (isSymbolUsedInExpression(Sym, Value)) //return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'"); return true; else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() && !Sym->isVariable()) ; // Allow redefinitions of undefined symbols only used in directives. else if (Sym->isVariable() && !Sym->isUsed() && allow_redef) ; // Allow redefinitions of variables that haven't yet been used. else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef)) //return Parser.Error(EqualLoc, "redefinition of '" + Name + "'"); return true; else if (!Sym->isVariable()) //return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'"); return true; else if (!isa(Sym->getVariableValue())) //return Parser.Error(EqualLoc, // "invalid reassignment of non-absolute variable '" + // Name + "'"); return true; } else if (Name == ".") { Parser.getStreamer().emitValueToOffset(Value, 0); return false; } else { if (Name.empty()) { return true; } Sym = Parser.getContext().getOrCreateSymbol(Name); } Sym->setRedefinable(allow_redef); return false; } } // namespace MCParserUtils } // namespace llvm_ks /// \brief Create an MCAsmParser instance. MCAsmParser *llvm_ks::createMCAsmParser(SourceMgr &SM, MCContext &C, MCStreamer &Out, const MCAsmInfo &MAI) { return new AsmParser(SM, C, Out, MAI); }