You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
580 lines
20 KiB
580 lines
20 KiB
//===----- HexagonMCChecker.cpp - Instruction bundle checking -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This implements the checking of insns inside a bundle according to the
|
|
// packet constraint rules of the Hexagon ISA.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "HexagonMCChecker.h"
|
|
|
|
#include "HexagonBaseInfo.h"
|
|
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCInstrInfo.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm_ks;
|
|
|
|
static bool RelaxNVChecks = false;
|
|
|
|
const HexagonMCChecker::PredSense
|
|
HexagonMCChecker::Unconditional(Hexagon::NoRegister, false);
|
|
|
|
void HexagonMCChecker::init() {
|
|
// Initialize read-only registers set.
|
|
ReadOnly.insert(Hexagon::PC);
|
|
|
|
// Figure out the loop-registers definitions.
|
|
if (HexagonMCInstrInfo::isInnerLoop(MCB)) {
|
|
Defs[Hexagon::SA0].insert(Unconditional); // FIXME: define or change SA0?
|
|
Defs[Hexagon::LC0].insert(Unconditional);
|
|
}
|
|
if (HexagonMCInstrInfo::isOuterLoop(MCB)) {
|
|
Defs[Hexagon::SA1].insert(Unconditional); // FIXME: define or change SA0?
|
|
Defs[Hexagon::LC1].insert(Unconditional);
|
|
}
|
|
|
|
if (HexagonMCInstrInfo::isBundle(MCB))
|
|
// Unfurl a bundle.
|
|
for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
init(*I.getInst());
|
|
}
|
|
else
|
|
init(MCB);
|
|
}
|
|
|
|
void HexagonMCChecker::init(MCInst const& MCI) {
|
|
const MCInstrDesc& MCID = HexagonMCInstrInfo::getDesc(MCII, MCI);
|
|
unsigned PredReg = Hexagon::NoRegister;
|
|
bool isTrue = false;
|
|
|
|
// Get used registers.
|
|
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
|
|
if (MCI.getOperand(i).isReg()) {
|
|
unsigned R = MCI.getOperand(i).getReg();
|
|
|
|
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) && isPredicateRegister(R)) {
|
|
// Note an used predicate register.
|
|
PredReg = R;
|
|
isTrue = HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI);
|
|
|
|
// Note use of new predicate register.
|
|
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
|
|
NewPreds.insert(PredReg);
|
|
}
|
|
else
|
|
// Note register use. Super-registers are not tracked directly,
|
|
// but their components.
|
|
for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
|
|
SRI.isValid();
|
|
++SRI)
|
|
if (!MCSubRegIterator(*SRI, &RI).isValid())
|
|
// Skip super-registers used indirectly.
|
|
Uses.insert(*SRI);
|
|
}
|
|
|
|
// Get implicit register definitions.
|
|
if (const MCPhysReg *ImpDef = MCID.getImplicitDefs())
|
|
for (; *ImpDef; ++ImpDef) {
|
|
unsigned R = *ImpDef;
|
|
|
|
if (Hexagon::R31 != R && MCID.isCall())
|
|
// Any register other than the LR and the PC are actually volatile ones
|
|
// as defined by the ABI, not modified implicitly by the call insn.
|
|
continue;
|
|
if (Hexagon::PC == R)
|
|
// Branches are the only insns that can change the PC,
|
|
// otherwise a read-only register.
|
|
continue;
|
|
|
|
if (Hexagon::USR_OVF == R)
|
|
// Many insns change the USR implicitly, but only one or another flag.
|
|
// The instruction table models the USR.OVF flag, which can be implicitly
|
|
// modified more than once, but cannot be modified in the same packet
|
|
// with an instruction that modifies is explicitly. Deal with such situ-
|
|
// ations individually.
|
|
SoftDefs.insert(R);
|
|
else if (isPredicateRegister(R) &&
|
|
HexagonMCInstrInfo::isPredicateLate(MCII, MCI))
|
|
// Include implicit late predicates.
|
|
LatePreds.insert(R);
|
|
else
|
|
Defs[R].insert(PredSense(PredReg, isTrue));
|
|
}
|
|
|
|
// Figure out explicit register definitions.
|
|
for (unsigned i = 0; i < MCID.getNumDefs(); ++i) {
|
|
unsigned R = MCI.getOperand(i).getReg(),
|
|
S = Hexagon::NoRegister;
|
|
|
|
// Note register definitions, direct ones as well as indirect side-effects.
|
|
// Super-registers are not tracked directly, but their components.
|
|
for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
|
|
SRI.isValid();
|
|
++SRI) {
|
|
if (MCSubRegIterator(*SRI, &RI).isValid())
|
|
// Skip super-registers defined indirectly.
|
|
continue;
|
|
|
|
if (R == *SRI) {
|
|
if (S == R)
|
|
// Avoid scoring the defined register multiple times.
|
|
continue;
|
|
else
|
|
// Note that the defined register has already been scored.
|
|
S = R;
|
|
}
|
|
|
|
if (Hexagon::P3_0 != R && Hexagon::P3_0 == *SRI)
|
|
// P3:0 is a special case, since multiple predicate register definitions
|
|
// in a packet is allowed as the equivalent of their logical "and".
|
|
// Only an explicit definition of P3:0 is noted as such; if a
|
|
// side-effect, then note as a soft definition.
|
|
SoftDefs.insert(*SRI);
|
|
else if (HexagonMCInstrInfo::isPredicateLate(MCII, MCI) && isPredicateRegister(*SRI))
|
|
// Some insns produce predicates too late to be used in the same packet.
|
|
LatePreds.insert(*SRI);
|
|
else if (i == 0 && llvm_ks::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_CUR_LD)
|
|
// Current loads should be used in the same packet.
|
|
// TODO: relies on the impossibility of a current and a temporary loads
|
|
// in the same packet.
|
|
CurDefs.insert(*SRI), Defs[*SRI].insert(PredSense(PredReg, isTrue));
|
|
else if (i == 0 && llvm_ks::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCVI_VM_TMP_LD)
|
|
// Temporary loads should be used in the same packet, but don't commit
|
|
// results, so it should be disregarded if another insn changes the same
|
|
// register.
|
|
// TODO: relies on the impossibility of a current and a temporary loads
|
|
// in the same packet.
|
|
TmpDefs.insert(*SRI);
|
|
else if (i <= 1 && llvm_ks::HexagonMCInstrInfo::hasNewValue2(MCII, MCI) )
|
|
// vshuff(Vx, Vy, Rx) <- Vx(0) and Vy(1) are both source and
|
|
// destination registers with this instruction. same for vdeal(Vx,Vy,Rx)
|
|
Uses.insert(*SRI);
|
|
else
|
|
Defs[*SRI].insert(PredSense(PredReg, isTrue));
|
|
}
|
|
}
|
|
|
|
// Figure out register definitions that produce new values.
|
|
if (HexagonMCInstrInfo::hasNewValue(MCII, MCI)) {
|
|
unsigned R = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
|
|
|
|
if (HexagonMCInstrInfo::isCompound(MCII, MCI))
|
|
compoundRegisterMap(R); // Compound insns have a limited register range.
|
|
|
|
for(MCRegAliasIterator SRI(R, &RI, !MCSubRegIterator(R, &RI).isValid());
|
|
SRI.isValid();
|
|
++SRI)
|
|
if (!MCSubRegIterator(*SRI, &RI).isValid())
|
|
// No super-registers defined indirectly.
|
|
NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
|
|
HexagonMCInstrInfo::isFloat(MCII, MCI)));
|
|
|
|
// For fairly unique 2-dot-new producers, example:
|
|
// vdeal(V1, V9, R0) V1.new and V9.new can be used by consumers.
|
|
if (HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) {
|
|
unsigned R2 = HexagonMCInstrInfo::getNewValueOperand2(MCII, MCI).getReg();
|
|
|
|
for(MCRegAliasIterator SRI(R2, &RI, !MCSubRegIterator(R2, &RI).isValid());
|
|
SRI.isValid();
|
|
++SRI)
|
|
if (!MCSubRegIterator(*SRI, &RI).isValid())
|
|
NewDefs[*SRI].push_back(NewSense::Def(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI),
|
|
HexagonMCInstrInfo::isFloat(MCII, MCI)));
|
|
}
|
|
}
|
|
|
|
// Figure out definitions of new predicate registers.
|
|
if (HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
|
|
for (unsigned i = MCID.getNumDefs(); i < MCID.getNumOperands(); ++i)
|
|
if (MCI.getOperand(i).isReg()) {
|
|
unsigned P = MCI.getOperand(i).getReg();
|
|
|
|
if (isPredicateRegister(P))
|
|
NewPreds.insert(P);
|
|
}
|
|
|
|
// Figure out uses of new values.
|
|
if (HexagonMCInstrInfo::isNewValue(MCII, MCI)) {
|
|
unsigned N = HexagonMCInstrInfo::getNewValueOperand(MCII, MCI).getReg();
|
|
|
|
if (!MCSubRegIterator(N, &RI).isValid()) {
|
|
// Super-registers cannot use new values.
|
|
if (MCID.isBranch())
|
|
NewUses[N] = NewSense::Jmp(llvm_ks::HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV);
|
|
else
|
|
NewUses[N] = NewSense::Use(PredReg, HexagonMCInstrInfo::isPredicatedTrue(MCII, MCI));
|
|
}
|
|
}
|
|
}
|
|
|
|
HexagonMCChecker::HexagonMCChecker(MCInstrInfo const &MCII, MCSubtargetInfo const &STI, MCInst &mcb, MCInst &mcbdx,
|
|
MCRegisterInfo const &ri)
|
|
: MCB(mcb), MCBDX(mcbdx), RI(ri), MCII(MCII), STI(STI),
|
|
bLoadErrInfo(false) {
|
|
init();
|
|
}
|
|
|
|
bool HexagonMCChecker::check() {
|
|
bool chkB = checkBranches();
|
|
bool chkP = checkPredicates();
|
|
bool chkNV = checkNewValues();
|
|
bool chkR = checkRegisters();
|
|
bool chkS = checkSolo();
|
|
bool chkSh = checkShuffle();
|
|
bool chkSl = checkSlots();
|
|
bool chk = chkB && chkP && chkNV && chkR && chkS && chkSh && chkSl;
|
|
|
|
return chk;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkSlots()
|
|
|
|
{
|
|
unsigned slotsUsed = 0;
|
|
for (auto HMI: HexagonMCInstrInfo::bundleInstructions(MCBDX)) {
|
|
MCInst const& MCI = *HMI.getInst();
|
|
if (HexagonMCInstrInfo::isImmext(MCI))
|
|
continue;
|
|
if (HexagonMCInstrInfo::isDuplex(MCII, MCI))
|
|
slotsUsed += 2;
|
|
else
|
|
++slotsUsed;
|
|
}
|
|
|
|
if (slotsUsed > HEXAGON_PACKET_SIZE) {
|
|
HexagonMCErrInfo errInfo;
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NOSLOTS);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Check legal use of branches.
|
|
bool HexagonMCChecker::checkBranches() {
|
|
HexagonMCErrInfo errInfo;
|
|
if (HexagonMCInstrInfo::isBundle(MCB)) {
|
|
bool hasConditional = false;
|
|
unsigned Branches = 0, Returns = 0, NewIndirectBranches = 0,
|
|
NewValueBranches = 0, Conditional = HEXAGON_PRESHUFFLE_PACKET_SIZE,
|
|
Unconditional = HEXAGON_PRESHUFFLE_PACKET_SIZE;
|
|
|
|
for (unsigned i = HexagonMCInstrInfo::bundleInstructionsOffset;
|
|
i < MCB.size(); ++i) {
|
|
MCInst const &MCI = *MCB.begin()[i].getInst();
|
|
|
|
if (HexagonMCInstrInfo::isImmext(MCI))
|
|
continue;
|
|
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch() ||
|
|
HexagonMCInstrInfo::getDesc(MCII, MCI).isCall()) {
|
|
++Branches;
|
|
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isIndirectBranch() &&
|
|
HexagonMCInstrInfo::isPredicatedNew(MCII, MCI))
|
|
++NewIndirectBranches;
|
|
if (HexagonMCInstrInfo::isNewValue(MCII, MCI))
|
|
++NewValueBranches;
|
|
|
|
if (HexagonMCInstrInfo::isPredicated(MCII, MCI) ||
|
|
HexagonMCInstrInfo::isPredicatedNew(MCII, MCI)) {
|
|
hasConditional = true;
|
|
Conditional = i; // Record the position of the conditional branch.
|
|
} else {
|
|
Unconditional = i; // Record the position of the unconditional branch.
|
|
}
|
|
}
|
|
if (HexagonMCInstrInfo::getDesc(MCII, MCI).isReturn() &&
|
|
HexagonMCInstrInfo::getDesc(MCII, MCI).mayLoad())
|
|
++Returns;
|
|
}
|
|
|
|
if (Branches) // FIXME: should "Defs.count(Hexagon::PC)" be here too?
|
|
if (HexagonMCInstrInfo::isInnerLoop(MCB) ||
|
|
HexagonMCInstrInfo::isOuterLoop(MCB)) {
|
|
// Error out if there's any branch in a loop-end packet.
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_ENDLOOP, Hexagon::PC);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
if (Branches > 1)
|
|
if (!hasConditional || Conditional > Unconditional) {
|
|
// Error out if more than one unconditional branch or
|
|
// the conditional branch appears after the unconditional one.
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_BRANCHES);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check legal use of predicate registers.
|
|
bool HexagonMCChecker::checkPredicates() {
|
|
HexagonMCErrInfo errInfo;
|
|
// Check for proper use of new predicate registers.
|
|
for (const auto& I : NewPreds) {
|
|
unsigned P = I;
|
|
|
|
if (!Defs.count(P) || LatePreds.count(P)) {
|
|
// Error out if the new predicate register is not defined,
|
|
// or defined "late"
|
|
// (e.g., "{ if (p3.new)... ; p3 = sp1loop0(#r7:2, Rs) }").
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWP, P);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check for proper use of auto-anded of predicate registers.
|
|
for (const auto& I : LatePreds) {
|
|
unsigned P = I;
|
|
|
|
if (LatePreds.count(P) > 1 || Defs.count(P)) {
|
|
// Error out if predicate register defined "late" multiple times or
|
|
// defined late and regularly defined
|
|
// (e.g., "{ p3 = sp1loop0(...); p3 = cmp.eq(...) }".
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, P);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check legal use of new values.
|
|
bool HexagonMCChecker::checkNewValues() {
|
|
HexagonMCErrInfo errInfo;
|
|
memset(&errInfo, 0, sizeof(errInfo));
|
|
for (auto& I : NewUses) {
|
|
unsigned R = I.first;
|
|
NewSense &US = I.second;
|
|
|
|
if (!hasValidNewValueDef(US, NewDefs[R])) {
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_NEWV, R);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check for legal register uses and definitions.
|
|
bool HexagonMCChecker::checkRegisters() {
|
|
HexagonMCErrInfo errInfo;
|
|
// Check for proper register definitions.
|
|
for (const auto& I : Defs) {
|
|
unsigned R = I.first;
|
|
|
|
if (ReadOnly.count(R)) {
|
|
// Error out for definitions of read-only registers.
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_READONLY, R);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
if (isLoopRegister(R) && Defs.count(R) > 1 &&
|
|
(HexagonMCInstrInfo::isInnerLoop(MCB) ||
|
|
HexagonMCInstrInfo::isOuterLoop(MCB))) {
|
|
// Error out for definitions of loop registers at the end of a loop.
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_LOOP, R);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
if (SoftDefs.count(R)) {
|
|
// Error out for explicit changes to registers also weakly defined
|
|
// (e.g., "{ usr = r0; r0 = sfadd(...) }").
|
|
unsigned UsrR = Hexagon::USR; // Silence warning about mixed types in ?:.
|
|
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
if (!isPredicateRegister(R) && Defs[R].size() > 1) {
|
|
// Check for multiple register definitions.
|
|
PredSet &PM = Defs[R];
|
|
|
|
// Check for multiple unconditional register definitions.
|
|
if (PM.count(Unconditional)) {
|
|
// Error out on an unconditional change when there are any other
|
|
// changes, conditional or not.
|
|
unsigned UsrR = Hexagon::USR;
|
|
unsigned BadR = RI.isSubRegister(Hexagon::USR, R) ? UsrR : R;
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, BadR);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
// Check for multiple conditional register definitions.
|
|
for (const auto& J : PM) {
|
|
PredSense P = J;
|
|
|
|
// Check for multiple uses of the same condition.
|
|
if (PM.count(P) > 1) {
|
|
// Error out on conditional changes based on the same predicate
|
|
// (e.g., "{ if (!p0) r0 =...; if (!p0) r0 =... }").
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
// Check for the use of the complementary condition.
|
|
P.second = !P.second;
|
|
if (PM.count(P) && PM.size() > 2) {
|
|
// Error out on conditional changes based on the same predicate
|
|
// multiple times
|
|
// (e.g., "{ if (p0) r0 =...; if (!p0) r0 =... }; if (!p0) r0 =... }").
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_REGISTERS, R);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check for use of current definitions.
|
|
for (const auto& I : CurDefs) {
|
|
unsigned R = I;
|
|
|
|
if (!Uses.count(R)) {
|
|
// Warn on an unused current definition.
|
|
errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_CURRENT, R);
|
|
addErrInfo(errInfo);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// Check for use of temporary definitions.
|
|
for (const auto& I : TmpDefs) {
|
|
unsigned R = I;
|
|
|
|
if (!Uses.count(R)) {
|
|
// special case for vhist
|
|
bool vHistFound = false;
|
|
for (auto const&HMI : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
if(llvm_ks::HexagonMCInstrInfo::getType(MCII, *HMI.getInst()) == HexagonII::TypeCVI_HIST) {
|
|
vHistFound = true; // vhist() implicitly uses ALL REGxx.tmp
|
|
break;
|
|
}
|
|
}
|
|
// Warn on an unused temporary definition.
|
|
if (vHistFound == false) {
|
|
errInfo.setWarning(HexagonMCErrInfo::CHECK_WARN_TEMPORARY, R);
|
|
addErrInfo(errInfo);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
// Check for legal use of solo insns.
|
|
bool HexagonMCChecker::checkSolo() {
|
|
HexagonMCErrInfo errInfo;
|
|
if (HexagonMCInstrInfo::isBundle(MCB) &&
|
|
HexagonMCInstrInfo::bundleSize(MCB) > 1) {
|
|
for (auto const&I : HexagonMCInstrInfo::bundleInstructions(MCB)) {
|
|
if (llvm_ks::HexagonMCInstrInfo::isSolo(MCII, *I.getInst())) {
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SOLO);
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool HexagonMCChecker::checkShuffle() {
|
|
HexagonMCErrInfo errInfo;
|
|
// Branch info is lost when duplexing. The unduplexed insns must be
|
|
// checked and only branch errors matter for this case.
|
|
HexagonMCShuffler MCS(MCII, STI, MCB);
|
|
if (!MCS.check()) {
|
|
if (MCS.getError() == HexagonShuffler::SHUFFLE_ERROR_BRANCHES) {
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE);
|
|
errInfo.setShuffleError(MCS.getError());
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
}
|
|
HexagonMCShuffler MCSDX(MCII, STI, MCBDX);
|
|
if (!MCSDX.check()) {
|
|
errInfo.setError(HexagonMCErrInfo::CHECK_ERROR_SHUFFLE);
|
|
errInfo.setShuffleError(MCSDX.getError());
|
|
addErrInfo(errInfo);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void HexagonMCChecker::compoundRegisterMap(unsigned& Register) {
|
|
switch (Register) {
|
|
default:
|
|
break;
|
|
case Hexagon::R15:
|
|
Register = Hexagon::R23;
|
|
break;
|
|
case Hexagon::R14:
|
|
Register = Hexagon::R22;
|
|
break;
|
|
case Hexagon::R13:
|
|
Register = Hexagon::R21;
|
|
break;
|
|
case Hexagon::R12:
|
|
Register = Hexagon::R20;
|
|
break;
|
|
case Hexagon::R11:
|
|
Register = Hexagon::R19;
|
|
break;
|
|
case Hexagon::R10:
|
|
Register = Hexagon::R18;
|
|
break;
|
|
case Hexagon::R9:
|
|
Register = Hexagon::R17;
|
|
break;
|
|
case Hexagon::R8:
|
|
Register = Hexagon::R16;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool HexagonMCChecker::hasValidNewValueDef(const NewSense &Use,
|
|
const NewSenseList &Defs) const {
|
|
bool Strict = !RelaxNVChecks;
|
|
|
|
for (unsigned i = 0, n = Defs.size(); i < n; ++i) {
|
|
const NewSense &Def = Defs[i];
|
|
// NVJ cannot use a new FP value [7.6.1]
|
|
if (Use.IsNVJ && (Def.IsFloat || Def.PredReg != 0))
|
|
continue;
|
|
// If the definition was not predicated, then it does not matter if
|
|
// the use is.
|
|
if (Def.PredReg == 0)
|
|
return true;
|
|
// With the strict checks, both the definition and the use must be
|
|
// predicated on the same register and condition.
|
|
if (Strict) {
|
|
if (Def.PredReg == Use.PredReg && Def.Cond == Use.Cond)
|
|
return true;
|
|
} else {
|
|
// With the relaxed checks, if the definition was predicated, the only
|
|
// detectable violation is if the use is predicated on the opposing
|
|
// condition, otherwise, it's ok.
|
|
if (Def.PredReg != Use.PredReg || Def.Cond == Use.Cond)
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|