You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6147 lines
184 KiB

//===- AsmParser.cpp - Parser for Assembly Files --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class implements the parser for assembly files.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCParser/AsmCond.h"
#include "llvm/MC/MCParser/AsmLexer.h"
#include "llvm/MC/MCParser/MCAsmParser.h"
#include "llvm/MC/MCParser/MCAsmParserUtils.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionMachO.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCValue.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include <cctype>
#include <deque>
#include <set>
#include <string>
#include <vector>
#include <keystone/keystone.h>
//#include <iostream>
using namespace llvm_ks;
MCAsmParserSemaCallback::~MCAsmParserSemaCallback() {}
namespace {
/// \brief Helper types for tracking macro definitions.
typedef std::vector<AsmToken> MCAsmMacroArgument;
typedef std::vector<MCAsmMacroArgument> MCAsmMacroArguments;
struct MCAsmMacroParameter {
StringRef Name;
MCAsmMacroArgument Value;
bool Required;
bool Vararg;
MCAsmMacroParameter() : Required(false), Vararg(false) {}
};
typedef std::vector<MCAsmMacroParameter> MCAsmMacroParameters;
struct MCAsmMacro {
StringRef Name;
StringRef Body;
MCAsmMacroParameters Parameters;
public:
MCAsmMacro(StringRef N, StringRef B, MCAsmMacroParameters P)
: Name(N), Body(B), Parameters(std::move(P)) {}
};
/// \brief Helper class for storing information about an active macro
/// instantiation.
struct MacroInstantiation {
/// The location of the instantiation.
SMLoc InstantiationLoc;
/// The buffer where parsing should resume upon instantiation completion.
int ExitBuffer;
/// The location where parsing should resume upon instantiation completion.
SMLoc ExitLoc;
/// The depth of TheCondStack at the start of the instantiation.
size_t CondStackDepth;
public:
MacroInstantiation(SMLoc IL, int EB, SMLoc EL, size_t CondStackDepth);
};
struct ParseStatementInfo {
// error code for Keystone
unsigned int KsError;
/// \brief The parsed operands from the last parsed statement.
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> ParsedOperands;
/// \brief The opcode from the last parsed instruction.
unsigned Opcode;
/// \brief Was there an error parsing the inline assembly?
bool ParseError;
SmallVectorImpl<AsmRewrite> *AsmRewrites;
ParseStatementInfo() : KsError(0), Opcode(~0U), ParseError(false), AsmRewrites(nullptr) {}
ParseStatementInfo(SmallVectorImpl<AsmRewrite> *rewrites)
: Opcode(~0), ParseError(false), AsmRewrites(rewrites) {}
};
/// \brief The concrete assembly parser instance.
class AsmParser : public MCAsmParser {
AsmParser(const AsmParser &) = delete;
void operator=(const AsmParser &) = delete;
private:
AsmLexer Lexer;
MCContext &Ctx;
MCStreamer &Out;
const MCAsmInfo &MAI;
SourceMgr &SrcMgr;
SourceMgr::DiagHandlerTy SavedDiagHandler;
void *SavedDiagContext;
std::unique_ptr<MCAsmParserExtension> PlatformParser;
/// This is the current buffer index we're lexing from as managed by the
/// SourceMgr object.
unsigned CurBuffer;
AsmCond TheCondState;
std::vector<AsmCond> TheCondStack;
/// \brief maps directive names to handler methods in parser
/// extensions. Extensions register themselves in this map by calling
/// addDirectiveHandler.
StringMap<ExtensionDirectiveHandler> ExtensionDirectiveMap;
/// \brief Map of currently defined macros.
StringMap<MCAsmMacro> MacroMap;
/// \brief Stack of active macro instantiations.
std::vector<MacroInstantiation*> ActiveMacros;
/// \brief List of bodies of anonymous macros.
std::deque<MCAsmMacro> MacroLikeBodies;
/// Boolean tracking whether macro substitution is enabled.
unsigned MacrosEnabledFlag : 1;
/// \brief Keeps track of how many .macro's have been instantiated.
unsigned NumOfMacroInstantiations;
/// Flag tracking whether any errors have been encountered.
bool HadError;
/// The values from the last parsed cpp hash file line comment if any.
StringRef CppHashFilename;
int64_t CppHashLineNumber;
SMLoc CppHashLoc;
unsigned CppHashBuf;
/// When generating dwarf for assembly source files we need to calculate the
/// logical line number based on the last parsed cpp hash file line comment
/// and current line. Since this is slow and messes up the SourceMgr's
/// cache we save the last info we queried with SrcMgr.FindLineNumber().
SMLoc LastQueryIDLoc;
/// AssemblerDialect. ~OU means unset value and use value provided by MAI.
unsigned AssemblerDialect;
/// \brief is Darwin compatibility enabled?
bool IsDarwin;
/// \brief Are we parsing ms-style inline assembly?
bool ParsingInlineAsm;
/// \brief Should we use PC relative offsets by default?
bool NasmDefaultRel;
// Keystone syntax support
int KsSyntax;
public:
AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI);
~AsmParser() override;
size_t Run(bool NoInitialTextSection, uint64_t Address, bool NoFinalize = false) override;
void addDirectiveHandler(StringRef Directive,
ExtensionDirectiveHandler Handler) override {
ExtensionDirectiveMap[Directive] = Handler;
}
void addAliasForDirective(StringRef Directive, StringRef Alias) override {
DirectiveKindMap[Directive] = DirectiveKindMap[Alias];
}
public:
/// @name MCAsmParser Interface
/// {
SourceMgr &getSourceManager() override { return SrcMgr; }
MCAsmLexer &getLexer() override { return Lexer; }
MCContext &getContext() override { return Ctx; }
MCStreamer &getStreamer() override { return Out; }
unsigned getAssemblerDialect() override {
if (AssemblerDialect == ~0U)
return MAI.getAssemblerDialect();
else
return AssemblerDialect;
}
void setAssemblerDialect(unsigned i) override {
AssemblerDialect = i;
}
void Note(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None) override;
bool Warning(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None) override;
bool Error(SMLoc L, const Twine &Msg,
ArrayRef<SMRange> Ranges = None) override;
const AsmToken &Lex() override;
void setParsingInlineAsm(bool V) override { ParsingInlineAsm = V; }
bool isParsingInlineAsm() override { return ParsingInlineAsm; }
void setNasmDefaultRel(bool V) override { NasmDefaultRel = V; }
bool isNasmDefaultRel() override { return NasmDefaultRel; }
bool parseMSInlineAsm(void *AsmLoc, std::string &AsmString,
unsigned &NumOutputs, unsigned &NumInputs,
SmallVectorImpl<std::pair<void *,bool> > &OpDecls,
SmallVectorImpl<std::string> &Constraints,
SmallVectorImpl<std::string> &Clobbers,
const MCInstrInfo *MII,
MCAsmParserSemaCallback &SI, uint64_t &Address) override;
bool parseExpression(const MCExpr *&Res);
bool parseExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parsePrimaryExprAux(const MCExpr *&Res, SMLoc &EndLoc, unsigned int depth);
bool parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) override;
bool parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
SMLoc &EndLoc) override;
bool parseAbsoluteExpression(int64_t &Res) override;
/// \brief Parse an identifier or string (as a quoted identifier)
/// and set \p Res to the identifier contents.
bool parseIdentifier(StringRef &Res) override;
void eatToEndOfStatement() override;
void checkForValidSection() override;
void initializeDirectiveKindMap(int syntax) override; // Keystone NASM support
/// }
private:
bool parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI, uint64_t &Address);
void eatToEndOfLine();
bool parseCppHashLineFilenameComment(SMLoc L);
void checkForBadMacro(SMLoc DirectiveLoc, StringRef Name, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters);
bool expandMacro(raw_svector_ostream &OS, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters,
ArrayRef<MCAsmMacroArgument> A, bool EnableAtPseudoVariable,
SMLoc L);
/// \brief Are macros enabled in the parser?
bool areMacrosEnabled() {return MacrosEnabledFlag;}
/// \brief Control a flag in the parser that enables or disables macros.
void setMacrosEnabled(bool Flag) {MacrosEnabledFlag = Flag;}
/// \brief Lookup a previously defined macro.
/// \param Name Macro name.
/// \returns Pointer to macro. NULL if no such macro was defined.
const MCAsmMacro* lookupMacro(StringRef Name);
/// \brief Define a new macro with the given name and information.
void defineMacro(StringRef Name, MCAsmMacro Macro);
/// \brief Undefine a macro. If no such macro was defined, it's a no-op.
void undefineMacro(StringRef Name);
/// \brief Are we inside a macro instantiation?
bool isInsideMacroInstantiation() {return !ActiveMacros.empty();}
/// \brief Handle entry to macro instantiation.
///
/// \param M The macro.
/// \param NameLoc Instantiation location.
bool handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc);
/// \brief Handle exit from macro instantiation.
void handleMacroExit();
/// \brief Extract AsmTokens for a macro argument.
bool parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg);
/// \brief Parse all macro arguments for a given macro.
bool parseMacroArguments(const MCAsmMacro *M, MCAsmMacroArguments &A);
void printMacroInstantiations();
void printMessage(SMLoc Loc, SourceMgr::DiagKind Kind, const Twine &Msg,
ArrayRef<SMRange> Ranges = None) const {
SrcMgr.PrintMessage(Loc, Kind, Msg, Ranges);
}
static void DiagHandler(const SMDiagnostic &Diag, void *Context);
/// \brief Enter the specified file. This returns true on failure.
bool enterIncludeFile(const std::string &Filename);
/// \brief Process the specified file for the .incbin directive.
/// This returns true on failure.
bool processIncbinFile(const std::string &Filename);
/// \brief Reset the current lexer position to that given by \p Loc. The
/// current token is not set; clients should ensure Lex() is called
/// subsequently.
///
/// \param InBuffer If not 0, should be the known buffer id that contains the
/// location.
void jumpToLoc(SMLoc Loc, unsigned InBuffer = 0);
/// \brief Parse up to the end of statement and a return the contents from the
/// current token until the end of the statement; the current token on exit
/// will be either the EndOfStatement or EOF.
StringRef parseStringToEndOfStatement() override;
/// \brief Parse until the end of a statement or a comma is encountered,
/// return the contents from the current token up to the end or comma.
StringRef parseStringToComma();
bool parseAssignment(StringRef Name, bool allow_redef,
bool NoDeadStrip = false);
unsigned getBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind);
bool parseBinOpRHS(unsigned Precedence, const MCExpr *&Res, SMLoc &EndLoc);
bool parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc);
bool parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc);
bool parseRegisterOrRegisterNumber(int64_t &Register, SMLoc DirectiveLoc);
// Generic (target and platform independent) directive parsing.
enum DirectiveKind {
DK_NO_DIRECTIVE, // Placeholder
DK_SET, DK_EQU, DK_EQUIV, DK_ASCII, DK_ASCIZ, DK_STRING, DK_BYTE, DK_SHORT,
DK_RELOC,
DK_VALUE, DK_2BYTE, DK_LONG, DK_INT, DK_4BYTE, DK_QUAD, DK_8BYTE, DK_OCTA,
DK_SINGLE, DK_FLOAT, DK_DOUBLE, DK_ALIGN, DK_ALIGN32, DK_BALIGN, DK_BALIGNW,
DK_BALIGNL, DK_P2ALIGN, DK_P2ALIGNW, DK_P2ALIGNL, DK_ORG, DK_FILL, DK_ENDR,
DK_BUNDLE_ALIGN_MODE, DK_BUNDLE_LOCK, DK_BUNDLE_UNLOCK,
DK_ZERO, DK_EXTERN, DK_GLOBL, DK_GLOBAL,
DK_LAZY_REFERENCE, DK_NO_DEAD_STRIP, DK_SYMBOL_RESOLVER, DK_PRIVATE_EXTERN,
DK_REFERENCE, DK_WEAK_DEFINITION, DK_WEAK_REFERENCE,
DK_WEAK_DEF_CAN_BE_HIDDEN, DK_COMM, DK_COMMON, DK_LCOMM, DK_ABORT,
DK_INCLUDE, DK_INCBIN, DK_CODE16, DK_CODE16GCC, DK_REPT, DK_IRP, DK_IRPC,
DK_IF, DK_IFEQ, DK_IFGE, DK_IFGT, DK_IFLE, DK_IFLT, DK_IFNE, DK_IFB,
DK_IFNB, DK_IFC, DK_IFEQS, DK_IFNC, DK_IFNES, DK_IFDEF, DK_IFNDEF,
DK_IFNOTDEF, DK_ELSEIF, DK_ELSE, DK_ENDIF,
DK_SPACE, DK_SKIP, DK_FILE, DK_LINE, DK_LOC, DK_STABS,
DK_CV_FILE, DK_CV_LOC, DK_CV_LINETABLE, DK_CV_INLINE_LINETABLE,
DK_CV_STRINGTABLE, DK_CV_FILECHECKSUMS,
DK_CFI_SECTIONS, DK_CFI_STARTPROC, DK_CFI_ENDPROC, DK_CFI_DEF_CFA,
DK_CFI_DEF_CFA_OFFSET, DK_CFI_ADJUST_CFA_OFFSET, DK_CFI_DEF_CFA_REGISTER,
DK_CFI_OFFSET, DK_CFI_REL_OFFSET, DK_CFI_PERSONALITY, DK_CFI_LSDA,
DK_CFI_REMEMBER_STATE, DK_CFI_RESTORE_STATE, DK_CFI_SAME_VALUE,
DK_CFI_RESTORE, DK_CFI_ESCAPE, DK_CFI_SIGNAL_FRAME, DK_CFI_UNDEFINED,
DK_CFI_REGISTER, DK_CFI_WINDOW_SAVE,
DK_MACROS_ON, DK_MACROS_OFF,
DK_MACRO, DK_EXITM, DK_ENDM, DK_ENDMACRO, DK_PURGEM,
DK_SLEB128, DK_ULEB128,
DK_ERR, DK_ERROR, DK_WARNING,
DK_NASM_BITS, // NASM directive 'bits'
DK_NASM_DEFAULT, // NASM directive 'default'
DK_NASM_USE32, // NASM directive 'use32'
DK_END
};
/// \brief Maps directive name --> DirectiveKind enum, for
/// directives parsed by this class.
StringMap<DirectiveKind> DirectiveKindMap;
// ".ascii", ".asciz", ".string"
bool parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated);
bool parseDirectiveReloc(SMLoc DirectiveLoc); // ".reloc"
bool parseDirectiveValue(unsigned Size, unsigned int &KsError); // ".byte", ".long", ...
bool parseDirectiveOctaValue(unsigned int &KsError); // ".octa"
bool parseDirectiveRealValue(const fltSemantics &); // ".single", ...
bool parseDirectiveFill(); // ".fill"
bool parseDirectiveZero(); // ".zero"
// ".set", ".equ", ".equiv"
bool parseDirectiveSet(StringRef IDVal, bool allow_redef);
bool parseDirectiveOrg(); // ".org"
// ".align{,32}", ".p2align{,w,l}"
bool parseDirectiveAlign(bool IsPow2, unsigned ValueSize);
// ".file", ".line", ".loc", ".stabs"
bool parseDirectiveFile(SMLoc DirectiveLoc);
bool parseDirectiveLine();
bool parseDirectiveLoc();
bool parseDirectiveStabs();
// ".cv_file", ".cv_loc", ".cv_linetable", "cv_inline_linetable"
bool parseDirectiveCVFile();
bool parseDirectiveCVLoc();
bool parseDirectiveCVLinetable();
bool parseDirectiveCVInlineLinetable();
bool parseDirectiveCVStringTable();
bool parseDirectiveCVFileChecksums();
// .cfi directives
bool parseDirectiveCFIRegister(SMLoc DirectiveLoc);
bool parseDirectiveCFIWindowSave();
bool parseDirectiveCFISections();
bool parseDirectiveCFIStartProc();
bool parseDirectiveCFIEndProc();
bool parseDirectiveCFIDefCfaOffset();
bool parseDirectiveCFIDefCfa(SMLoc DirectiveLoc);
bool parseDirectiveCFIAdjustCfaOffset();
bool parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc);
bool parseDirectiveCFIOffset(SMLoc DirectiveLoc);
bool parseDirectiveCFIRelOffset(SMLoc DirectiveLoc);
bool parseDirectiveCFIPersonalityOrLsda(bool IsPersonality);
bool parseDirectiveCFIRememberState();
bool parseDirectiveCFIRestoreState();
bool parseDirectiveCFISameValue(SMLoc DirectiveLoc);
bool parseDirectiveCFIRestore(SMLoc DirectiveLoc);
bool parseDirectiveCFIEscape();
bool parseDirectiveCFISignalFrame();
bool parseDirectiveCFIUndefined(SMLoc DirectiveLoc);
// macro directives
bool parseDirectivePurgeMacro(SMLoc DirectiveLoc);
bool parseDirectiveExitMacro(StringRef Directive);
bool parseDirectiveEndMacro(StringRef Directive);
bool parseDirectiveMacro(SMLoc DirectiveLoc);
bool parseDirectiveMacrosOnOff(StringRef Directive);
// ".bundle_align_mode"
bool parseDirectiveBundleAlignMode();
// ".bundle_lock"
bool parseDirectiveBundleLock();
// ".bundle_unlock"
bool parseDirectiveBundleUnlock();
// ".space", ".skip"
bool parseDirectiveSpace(StringRef IDVal);
// .sleb128 (Signed=true) and .uleb128 (Signed=false)
bool parseDirectiveLEB128(bool Signed);
/// \brief Parse a directive like ".globl" which
/// accepts a single symbol (which should be a label or an external).
bool parseDirectiveSymbolAttribute(MCSymbolAttr Attr);
bool parseDirectiveComm(bool IsLocal); // ".comm" and ".lcomm"
bool parseDirectiveAbort(); // ".abort"
bool parseDirectiveInclude(); // ".include"
bool parseDirectiveIncbin(); // ".incbin"
// ".if", ".ifeq", ".ifge", ".ifgt" , ".ifle", ".iflt" or ".ifne"
bool parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind);
// ".ifb" or ".ifnb", depending on ExpectBlank.
bool parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank);
// ".ifc" or ".ifnc", depending on ExpectEqual.
bool parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual);
// ".ifeqs" or ".ifnes", depending on ExpectEqual.
bool parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual);
// ".ifdef" or ".ifndef", depending on expect_defined
bool parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined);
bool parseDirectiveElseIf(SMLoc DirectiveLoc); // ".elseif"
bool parseDirectiveElse(SMLoc DirectiveLoc); // ".else"
bool parseDirectiveEndIf(SMLoc DirectiveLoc); // .endif
bool parseEscapedString(std::string &Data) override;
const MCExpr *applyModifierToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant);
// Macro-like directives
MCAsmMacro *parseMacroLikeBody(SMLoc DirectiveLoc);
void instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS);
bool parseDirectiveRept(SMLoc DirectiveLoc, StringRef Directive);
bool parseDirectiveIrp(SMLoc DirectiveLoc); // ".irp"
bool parseDirectiveIrpc(SMLoc DirectiveLoc); // ".irpc"
bool parseDirectiveEndr(SMLoc DirectiveLoc); // ".endr"
// "_emit" or "__emit"
bool parseDirectiveMSEmit(SMLoc DirectiveLoc, ParseStatementInfo &Info,
size_t Len);
// "align"
bool parseDirectiveMSAlign(SMLoc DirectiveLoc, ParseStatementInfo &Info);
// "end"
bool parseDirectiveEnd(SMLoc DirectiveLoc);
// ".err" or ".error"
bool parseDirectiveError(SMLoc DirectiveLoc, bool WithMessage);
// ".warning"
bool parseDirectiveWarning(SMLoc DirectiveLoc);
// "bits" (Nasm)
bool parseNasmDirectiveBits();
// "use32" (Nasm)
bool parseNasmDirectiveUse32();
// "default" (Nasm)
bool parseNasmDirectiveDefault();
bool isNasmDirective(StringRef str); // is this str a NASM directive?
bool isDirective(StringRef str); // is this str a directive?
};
}
namespace llvm_ks {
extern MCAsmParserExtension *createDarwinAsmParser();
extern MCAsmParserExtension *createELFAsmParser();
extern MCAsmParserExtension *createCOFFAsmParser();
}
enum { DEFAULT_ADDRSPACE = 0 };
AsmParser::AsmParser(SourceMgr &SM, MCContext &Ctx, MCStreamer &Out,
const MCAsmInfo &MAI)
: Lexer(MAI), Ctx(Ctx), Out(Out), MAI(MAI), SrcMgr(SM),
PlatformParser(nullptr), CurBuffer(SM.getMainFileID()),
MacrosEnabledFlag(true), HadError(false), CppHashLineNumber(0),
AssemblerDialect(~0U), IsDarwin(false), ParsingInlineAsm(false),
NasmDefaultRel(false) {
// Save the old handler.
SavedDiagHandler = SrcMgr.getDiagHandler();
SavedDiagContext = SrcMgr.getDiagContext();
// Set our own handler which calls the saved handler.
SrcMgr.setDiagHandler(DiagHandler, this);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
// Initialize the platform / file format parser.
PlatformParser.reset(createDarwinAsmParser());
IsDarwin = true;
#if 0
switch (Ctx.getObjectFileInfo()->getObjectFileType()) {
case MCObjectFileInfo::IsCOFF:
PlatformParser.reset(createCOFFAsmParser());
break;
case MCObjectFileInfo::IsMachO:
PlatformParser.reset(createDarwinAsmParser());
IsDarwin = true;
break;
case MCObjectFileInfo::IsELF:
PlatformParser.reset(createELFAsmParser());
break;
}
#endif
PlatformParser->Initialize(*this);
initializeDirectiveKindMap(0);
NumOfMacroInstantiations = 0;
}
AsmParser::~AsmParser() {
assert((HadError || ActiveMacros.empty()) &&
"Unexpected active macro instantiation!");
// Restore the saved diagnostics handler and context for use during
// finalization
SrcMgr.setDiagHandler(SavedDiagHandler, SavedDiagContext);
}
void AsmParser::printMacroInstantiations() {
// Print the active macro instantiation stack.
for (std::vector<MacroInstantiation *>::const_reverse_iterator
it = ActiveMacros.rbegin(),
ie = ActiveMacros.rend();
it != ie; ++it)
printMessage((*it)->InstantiationLoc, SourceMgr::DK_Note,
"while in macro instantiation");
}
void AsmParser::Note(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges) {
printMessage(L, SourceMgr::DK_Note, Msg, Ranges);
printMacroInstantiations();
}
bool AsmParser::Warning(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges) {
if(getTargetParser().getTargetOptions().MCNoWarn)
return false;
if (getTargetParser().getTargetOptions().MCFatalWarnings)
return Error(L, Msg, Ranges);
printMessage(L, SourceMgr::DK_Warning, Msg, Ranges);
printMacroInstantiations();
return false;
}
bool AsmParser::Error(SMLoc L, const Twine &Msg, ArrayRef<SMRange> Ranges) {
HadError = true;
printMessage(L, SourceMgr::DK_Error, Msg, Ranges);
printMacroInstantiations();
return true;
}
bool AsmParser::enterIncludeFile(const std::string &Filename) {
std::string IncludedFile;
unsigned NewBuf =
SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
if (!NewBuf)
return true;
CurBuffer = NewBuf;
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
return false;
}
/// Process the specified .incbin file by searching for it in the include paths
/// then just emitting the byte contents of the file to the streamer. This
/// returns true on failure.
bool AsmParser::processIncbinFile(const std::string &Filename) {
std::string IncludedFile;
unsigned NewBuf =
SrcMgr.AddIncludeFile(Filename, Lexer.getLoc(), IncludedFile);
if (!NewBuf)
return true;
// Pick up the bytes from the file and emit them.
getStreamer().EmitBytes(SrcMgr.getMemoryBuffer(NewBuf)->getBuffer());
return false;
}
void AsmParser::jumpToLoc(SMLoc Loc, unsigned InBuffer) {
CurBuffer = InBuffer ? InBuffer : SrcMgr.FindBufferContainingLoc(Loc);
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer(),
Loc.getPointer());
}
const AsmToken &AsmParser::Lex() {
const AsmToken *tok = &Lexer.Lex();
if (tok->is(AsmToken::Eof)) {
// If this is the end of an included file, pop the parent file off the
// include stack.
SMLoc ParentIncludeLoc = SrcMgr.getParentIncludeLoc(CurBuffer);
if (ParentIncludeLoc != SMLoc()) {
jumpToLoc(ParentIncludeLoc);
tok = &Lexer.Lex(); // qq
}
}
//if (tok->is(AsmToken::Error))
// Error(Lexer.getErrLoc(), Lexer.getErr());
return *tok;
}
size_t AsmParser::Run(bool NoInitialTextSection, uint64_t Address, bool NoFinalize)
{
// count number of statement
size_t count = 0;
// Create the initial section, if requested.
if (!NoInitialTextSection)
Out.InitSections(false);
// Prime the lexer.
Lex();
if (!Lexer.isNot(AsmToken::Error)) {
KsError = KS_ERR_ASM_TOKEN_INVALID;
return 0;
}
HadError = false;
AsmCond StartingCondState = TheCondState;
// If we are generating dwarf for assembly source files save the initial text
// section and generate a .file directive.
if (getContext().getGenDwarfForAssembly()) {
MCSection *Sec = getStreamer().getCurrentSection().first;
if (!Sec->getBeginSymbol()) {
MCSymbol *SectionStartSym = getContext().createTempSymbol();
getStreamer().EmitLabel(SectionStartSym);
Sec->setBeginSymbol(SectionStartSym);
}
bool InsertResult = getContext().addGenDwarfSection(Sec);
assert(InsertResult && ".text section should not have debug info yet");
(void)InsertResult;
getContext().setGenDwarfFileNumber(getStreamer().EmitDwarfFileDirective(
0, StringRef(), getContext().getMainFileName()));
}
// While we have input, parse each statement.
while (Lexer.isNot(AsmToken::Eof)) {
ParseStatementInfo Info;
if (!parseStatement(Info, nullptr, Address)) {
count++;
continue;
}
//printf(">> 222 error = %u\n", Info.KsError);
if (!KsError) {
KsError = Info.KsError;
return 0;
}
// We had an error, validate that one was emitted and recover by skipping to
// the next line.
// assert(HadError && "Parse statement returned an error, but none emitted!");
//eatToEndOfStatement();
}
if (TheCondState.TheCond != StartingCondState.TheCond ||
TheCondState.Ignore != StartingCondState.Ignore) {
//return TokError("unmatched .ifs or .elses");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return 0;
}
// Check to see that all assembler local symbols were actually defined.
// Targets that don't do subsections via symbols may not want this, though,
// so conservatively exclude them. Only do this if we're finalizing, though,
// as otherwise we won't necessarilly have seen everything yet.
if (!NoFinalize && MAI.hasSubsectionsViaSymbols()) {
for (const auto &TableEntry : getContext().getSymbols()) {
MCSymbol *Sym = TableEntry.getValue();
// Variable symbols may not be marked as defined, so check those
// explicitly. If we know it's a variable, we have a definition for
// the purposes of this check.
if (Sym->isTemporary() && !Sym->isVariable() && !Sym->isDefined()) {
// FIXME: We would really like to refer back to where the symbol was
// first referenced for a source location. We need to add something
// to track that. Currently, we just point to the end of the file.
//return Error(getLexer().getLoc(), "assembler local symbol '" +
// Sym->getName() + "' not defined"); // qq: set KsError, then return 0
KsError = KS_ERR_ASM_SYMBOL_MISSING;
return 0;
}
}
}
// Finalize the output stream if there are no errors and if the client wants
// us to.
if (!KsError) {
if (!HadError && !NoFinalize)
KsError = Out.Finish();
} else
Out.Finish();
//return HadError || getContext().hadError();
return count;
}
void AsmParser::checkForValidSection()
{
#if 0
if (!ParsingInlineAsm && !getStreamer().getCurrentSection().first) {
TokError("expected section directive before assembly directive");
Out.InitSections(false);
}
#endif
}
/// \brief Throw away the rest of the line for testing purposes.
void AsmParser::eatToEndOfStatement()
{
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
Lex();
// Eat EOL.
if (Lexer.is(AsmToken::EndOfStatement))
Lex();
}
StringRef AsmParser::parseStringToEndOfStatement() {
const char *Start = getTok().getLoc().getPointer();
while (Lexer.isNot(AsmToken::EndOfStatement) && Lexer.isNot(AsmToken::Eof))
Lex();
const char *End = getTok().getLoc().getPointer();
return StringRef(Start, End - Start);
}
StringRef AsmParser::parseStringToComma() {
const char *Start = getTok().getLoc().getPointer();
while (Lexer.isNot(AsmToken::EndOfStatement) &&
Lexer.isNot(AsmToken::Comma) && Lexer.isNot(AsmToken::Eof))
Lex();
const char *End = getTok().getLoc().getPointer();
return StringRef(Start, End - Start);
}
/// \brief Parse a paren expression and return it.
/// NOTE: This assumes the leading '(' has already been consumed.
///
/// parenexpr ::= expr)
///
bool AsmParser::parseParenExpr(const MCExpr *&Res, SMLoc &EndLoc) {
if (parseExpression(Res))
return true;
if (Lexer.isNot(AsmToken::RParen))
//return TokError("expected ')' in parentheses expression");
return true;
EndLoc = Lexer.getTok().getEndLoc();
Lex();
return false;
}
/// \brief Parse a bracket expression and return it.
/// NOTE: This assumes the leading '[' has already been consumed.
///
/// bracketexpr ::= expr]
///
bool AsmParser::parseBracketExpr(const MCExpr *&Res, SMLoc &EndLoc) {
if (parseExpression(Res))
return true;
if (Lexer.isNot(AsmToken::RBrac)) {
//return TokError("expected ']' in brackets expression");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
EndLoc = Lexer.getTok().getEndLoc();
Lex();
return false;
}
bool AsmParser::parsePrimaryExprAux(const MCExpr *&Res, SMLoc &EndLoc, unsigned int depth)
{
if (depth > 0x100) {
KsError = KS_ERR_ASM_EXPR_TOKEN;
return true;
}
SMLoc FirstTokenLoc = getLexer().getLoc();
AsmToken::TokenKind FirstTokenKind = Lexer.getKind();
switch (FirstTokenKind) {
default:
//return TokError("unknown token in expression");
KsError = KS_ERR_ASM_EXPR_TOKEN;
return true;
// If we have an error assume that we've already handled it.
case AsmToken::Error:
return true;
case AsmToken::Exclaim:
Lex(); // Eat the operator.
if (parsePrimaryExprAux(Res, EndLoc, depth+1))
return true;
Res = MCUnaryExpr::createLNot(Res, getContext());
return false;
case AsmToken::Dollar:
case AsmToken::At:
case AsmToken::String:
case AsmToken::Identifier: {
StringRef Identifier;
if (parseIdentifier(Identifier)) {
if (FirstTokenKind == AsmToken::Dollar) {
if (Lexer.getMAI().getDollarIsPC()) {
// This is a '$' reference, which references the current PC. Emit a
// temporary label to the streamer and refer to it.
MCSymbol *Sym = Ctx.createTempSymbol();
Out.EmitLabel(Sym);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
getContext());
EndLoc = FirstTokenLoc;
return false;
}
//return Error(FirstTokenLoc, "invalid token in expression");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
}
// Parse symbol variant
std::pair<StringRef, StringRef> Split;
if (!MAI.useParensForSymbolVariant()) {
if (FirstTokenKind == AsmToken::String) {
if (Lexer.is(AsmToken::At)) {
Lexer.Lex(); // eat @
//SMLoc AtLoc = getLexer().getLoc();
StringRef VName;
if (parseIdentifier(VName)) {
//return Error(AtLoc, "expected symbol variant after '@'");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
Split = std::make_pair(Identifier, VName);
}
} else {
Split = Identifier.split('@');
}
} else if (Lexer.is(AsmToken::LParen)) {
Lexer.Lex(); // eat (
StringRef VName;
parseIdentifier(VName);
if (Lexer.isNot(AsmToken::RParen)) {
//return Error(Lexer.getTok().getLoc(),
// "unexpected token in variant, expected ')'");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
Lexer.Lex(); // eat )
Split = std::make_pair(Identifier, VName);
}
EndLoc = SMLoc::getFromPointer(Identifier.end());
// This is a symbol reference.
StringRef SymbolName = Identifier;
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
// Lookup the symbol variant if used.
if (Split.second.size()) {
Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
if (Variant != MCSymbolRefExpr::VK_Invalid) {
SymbolName = Split.first;
} else if (MAI.doesAllowAtInName() && !MAI.useParensForSymbolVariant()) {
Variant = MCSymbolRefExpr::VK_None;
} else {
//return Error(SMLoc::getFromPointer(Split.second.begin()),
// "invalid variant '" + Split.second + "'");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
}
if (SymbolName.empty()) {
return true;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(SymbolName);
// If this is an absolute variable reference, substitute it now to preserve
// semantics in the face of reassignment.
if (Sym->isVariable() &&
isa<MCConstantExpr>(Sym->getVariableValue(/*SetUsed*/ false))) {
if (Variant) {
//return Error(EndLoc, "unexpected modifier on variable reference");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
Res = Sym->getVariableValue(/*SetUsed*/ false);
return false;
}
// Otherwise create a symbol ref.
Res = MCSymbolRefExpr::create(Sym, Variant, getContext());
return false;
}
case AsmToken::BigNum:
// return TokError("literal value out of range for directive");
KsError = KS_ERR_ASM_DIRECTIVE_VALUE_RANGE;
return true;
case AsmToken::Integer: {
//SMLoc Loc = getTok().getLoc();
bool valid;
int64_t IntVal = getTok().getIntVal(valid);
if (!valid) {
return true;
}
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat token.
// Look for 'b' or 'f' following an Integer as a directional label
if (Lexer.getKind() == AsmToken::Identifier) {
StringRef IDVal = getTok().getString();
// Lookup the symbol variant if used.
std::pair<StringRef, StringRef> Split = IDVal.split('@');
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
if (Split.first.size() != IDVal.size()) {
Variant = MCSymbolRefExpr::getVariantKindForName(Split.second);
if (Variant == MCSymbolRefExpr::VK_Invalid) {
// return TokError("invalid variant '" + Split.second + "'");
KsError = KS_ERR_ASM_VARIANT_INVALID;
return true;
}
IDVal = Split.first;
}
if (IDVal == "f" || IDVal == "b") {
bool valid;
MCSymbol *Sym =
Ctx.getDirectionalLocalSymbol(IntVal, IDVal == "b", valid);
if (!valid)
return true;
Res = MCSymbolRefExpr::create(Sym, Variant, getContext());
if (IDVal == "b" && Sym->isUndefined()) {
//return Error(Loc, "invalid reference to undefined symbol");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat identifier.
}
}
return false;
}
case AsmToken::Real: {
APFloat RealVal(APFloat::IEEEdouble, getTok().getString());
uint64_t IntVal = RealVal.bitcastToAPInt().getZExtValue();
Res = MCConstantExpr::create(IntVal, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat token.
return false;
}
case AsmToken::Dot: {
// This is a '.' reference, which references the current PC. Emit a
// temporary label to the streamer and refer to it.
MCSymbol *Sym = Ctx.createTempSymbol();
Out.EmitLabel(Sym);
Res = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None, getContext());
EndLoc = Lexer.getTok().getEndLoc();
Lex(); // Eat identifier.
return false;
}
case AsmToken::LParen:
Lex(); // Eat the '('.
return parseParenExpr(Res, EndLoc);
case AsmToken::LBrac:
if (!PlatformParser->HasBracketExpressions()) {
// return TokError("brackets expression not supported on this target");
KsError = KS_ERR_ASM_EXPR_BRACKET;
return true;
}
Lex(); // Eat the '['.
return parseBracketExpr(Res, EndLoc);
case AsmToken::Minus:
Lex(); // Eat the operator.
if (parsePrimaryExprAux(Res, EndLoc, depth+1))
return true;
Res = MCUnaryExpr::createMinus(Res, getContext());
return false;
case AsmToken::Plus:
Lex(); // Eat the operator.
if (parsePrimaryExprAux(Res, EndLoc, depth+1))
return true;
Res = MCUnaryExpr::createPlus(Res, getContext());
return false;
case AsmToken::Tilde:
Lex(); // Eat the operator.
if (parsePrimaryExprAux(Res, EndLoc, depth+1))
return true;
Res = MCUnaryExpr::createNot(Res, getContext());
return false;
}
}
/// \brief Parse a primary expression and return it.
/// primaryexpr ::= (parenexpr
/// primaryexpr ::= symbol
/// primaryexpr ::= number
/// primaryexpr ::= '.'
/// primaryexpr ::= ~,+,- primaryexpr
bool AsmParser::parsePrimaryExpr(const MCExpr *&Res, SMLoc &EndLoc)
{
return parsePrimaryExprAux(Res, EndLoc, 0);
}
bool AsmParser::parseExpression(const MCExpr *&Res) {
SMLoc EndLoc;
return parseExpression(Res, EndLoc);
}
const MCExpr *
AsmParser::applyModifierToExpr(const MCExpr *E,
MCSymbolRefExpr::VariantKind Variant) {
// Ask the target implementation about this expression first.
const MCExpr *NewE = getTargetParser().applyModifierToExpr(E, Variant, Ctx);
if (NewE)
return NewE;
// Recurse over the given expression, rebuilding it to apply the given variant
// if there is exactly one symbol.
switch (E->getKind()) {
case MCExpr::Target:
case MCExpr::Constant:
return nullptr;
case MCExpr::SymbolRef: {
const MCSymbolRefExpr *SRE = cast<MCSymbolRefExpr>(E);
if (SRE->getKind() != MCSymbolRefExpr::VK_None) {
//TokError("invalid variant on expression '" + getTok().getIdentifier() +
// "' (already modified)");
return E;
}
return MCSymbolRefExpr::create(&SRE->getSymbol(), Variant, getContext());
}
case MCExpr::Unary: {
const MCUnaryExpr *UE = cast<MCUnaryExpr>(E);
const MCExpr *Sub = applyModifierToExpr(UE->getSubExpr(), Variant);
if (!Sub)
return nullptr;
return MCUnaryExpr::create(UE->getOpcode(), Sub, getContext());
}
case MCExpr::Binary: {
const MCBinaryExpr *BE = cast<MCBinaryExpr>(E);
const MCExpr *LHS = applyModifierToExpr(BE->getLHS(), Variant);
const MCExpr *RHS = applyModifierToExpr(BE->getRHS(), Variant);
if (!LHS && !RHS)
return nullptr;
if (!LHS)
LHS = BE->getLHS();
if (!RHS)
RHS = BE->getRHS();
return MCBinaryExpr::create(BE->getOpcode(), LHS, RHS, getContext());
}
}
llvm_unreachable("Invalid expression kind!");
}
/// \brief Parse an expression and return it.
///
/// expr ::= expr &&,|| expr -> lowest.
/// expr ::= expr |,^,&,! expr
/// expr ::= expr ==,!=,<>,<,<=,>,>= expr
/// expr ::= expr <<,>> expr
/// expr ::= expr +,- expr
/// expr ::= expr *,/,% expr -> highest.
/// expr ::= primaryexpr
///
bool AsmParser::parseExpression(const MCExpr *&Res, SMLoc &EndLoc) {
// Parse the expression.
Res = nullptr;
if (parsePrimaryExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc))
return true;
// As a special case, we support 'a op b @ modifier' by rewriting the
// expression to include the modifier. This is inefficient, but in general we
// expect users to use 'a@modifier op b'.
if (Lexer.getKind() == AsmToken::At) {
Lex();
if (Lexer.isNot(AsmToken::Identifier)) {
// return TokError("unexpected symbol modifier following '@'");
KsError = KS_ERR_ASM_SYMBOL_MODIFIER;
return true;
}
MCSymbolRefExpr::VariantKind Variant =
MCSymbolRefExpr::getVariantKindForName(getTok().getIdentifier());
if (Variant == MCSymbolRefExpr::VK_Invalid) {
// return TokError("invalid variant '" + getTok().getIdentifier() + "'");
KsError = KS_ERR_ASM_VARIANT_INVALID;
return true;
}
const MCExpr *ModifiedRes = applyModifierToExpr(Res, Variant);
if (!ModifiedRes) {
// return TokError("invalid modifier '" + getTok().getIdentifier() +
// "' (no symbols present)");
KsError = KS_ERR_ASM_VARIANT_INVALID;
return true;
}
Res = ModifiedRes;
Lex();
}
// Try to constant fold it up front, if possible.
int64_t Value;
if (Res->evaluateAsAbsolute(Value))
Res = MCConstantExpr::create(Value, getContext());
return false;
}
bool AsmParser::parseParenExpression(const MCExpr *&Res, SMLoc &EndLoc) {
Res = nullptr;
return parseParenExpr(Res, EndLoc) || parseBinOpRHS(1, Res, EndLoc);
}
bool AsmParser::parseParenExprOfDepth(unsigned ParenDepth, const MCExpr *&Res,
SMLoc &EndLoc) {
if (parseParenExpr(Res, EndLoc))
return true;
for (; ParenDepth > 0; --ParenDepth) {
if (parseBinOpRHS(1, Res, EndLoc))
return true;
// We don't Lex() the last RParen.
// This is the same behavior as parseParenExpression().
if (ParenDepth - 1 > 0) {
if (Lexer.isNot(AsmToken::RParen)) {
// return TokError("expected ')' in parentheses expression");
KsError = KS_ERR_ASM_RPAREN;
return true;
}
EndLoc = Lexer.getTok().getEndLoc();
Lex();
}
}
return false;
}
bool AsmParser::parseAbsoluteExpression(int64_t &Res) {
const MCExpr *Expr;
//SMLoc StartLoc = Lexer.getLoc();
if (parseExpression(Expr))
return true;
if (!Expr->evaluateAsAbsolute(Res)) {
//return Error(StartLoc, "expected absolute expression");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
return false;
}
static unsigned getDarwinBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind,
bool ShouldUseLogicalShr) {
switch (K) {
default:
return 0; // not a binop.
// Lowest Precedence: &&, ||
case AsmToken::AmpAmp:
Kind = MCBinaryExpr::LAnd;
return 1;
case AsmToken::PipePipe:
Kind = MCBinaryExpr::LOr;
return 1;
// Low Precedence: |, &, ^
//
// FIXME: gas seems to support '!' as an infix operator?
case AsmToken::Pipe:
Kind = MCBinaryExpr::Or;
return 2;
case AsmToken::Caret:
Kind = MCBinaryExpr::Xor;
return 2;
case AsmToken::Amp:
Kind = MCBinaryExpr::And;
return 2;
// Low Intermediate Precedence: ==, !=, <>, <, <=, >, >=
case AsmToken::EqualEqual:
Kind = MCBinaryExpr::EQ;
return 3;
case AsmToken::ExclaimEqual:
case AsmToken::LessGreater:
Kind = MCBinaryExpr::NE;
return 3;
case AsmToken::Less:
Kind = MCBinaryExpr::LT;
return 3;
case AsmToken::LessEqual:
Kind = MCBinaryExpr::LTE;
return 3;
case AsmToken::Greater:
Kind = MCBinaryExpr::GT;
return 3;
case AsmToken::GreaterEqual:
Kind = MCBinaryExpr::GTE;
return 3;
// Intermediate Precedence: <<, >>
case AsmToken::LessLess:
Kind = MCBinaryExpr::Shl;
return 4;
case AsmToken::GreaterGreater:
Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
return 4;
// High Intermediate Precedence: +, -
case AsmToken::Plus:
Kind = MCBinaryExpr::Add;
return 5;
case AsmToken::Minus:
Kind = MCBinaryExpr::Sub;
return 5;
// Highest Precedence: *, /, %
case AsmToken::Star:
Kind = MCBinaryExpr::Mul;
return 6;
case AsmToken::Slash:
Kind = MCBinaryExpr::Div;
return 6;
case AsmToken::Percent:
Kind = MCBinaryExpr::Mod;
return 6;
}
}
static unsigned getGNUBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind,
bool ShouldUseLogicalShr) {
switch (K) {
default:
return 0; // not a binop.
// Lowest Precedence: &&, ||
case AsmToken::AmpAmp:
Kind = MCBinaryExpr::LAnd;
return 2;
case AsmToken::PipePipe:
Kind = MCBinaryExpr::LOr;
return 1;
// Low Precedence: ==, !=, <>, <, <=, >, >=
case AsmToken::EqualEqual:
Kind = MCBinaryExpr::EQ;
return 3;
case AsmToken::ExclaimEqual:
case AsmToken::LessGreater:
Kind = MCBinaryExpr::NE;
return 3;
case AsmToken::Less:
Kind = MCBinaryExpr::LT;
return 3;
case AsmToken::LessEqual:
Kind = MCBinaryExpr::LTE;
return 3;
case AsmToken::Greater:
Kind = MCBinaryExpr::GT;
return 3;
case AsmToken::GreaterEqual:
Kind = MCBinaryExpr::GTE;
return 3;
// Low Intermediate Precedence: +, -
case AsmToken::Plus:
Kind = MCBinaryExpr::Add;
return 4;
case AsmToken::Minus:
Kind = MCBinaryExpr::Sub;
return 4;
// High Intermediate Precedence: |, &, ^
//
// FIXME: gas seems to support '!' as an infix operator?
case AsmToken::Pipe:
Kind = MCBinaryExpr::Or;
return 5;
case AsmToken::Caret:
Kind = MCBinaryExpr::Xor;
return 5;
case AsmToken::Amp:
Kind = MCBinaryExpr::And;
return 5;
// Highest Precedence: *, /, %, <<, >>
case AsmToken::Star:
Kind = MCBinaryExpr::Mul;
return 6;
case AsmToken::Slash:
Kind = MCBinaryExpr::Div;
return 6;
case AsmToken::Percent:
Kind = MCBinaryExpr::Mod;
return 6;
case AsmToken::LessLess:
Kind = MCBinaryExpr::Shl;
return 6;
case AsmToken::GreaterGreater:
Kind = ShouldUseLogicalShr ? MCBinaryExpr::LShr : MCBinaryExpr::AShr;
return 6;
}
}
unsigned AsmParser::getBinOpPrecedence(AsmToken::TokenKind K,
MCBinaryExpr::Opcode &Kind) {
bool ShouldUseLogicalShr = MAI.shouldUseLogicalShr();
return IsDarwin ? getDarwinBinOpPrecedence(K, Kind, ShouldUseLogicalShr)
: getGNUBinOpPrecedence(K, Kind, ShouldUseLogicalShr);
}
/// \brief Parse all binary operators with precedence >= 'Precedence'.
/// Res contains the LHS of the expression on input.
bool AsmParser::parseBinOpRHS(unsigned Precedence, const MCExpr *&Res,
SMLoc &EndLoc) {
while (1) {
MCBinaryExpr::Opcode Kind = MCBinaryExpr::Add;
unsigned TokPrec = getBinOpPrecedence(Lexer.getKind(), Kind);
// If the next token is lower precedence than we are allowed to eat, return
// successfully with what we ate already.
if (TokPrec < Precedence)
return false;
Lex();
// Eat the next primary expression.
const MCExpr *RHS;
if (parsePrimaryExpr(RHS, EndLoc))
return true;
// If BinOp binds less tightly with RHS than the operator after RHS, let
// the pending operator take RHS as its LHS.
MCBinaryExpr::Opcode Dummy;
unsigned NextTokPrec = getBinOpPrecedence(Lexer.getKind(), Dummy);
if (TokPrec < NextTokPrec && parseBinOpRHS(TokPrec + 1, RHS, EndLoc))
return true;
// Merge LHS and RHS according to operator.
Res = MCBinaryExpr::create(Kind, Res, RHS, getContext());
}
}
bool AsmParser::isNasmDirective(StringRef IDVal)
{
return (DirectiveKindMap.find(IDVal.lower()) != DirectiveKindMap.end());
}
bool AsmParser::isDirective(StringRef IDVal)
{
if (KsSyntax == KS_OPT_SYNTAX_NASM)
return isNasmDirective(IDVal);
else // Directives start with "."
return (!IDVal.empty() && IDVal[0] == '.' && IDVal != ".");
}
/// ParseStatement:
/// ::= EndOfStatement
/// ::= Label* Directive ...Operands... EndOfStatement
/// ::= Label* Identifier OperandList* EndOfStatement
// return true on error
bool AsmParser::parseStatement(ParseStatementInfo &Info,
MCAsmParserSemaCallback *SI, uint64_t &Address)
{
KsError = 0;
if (Lexer.is(AsmToken::EndOfStatement)) {
Out.AddBlankLine();
Lex();
return false;
}
// Statements always start with an identifier or are a full line comment.
AsmToken ID = getTok();
//printf(">>> parseStatement:ID = %s\n", ID.getString().str().c_str());
SMLoc IDLoc = ID.getLoc();
StringRef IDVal;
int64_t LocalLabelVal = -1;
// A full line comment is a '#' as the first token.
if (Lexer.is(AsmToken::Hash))
return parseCppHashLineFilenameComment(IDLoc);
// Allow an integer followed by a ':' as a directional local label.
if (Lexer.is(AsmToken::Integer)) {
bool valid;
LocalLabelVal = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (LocalLabelVal < 0) {
if (!TheCondState.Ignore) {
// return TokError("unexpected token at start of statement");
Info.KsError = KS_ERR_ASM_STAT_TOKEN;
return true;
}
IDVal = "";
} else {
IDVal = getTok().getString();
Lex(); // Consume the integer token to be used as an identifier token.
if (Lexer.getKind() != AsmToken::Colon) {
if (!TheCondState.Ignore) {
// return TokError("unexpected token at start of statement");
Info.KsError = KS_ERR_ASM_STAT_TOKEN;
return true;
}
}
}
} else if (Lexer.is(AsmToken::Dot)) {
// Treat '.' as a valid identifier in this context.
Lex();
IDVal = ".";
} else if (Lexer.is(AsmToken::LCurly)) {
// Treat '{' as a valid identifier in this context.
Lex();
IDVal = "{";
} else if (Lexer.is(AsmToken::RCurly)) {
// Treat '}' as a valid identifier in this context.
Lex();
IDVal = "}";
} else if (KsSyntax == KS_OPT_SYNTAX_NASM && Lexer.is(AsmToken::LBrac)) {
// [bits xx]
Lex();
ID = Lexer.getTok();
if (ID.getString().lower() == "bits") {
Lex();
if (parseNasmDirectiveBits()) {
Info.KsError = KS_ERR_ASM_DIRECTIVE_ID;
return true;
} else {
return false;
}
} else {
Info.KsError = KS_ERR_ASM_DIRECTIVE_ID;
return true;
}
} else if (KsSyntax == KS_OPT_SYNTAX_NASM && isNasmDirective(ID.getString())) {
Lex();
IDVal = ID.getString();
} else if (parseIdentifier(IDVal)) {
if (!TheCondState.Ignore) {
// return TokError("unexpected token at start of statement");
Info.KsError = KS_ERR_ASM_STAT_TOKEN;
return true;
}
IDVal = "";
}
// Handle conditional assembly here before checking for skipping. We
// have to do this so that .endif isn't skipped in a ".if 0" block for
// example.
StringMap<DirectiveKind>::const_iterator DirKindIt =
DirectiveKindMap.find(IDVal.lower());
DirectiveKind DirKind = (DirKindIt == DirectiveKindMap.end())
? DK_NO_DIRECTIVE
: DirKindIt->getValue();
switch (DirKind) {
default:
break;
case DK_IF:
case DK_IFEQ:
case DK_IFGE:
case DK_IFGT:
case DK_IFLE:
case DK_IFLT:
case DK_IFNE:
return parseDirectiveIf(IDLoc, DirKind);
case DK_IFB:
return parseDirectiveIfb(IDLoc, true);
case DK_IFNB:
return parseDirectiveIfb(IDLoc, false);
case DK_IFC:
return parseDirectiveIfc(IDLoc, true);
case DK_IFEQS:
return parseDirectiveIfeqs(IDLoc, true);
case DK_IFNC:
return parseDirectiveIfc(IDLoc, false);
case DK_IFNES:
return parseDirectiveIfeqs(IDLoc, false);
case DK_IFDEF:
return parseDirectiveIfdef(IDLoc, true);
case DK_IFNDEF:
case DK_IFNOTDEF:
return parseDirectiveIfdef(IDLoc, false);
case DK_ELSEIF:
return parseDirectiveElseIf(IDLoc);
case DK_ELSE:
return parseDirectiveElse(IDLoc);
case DK_ENDIF:
return parseDirectiveEndIf(IDLoc);
}
// Ignore the statement if in the middle of inactive conditional
// (e.g. ".if 0").
if (TheCondState.Ignore) {
eatToEndOfStatement();
return false;
}
// FIXME: Recurse on local labels?
// See what kind of statement we have.
switch (Lexer.getKind()) {
case AsmToken::Colon: {
bool valid;
if (!getTargetParser().isLabel(ID, valid))
break;
if (!valid) {
Info.KsError = KS_ERR_ASM_LABEL_INVALID;
return true;
}
checkForValidSection();
// identifier ':' -> Label.
Lex();
// Diagnose attempt to use '.' as a label.
if (IDVal == ".") {
//return Error(IDLoc, "invalid use of pseudo-symbol '.' as a label");
KsError = KS_ERR_ASM_INVALIDOPERAND;
return true;
}
// Diagnose attempt to use a variable as a label.
//
// FIXME: Diagnostics. Note the location of the definition as a label.
// FIXME: This doesn't diagnose assignment to a symbol which has been
// implicitly marked as external.
MCSymbol *Sym;
if (LocalLabelVal == -1) {
if (ParsingInlineAsm && SI) {
StringRef RewrittenLabel =
SI->LookupInlineAsmLabel(IDVal, getSourceManager(), IDLoc, true);
assert(RewrittenLabel.size() &&
"We should have an internal name here.");
Info.AsmRewrites->emplace_back(AOK_Label, IDLoc, IDVal.size(),
RewrittenLabel);
IDVal = RewrittenLabel;
}
if (IDVal.empty()) {
return true;
}
Sym = getContext().getOrCreateSymbol(IDVal);
} else {
bool valid;
Sym = Ctx.createDirectionalLocalSymbol(LocalLabelVal, valid);
if (!valid) {
Info.KsError = KS_ERR_ASM_LABEL_INVALID;
return true;
}
}
Sym->redefineIfPossible();
if (!Sym->isUndefined() || Sym->isVariable()) {
//return Error(IDLoc, "invalid symbol redefinition");
Info.KsError = KS_ERR_ASM_SYMBOL_REDEFINED;
return true;
}
// Emit the label.
if (!ParsingInlineAsm)
Out.EmitLabel(Sym);
getTargetParser().onLabelParsed(Sym);
// Consume any end of statement token, if present, to avoid spurious
// AddBlankLine calls().
if (Lexer.is(AsmToken::EndOfStatement)) {
Lex();
if (Lexer.is(AsmToken::Eof))
return false;
}
return false;
}
case AsmToken::Equal:
if (!getTargetParser().equalIsAsmAssignment())
break;
// identifier '=' ... -> assignment statement
Lex();
if (parseAssignment(IDVal, true)) {
Info.KsError = KS_ERR_ASM_DIRECTIVE_EQU;
return true;
}
return false;
default: // Normal instruction or directive.
break;
}
// If macros are enabled, check to see if this is a macro instantiation.
if (areMacrosEnabled())
if (const MCAsmMacro *M = lookupMacro(IDVal)) {
return handleMacroEntry(M, IDLoc);
}
// Otherwise, we have a normal instruction or directive.
if (isDirective(IDVal)) {
// There are several entities interested in parsing directives:
//
// 1. The target-specific assembly parser. Some directives are target
// specific or may potentially behave differently on certain targets.
// 2. Asm parser extensions. For example, platform-specific parsers
// (like the ELF parser) register themselves as extensions.
// 3. The generic directive parser implemented by this class. These are
// all the directives that behave in a target and platform independent
// manner, or at least have a default behavior that's shared between
// all targets and platforms.
// First query the target-specific parser. It will return 'true' if it
// isn't interested in this directive.
uint64_t BytesInFragment = getStreamer().getCurrentFragmentSize();
if (!getTargetParser().ParseDirective(ID)){
// increment the address for the next statement if the directive
// has emitted any value to the streamer.
Address += getStreamer().getCurrentFragmentSize() - BytesInFragment;
return false;
}
// Next, check the extension directive map to see if any extension has
// registered itself to parse this directive.
std::pair<MCAsmParserExtension *, DirectiveHandler> Handler =
ExtensionDirectiveMap.lookup(IDVal);
if (Handler.first)
return (*Handler.second)(Handler.first, IDVal, IDLoc);
// Finally, if no one else is interested in this directive, it must be
// generic and familiar to this class.
switch (DirKind) {
default:
break;
case DK_SET:
case DK_EQU:
return parseDirectiveSet(IDVal, true);
case DK_EQUIV:
return parseDirectiveSet(IDVal, false);
case DK_ASCII:
return parseDirectiveAscii(IDVal, false);
case DK_ASCIZ:
case DK_STRING:
return parseDirectiveAscii(IDVal, true);
case DK_BYTE:
return parseDirectiveValue(1, Info.KsError);
case DK_SHORT:
case DK_VALUE:
case DK_2BYTE:
return parseDirectiveValue(2, Info.KsError);
case DK_LONG:
case DK_INT:
case DK_4BYTE:
return parseDirectiveValue(4, Info.KsError);
case DK_QUAD:
case DK_8BYTE:
return parseDirectiveValue(8, Info.KsError);
case DK_OCTA:
return parseDirectiveOctaValue(Info.KsError);
case DK_SINGLE:
case DK_FLOAT:
return parseDirectiveRealValue(APFloat::IEEEsingle);
case DK_DOUBLE:
return parseDirectiveRealValue(APFloat::IEEEdouble);
case DK_ALIGN: {
bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
return parseDirectiveAlign(IsPow2, /*ExprSize=*/1);
}
case DK_ALIGN32: {
bool IsPow2 = !getContext().getAsmInfo()->getAlignmentIsInBytes();
return parseDirectiveAlign(IsPow2, /*ExprSize=*/4);
}
case DK_BALIGN:
return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/1);
case DK_BALIGNW:
return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/2);
case DK_BALIGNL:
return parseDirectiveAlign(/*IsPow2=*/false, /*ExprSize=*/4);
case DK_P2ALIGN:
return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/1);
case DK_P2ALIGNW:
return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/2);
case DK_P2ALIGNL:
return parseDirectiveAlign(/*IsPow2=*/true, /*ExprSize=*/4);
case DK_ORG:
return parseDirectiveOrg();
case DK_FILL:
return parseDirectiveFill();
case DK_ZERO:
return parseDirectiveZero();
case DK_EXTERN:
eatToEndOfStatement(); // .extern is the default, ignore it.
return false;
case DK_GLOBL:
case DK_GLOBAL:
return parseDirectiveSymbolAttribute(MCSA_Global);
case DK_LAZY_REFERENCE:
return parseDirectiveSymbolAttribute(MCSA_LazyReference);
case DK_NO_DEAD_STRIP:
return parseDirectiveSymbolAttribute(MCSA_NoDeadStrip);
case DK_SYMBOL_RESOLVER:
return parseDirectiveSymbolAttribute(MCSA_SymbolResolver);
case DK_PRIVATE_EXTERN:
return parseDirectiveSymbolAttribute(MCSA_PrivateExtern);
case DK_REFERENCE:
return parseDirectiveSymbolAttribute(MCSA_Reference);
case DK_WEAK_DEFINITION:
return parseDirectiveSymbolAttribute(MCSA_WeakDefinition);
case DK_WEAK_REFERENCE:
return parseDirectiveSymbolAttribute(MCSA_WeakReference);
case DK_WEAK_DEF_CAN_BE_HIDDEN:
return parseDirectiveSymbolAttribute(MCSA_WeakDefAutoPrivate);
case DK_COMM:
case DK_COMMON:
return parseDirectiveComm(/*IsLocal=*/false);
case DK_LCOMM:
return parseDirectiveComm(/*IsLocal=*/true);
case DK_ABORT:
return parseDirectiveAbort();
case DK_INCLUDE:
return parseDirectiveInclude();
case DK_INCBIN:
return parseDirectiveIncbin();
case DK_CODE16:
case DK_CODE16GCC:
// return TokError(Twine(IDVal) + " not supported yet");
Info.KsError = KS_ERR_ASM_UNSUPPORTED;
return true;
case DK_REPT:
return parseDirectiveRept(IDLoc, IDVal);
case DK_IRP:
return parseDirectiveIrp(IDLoc);
case DK_IRPC:
return parseDirectiveIrpc(IDLoc);
case DK_ENDR:
return parseDirectiveEndr(IDLoc);
case DK_BUNDLE_ALIGN_MODE:
return parseDirectiveBundleAlignMode();
case DK_BUNDLE_LOCK:
return parseDirectiveBundleLock();
case DK_BUNDLE_UNLOCK:
return parseDirectiveBundleUnlock();
case DK_SLEB128:
return parseDirectiveLEB128(true);
case DK_ULEB128:
return parseDirectiveLEB128(false);
case DK_SPACE:
case DK_SKIP:
return parseDirectiveSpace(IDVal);
case DK_FILE:
return parseDirectiveFile(IDLoc);
case DK_LINE:
return parseDirectiveLine();
case DK_LOC:
return parseDirectiveLoc();
case DK_STABS:
return parseDirectiveStabs();
case DK_CV_FILE:
return parseDirectiveCVFile();
case DK_CV_LOC:
return parseDirectiveCVLoc();
case DK_CV_LINETABLE:
return parseDirectiveCVLinetable();
case DK_CV_INLINE_LINETABLE:
return parseDirectiveCVInlineLinetable();
case DK_CV_STRINGTABLE:
return parseDirectiveCVStringTable();
case DK_CV_FILECHECKSUMS:
return parseDirectiveCVFileChecksums();
case DK_CFI_SECTIONS:
return parseDirectiveCFISections();
case DK_CFI_STARTPROC:
return parseDirectiveCFIStartProc();
case DK_CFI_ENDPROC:
return parseDirectiveCFIEndProc();
case DK_CFI_DEF_CFA:
return parseDirectiveCFIDefCfa(IDLoc);
case DK_CFI_DEF_CFA_OFFSET:
return parseDirectiveCFIDefCfaOffset();
case DK_CFI_ADJUST_CFA_OFFSET:
return parseDirectiveCFIAdjustCfaOffset();
case DK_CFI_DEF_CFA_REGISTER:
return parseDirectiveCFIDefCfaRegister(IDLoc);
case DK_CFI_OFFSET:
return parseDirectiveCFIOffset(IDLoc);
case DK_CFI_REL_OFFSET:
return parseDirectiveCFIRelOffset(IDLoc);
case DK_CFI_PERSONALITY:
return parseDirectiveCFIPersonalityOrLsda(true);
case DK_CFI_LSDA:
return parseDirectiveCFIPersonalityOrLsda(false);
case DK_CFI_REMEMBER_STATE:
return parseDirectiveCFIRememberState();
case DK_CFI_RESTORE_STATE:
return parseDirectiveCFIRestoreState();
case DK_CFI_SAME_VALUE:
return parseDirectiveCFISameValue(IDLoc);
case DK_CFI_RESTORE:
return parseDirectiveCFIRestore(IDLoc);
case DK_CFI_ESCAPE:
return parseDirectiveCFIEscape();
case DK_CFI_SIGNAL_FRAME:
return parseDirectiveCFISignalFrame();
case DK_CFI_UNDEFINED:
return parseDirectiveCFIUndefined(IDLoc);
case DK_CFI_REGISTER:
return parseDirectiveCFIRegister(IDLoc);
case DK_CFI_WINDOW_SAVE:
return parseDirectiveCFIWindowSave();
case DK_MACROS_ON:
case DK_MACROS_OFF:
return parseDirectiveMacrosOnOff(IDVal);
case DK_MACRO:
return parseDirectiveMacro(IDLoc);
case DK_EXITM:
return parseDirectiveExitMacro(IDVal);
case DK_ENDM:
case DK_ENDMACRO:
return parseDirectiveEndMacro(IDVal);
case DK_PURGEM:
return parseDirectivePurgeMacro(IDLoc);
case DK_END:
return parseDirectiveEnd(IDLoc);
case DK_ERR:
return parseDirectiveError(IDLoc, false);
case DK_ERROR:
return parseDirectiveError(IDLoc, true);
case DK_WARNING:
return parseDirectiveWarning(IDLoc);
case DK_RELOC:
return parseDirectiveReloc(IDLoc);
case DK_NASM_BITS:
if (parseNasmDirectiveBits()) {
Info.KsError = KS_ERR_ASM_DIRECTIVE_ID;
return true;
} else {
return false;
}
case DK_NASM_USE32:
return parseNasmDirectiveUse32();
case DK_NASM_DEFAULT:
if (parseNasmDirectiveDefault()) {
Info.KsError = KS_ERR_ASM_DIRECTIVE_ID;
return true;
} else {
return false;
}
}
//return Error(IDLoc, "unknown directive");
KsError = KS_ERR_ASM_DIRECTIVE_UNKNOWN;
return true;
}
// __asm _emit or __asm __emit
if (ParsingInlineAsm && (IDVal == "_emit" || IDVal == "__emit" ||
IDVal == "_EMIT" || IDVal == "__EMIT"))
return parseDirectiveMSEmit(IDLoc, Info, IDVal.size());
// __asm align
if (ParsingInlineAsm && (IDVal == "align" || IDVal == "ALIGN"))
return parseDirectiveMSAlign(IDLoc, Info);
if (ParsingInlineAsm && (IDVal == "even"))
Info.AsmRewrites->emplace_back(AOK_EVEN, IDLoc, 4);
checkForValidSection();
// Canonicalize the opcode to lower case.
std::string OpcodeStr = IDVal.lower();
ParseInstructionInfo IInfo(Info.AsmRewrites);
//printf(">> Going to ParseInstruction()\n");
bool HadError = getTargetParser().ParseInstruction(IInfo, OpcodeStr, ID,
Info.ParsedOperands, Info.KsError);
Info.ParseError = HadError;
// If parsing succeeded, match the instruction.
if (!HadError) {
uint64_t ErrorInfo;
//printf(">> Going to MatchAndEmitInstruction()\n");
return getTargetParser().MatchAndEmitInstruction(IDLoc, Info.Opcode,
Info.ParsedOperands, Out,
ErrorInfo, ParsingInlineAsm,
Info.KsError, Address);
}
return true;
}
/// eatToEndOfLine uses the Lexer to eat the characters to the end of the line
/// since they may not be able to be tokenized to get to the end of line token.
void AsmParser::eatToEndOfLine()
{
if (!Lexer.is(AsmToken::EndOfStatement))
Lexer.LexUntilEndOfLine();
// Eat EOL.
Lex();
}
/// parseCppHashLineFilenameComment as this:
/// ::= # number "filename"
/// or just as a full line comment if it doesn't have a number and a string.
bool AsmParser::parseCppHashLineFilenameComment(SMLoc L) {
Lex(); // Eat the hash token.
if (getLexer().isNot(AsmToken::Integer)) {
// Consume the line since in cases it is not a well-formed line directive,
// as if were simply a full line comment.
eatToEndOfLine();
return false;
}
bool valid;
int64_t LineNumber = getTok().getIntVal(valid);
if (!valid) {
return true;
}
Lex();
if (getLexer().isNot(AsmToken::String)) {
eatToEndOfLine();
return false;
}
StringRef Filename = getTok().getString();
// Get rid of the enclosing quotes.
Filename = Filename.substr(1, Filename.size() - 2);
// Save the SMLoc, Filename and LineNumber for later use by diagnostics.
CppHashLoc = L;
CppHashFilename = Filename;
CppHashLineNumber = LineNumber;
CppHashBuf = CurBuffer;
// Ignore any trailing characters, they're just comment.
eatToEndOfLine();
return false;
}
/// \brief will use the last parsed cpp hash line filename comment
/// for the Filename and LineNo if any in the diagnostic.
void AsmParser::DiagHandler(const SMDiagnostic &Diag, void *Context) {
const AsmParser *Parser = static_cast<const AsmParser *>(Context);
raw_ostream &OS = errs();
const SourceMgr &DiagSrcMgr = *Diag.getSourceMgr();
SMLoc DiagLoc = Diag.getLoc();
unsigned DiagBuf = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
unsigned CppHashBuf =
Parser->SrcMgr.FindBufferContainingLoc(Parser->CppHashLoc);
// Like SourceMgr::printMessage() we need to print the include stack if any
// before printing the message.
unsigned DiagCurBuffer = DiagSrcMgr.FindBufferContainingLoc(DiagLoc);
if (!Parser->SavedDiagHandler && DiagCurBuffer &&
DiagCurBuffer != DiagSrcMgr.getMainFileID()) {
SMLoc ParentIncludeLoc = DiagSrcMgr.getParentIncludeLoc(DiagCurBuffer);
DiagSrcMgr.PrintIncludeStack(ParentIncludeLoc, OS);
}
// If we have not parsed a cpp hash line filename comment or the source
// manager changed or buffer changed (like in a nested include) then just
// print the normal diagnostic using its Filename and LineNo.
if (!Parser->CppHashLineNumber || &DiagSrcMgr != &Parser->SrcMgr ||
DiagBuf != CppHashBuf) {
if (Parser->SavedDiagHandler)
Parser->SavedDiagHandler(Diag, Parser->SavedDiagContext);
else
Diag.print(nullptr, OS);
return;
}
// Use the CppHashFilename and calculate a line number based on the
// CppHashLoc and CppHashLineNumber relative to this Diag's SMLoc for
// the diagnostic.
const std::string &Filename = Parser->CppHashFilename;
int DiagLocLineNo = DiagSrcMgr.FindLineNumber(DiagLoc, DiagBuf);
int CppHashLocLineNo =
Parser->SrcMgr.FindLineNumber(Parser->CppHashLoc, CppHashBuf);
int LineNo =
Parser->CppHashLineNumber - 1 + (DiagLocLineNo - CppHashLocLineNo);
SMDiagnostic NewDiag(*Diag.getSourceMgr(), Diag.getLoc(), Filename, LineNo,
Diag.getColumnNo(), Diag.getKind(), Diag.getMessage(),
Diag.getLineContents(), Diag.getRanges());
if (Parser->SavedDiagHandler)
Parser->SavedDiagHandler(NewDiag, Parser->SavedDiagContext);
else
NewDiag.print(nullptr, OS);
}
// FIXME: This is mostly duplicated from the function in AsmLexer.cpp. The
// difference being that that function accepts '@' as part of identifiers and
// we can't do that. AsmLexer.cpp should probably be changed to handle
// '@' as a special case when needed.
static bool isIdentifierChar(char c) {
return isalnum(static_cast<unsigned char>(c)) || c == '_' || c == '$' ||
c == '.';
}
bool AsmParser::expandMacro(raw_svector_ostream &OS, StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters,
ArrayRef<MCAsmMacroArgument> A,
bool EnableAtPseudoVariable, SMLoc L)
{
unsigned NParameters = Parameters.size();
bool HasVararg = NParameters ? Parameters.back().Vararg : false;
if ((!IsDarwin || NParameters != 0) && NParameters != A.size())
//return Error(L, "Wrong number of arguments");
return true;
// A macro without parameters is handled differently on Darwin:
// gas accepts no arguments and does no substitutions
while (!Body.empty()) {
// Scan for the next substitution.
std::size_t End = Body.size(), Pos = 0;
for (; Pos != End; ++Pos) {
// Check for a substitution or escape.
if (IsDarwin && !NParameters) {
// This macro has no parameters, look for $0, $1, etc.
if (Body[Pos] != '$' || Pos + 1 == End)
continue;
char Next = Body[Pos + 1];
if (Next == '$' || Next == 'n' ||
isdigit(static_cast<unsigned char>(Next)))
break;
} else {
// This macro has parameters, look for \foo, \bar, etc.
if (Body[Pos] == '\\' && Pos + 1 != End)
break;
}
}
// Add the prefix.
OS << Body.slice(0, Pos);
// Check if we reached the end.
if (Pos == End)
break;
if (IsDarwin && !NParameters) {
switch (Body[Pos + 1]) {
// $$ => $
case '$':
OS << '$';
break;
// $n => number of arguments
case 'n':
OS << A.size();
break;
// $[0-9] => argument
default: {
// Missing arguments are ignored.
unsigned Index = Body[Pos + 1] - '0';
if (Index >= A.size())
break;
// Otherwise substitute with the token values, with spaces eliminated.
for (const AsmToken &Token : A[Index])
OS << Token.getString();
break;
}
}
Pos += 2;
} else {
unsigned I = Pos + 1;
// Check for the \@ pseudo-variable.
if (EnableAtPseudoVariable && Body[I] == '@' && I + 1 != End)
++I;
else
while (isIdentifierChar(Body[I]) && I + 1 != End)
++I;
const char *Begin = Body.data() + Pos + 1;
StringRef Argument(Begin, I - (Pos + 1));
unsigned Index = 0;
if (Argument == "@") {
OS << NumOfMacroInstantiations;
Pos += 2;
} else {
for (; Index < NParameters; ++Index)
if (Parameters[Index].Name == Argument)
break;
if (Index == NParameters) {
if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
Pos += 3;
else {
OS << '\\' << Argument;
Pos = I;
}
} else {
bool VarargParameter = HasVararg && Index == (NParameters - 1);
for (const AsmToken &Token : A[Index])
// We expect no quotes around the string's contents when
// parsing for varargs.
if (Token.getKind() != AsmToken::String || VarargParameter)
OS << Token.getString();
else {
bool valid;
OS << Token.getStringContents(valid);
if (!valid) {
return true;
}
}
Pos += 1 + Argument.size();
}
}
}
// Update the scan point.
Body = Body.substr(Pos);
}
return false;
}
MacroInstantiation::MacroInstantiation(SMLoc IL, int EB, SMLoc EL,
size_t CondStackDepth)
: InstantiationLoc(IL), ExitBuffer(EB), ExitLoc(EL),
CondStackDepth(CondStackDepth) {}
static bool isOperator(AsmToken::TokenKind kind) {
switch (kind) {
default:
return false;
case AsmToken::Plus:
case AsmToken::Minus:
case AsmToken::Tilde:
case AsmToken::Slash:
case AsmToken::Star:
case AsmToken::Dot:
case AsmToken::Equal:
case AsmToken::EqualEqual:
case AsmToken::Pipe:
case AsmToken::PipePipe:
case AsmToken::Caret:
case AsmToken::Amp:
case AsmToken::AmpAmp:
case AsmToken::Exclaim:
case AsmToken::ExclaimEqual:
case AsmToken::Percent:
case AsmToken::Less:
case AsmToken::LessEqual:
case AsmToken::LessLess:
case AsmToken::LessGreater:
case AsmToken::Greater:
case AsmToken::GreaterEqual:
case AsmToken::GreaterGreater:
return true;
}
}
namespace {
class AsmLexerSkipSpaceRAII {
public:
AsmLexerSkipSpaceRAII(AsmLexer &Lexer, bool SkipSpace) : Lexer(Lexer) {
Lexer.setSkipSpace(SkipSpace);
}
~AsmLexerSkipSpaceRAII() {
Lexer.setSkipSpace(true);
}
private:
AsmLexer &Lexer;
};
}
bool AsmParser::parseMacroArgument(MCAsmMacroArgument &MA, bool Vararg)
{
if (Vararg) {
if (Lexer.isNot(AsmToken::EndOfStatement)) {
StringRef Str = parseStringToEndOfStatement();
MA.emplace_back(AsmToken::String, Str);
}
return false;
}
unsigned ParenLevel = 0;
unsigned AddTokens = 0;
// Darwin doesn't use spaces to delmit arguments.
AsmLexerSkipSpaceRAII ScopedSkipSpace(Lexer, IsDarwin);
for (;;) {
if (Lexer.is(AsmToken::Eof) || Lexer.is(AsmToken::Equal)) {
// return TokError("unexpected token in macro instantiation");
KsError = KS_ERR_ASM_MACRO_TOKEN;
return true;
}
if (ParenLevel == 0 && Lexer.is(AsmToken::Comma))
break;
if (Lexer.is(AsmToken::Space)) {
Lex(); // Eat spaces
// Spaces can delimit parameters, but could also be part an expression.
// If the token after a space is an operator, add the token and the next
// one into this argument
if (!IsDarwin) {
if (isOperator(Lexer.getKind())) {
// Check to see whether the token is used as an operator,
// or part of an identifier
const char *NextChar = getTok().getEndLoc().getPointer();
if (*NextChar == ' ')
AddTokens = 2;
}
if (!AddTokens && ParenLevel == 0) {
break;
}
}
}
// handleMacroEntry relies on not advancing the lexer here
// to be able to fill in the remaining default parameter values
if (Lexer.is(AsmToken::EndOfStatement))
break;
// Adjust the current parentheses level.
if (Lexer.is(AsmToken::LParen))
++ParenLevel;
else if (Lexer.is(AsmToken::RParen) && ParenLevel)
--ParenLevel;
// Append the token to the current argument list.
MA.push_back(getTok());
if (AddTokens)
AddTokens--;
Lex();
}
if (ParenLevel != 0) {
// return TokError("unbalanced parentheses in macro argument");
KsError = KS_ERR_ASM_MACRO_PAREN;
return true;
}
return false;
}
// Parse the macro instantiation arguments.
bool AsmParser::parseMacroArguments(const MCAsmMacro *M,
MCAsmMacroArguments &A)
{
const unsigned NParameters = M ? M->Parameters.size() : 0;
bool NamedParametersFound = false;
SmallVector<SMLoc, 4> FALocs;
A.resize(NParameters);
FALocs.resize(NParameters);
// Parse two kinds of macro invocations:
// - macros defined without any parameters accept an arbitrary number of them
// - macros defined with parameters accept at most that many of them
bool HasVararg = NParameters ? M->Parameters.back().Vararg : false;
for (unsigned Parameter = 0; !NParameters || Parameter < NParameters;
++Parameter) {
//SMLoc IDLoc = Lexer.getLoc();
MCAsmMacroParameter FA;
if (Lexer.is(AsmToken::Identifier) && Lexer.peekTok().is(AsmToken::Equal)) {
if (parseIdentifier(FA.Name)) {
//Error(IDLoc, "invalid argument identifier for formal argument");
eatToEndOfStatement();
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!Lexer.is(AsmToken::Equal)) {
//TokError("expected '=' after formal parameter identifier");
eatToEndOfStatement();
KsError = KS_ERR_ASM_MACRO_EQU;
return true;
}
Lex();
NamedParametersFound = true;
}
if (NamedParametersFound && FA.Name.empty()) {
//Error(IDLoc, "cannot mix positional and keyword arguments");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
eatToEndOfStatement();
return true;
}
bool Vararg = HasVararg && Parameter == (NParameters - 1);
if (parseMacroArgument(FA.Value, Vararg)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
unsigned PI = Parameter;
if (!FA.Name.empty()) {
unsigned FAI = 0;
for (FAI = 0; FAI < NParameters; ++FAI)
if (M->Parameters[FAI].Name == FA.Name)
break;
if (FAI >= NParameters) {
//assert(M && "expected macro to be defined");
//Error(IDLoc,
// "parameter named '" + FA.Name + "' does not exist for macro '" +
// M->Name + "'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
PI = FAI;
}
if (!FA.Value.empty()) {
if (A.size() <= PI)
A.resize(PI + 1);
A[PI] = FA.Value;
if (FALocs.size() <= PI)
FALocs.resize(PI + 1);
FALocs[PI] = Lexer.getLoc();
}
// At the end of the statement, fill in remaining arguments that have
// default values. If there aren't any, then the next argument is
// required but missing
if (Lexer.is(AsmToken::EndOfStatement)) {
bool Failure = false;
for (unsigned FAI = 0; FAI < NParameters; ++FAI) {
if (A[FAI].empty()) {
if (M->Parameters[FAI].Required) {
//Error(FALocs[FAI].isValid() ? FALocs[FAI] : Lexer.getLoc(),
// "missing value for required parameter "
// "'" + M->Parameters[FAI].Name + "' in macro '" + M->Name + "'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
Failure = true;
}
if (!M->Parameters[FAI].Value.empty())
A[FAI] = M->Parameters[FAI].Value;
}
}
return Failure;
}
if (Lexer.is(AsmToken::Comma))
Lex();
}
// return TokError("too many positional arguments");
KsError = KS_ERR_ASM_MACRO_ARGS;
return true;
}
const MCAsmMacro *AsmParser::lookupMacro(StringRef Name) {
StringMap<MCAsmMacro>::iterator I = MacroMap.find(Name);
return (I == MacroMap.end()) ? nullptr : &I->getValue();
}
void AsmParser::defineMacro(StringRef Name, MCAsmMacro Macro) {
MacroMap.insert(std::make_pair(Name, std::move(Macro)));
}
void AsmParser::undefineMacro(StringRef Name) { MacroMap.erase(Name); }
bool AsmParser::handleMacroEntry(const MCAsmMacro *M, SMLoc NameLoc)
{
// Arbitrarily limit macro nesting depth, to match 'as'. We can eliminate
// this, although we should protect against infinite loops.
if (ActiveMacros.size() == 20) {
// return TokError("macros cannot be nested more than 20 levels deep");
KsError = KS_ERR_ASM_MACRO_LEVELS_EXCEED;
return true;
}
MCAsmMacroArguments A;
if (parseMacroArguments(M, A)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
StringRef Body = M->Body;
raw_svector_ostream OS(Buf);
if (expandMacro(OS, Body, M->Parameters, A, true, getTok().getLoc())) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// We include the .endmacro in the buffer as our cue to exit the macro
// instantiation.
OS << ".endmacro\n";
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation(
NameLoc, CurBuffer, getTok().getLoc(), TheCondStack.size());
ActiveMacros.push_back(MI);
++NumOfMacroInstantiations;
// Jump to the macro instantiation and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
Lex();
return false;
}
void AsmParser::handleMacroExit() {
// Jump to the EndOfStatement we should return to, and consume it.
jumpToLoc(ActiveMacros.back()->ExitLoc, ActiveMacros.back()->ExitBuffer);
Lex();
// Pop the instantiation entry.
delete ActiveMacros.back();
ActiveMacros.pop_back();
}
bool AsmParser::parseAssignment(StringRef Name, bool allow_redef,
bool NoDeadStrip) {
MCSymbol *Sym;
const MCExpr *Value;
if (MCParserUtils::parseAssignmentExpression(Name, allow_redef, *this, Sym,
Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!Sym) {
// In the case where we parse an expression starting with a '.', we will
// not generate an error, nor will we create a symbol. In this case we
// should just return out.
return false;
}
// Do the assignment.
if (!Out.EmitAssignment(Sym, Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_ID;
return true;
}
if (NoDeadStrip)
Out.EmitSymbolAttribute(Sym, MCSA_NoDeadStrip);
return false;
}
/// parseIdentifier:
/// ::= identifier
/// ::= string
bool AsmParser::parseIdentifier(StringRef &Res)
{
// The assembler has relaxed rules for accepting identifiers, in particular we
// allow things like '.globl $foo' and '.def @feat.00', which would normally be
// separate tokens. At this level, we have already lexed so we cannot (currently)
// handle this as a context dependent token, instead we detect adjacent tokens
// and return the combined identifier.
if (Lexer.is(AsmToken::Dollar) || Lexer.is(AsmToken::At)) {
SMLoc PrefixLoc = getLexer().getLoc();
// Consume the prefix character, and check for a following identifier.
Lex();
if (Lexer.isNot(AsmToken::Identifier)) {
KsError = KS_ERR_ASM_MACRO_INVALID;
return true;
}
// We have a '$' or '@' followed by an identifier, make sure they are adjacent.
if (PrefixLoc.getPointer() + 1 != getTok().getLoc().getPointer()) {
KsError = KS_ERR_ASM_MACRO_INVALID;
return true;
}
// Construct the joined identifier and consume the token.
Res =
StringRef(PrefixLoc.getPointer(), getTok().getIdentifier().size() + 1);
Lex();
return false;
}
if (Lexer.isNot(AsmToken::Identifier) && Lexer.isNot(AsmToken::String)) {
KsError = KS_ERR_ASM_MACRO_INVALID;
return true;
}
Res = getTok().getIdentifier();
Lex(); // Consume the identifier token.
return false;
}
/// parseDirectiveSet:
/// ::= .equ identifier ',' expression
/// ::= .equiv identifier ',' expression
/// ::= .set identifier ',' expression
bool AsmParser::parseDirectiveSet(StringRef IDVal, bool allow_redef) {
StringRef Name;
if (parseIdentifier(Name)) {
// return TokError("expected identifier after '" + Twine(IDVal) + "'");
KsError = KS_ERR_ASM_DIRECTIVE_ID;
return true;
}
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in '" + Twine(IDVal) + "'");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
return parseAssignment(Name, allow_redef, true);
}
bool AsmParser::parseEscapedString(std::string &Data)
{
if (!getLexer().is(AsmToken::String)) {
KsError = KS_ERR_ASM_ESC_STR;
return true;
}
Data = "";
bool valid;
StringRef Str = getTok().getStringContents(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
for (unsigned i = 0, e = Str.size(); i != e; ++i) {
if (Str[i] != '\\') {
Data += Str[i];
continue;
}
// Recognize escaped characters. Note that this escape semantics currently
// loosely follows Darwin 'as'. Notably, it doesn't support hex escapes.
++i;
if (i == e) {
// return TokError("unexpected backslash at end of string");
KsError = KS_ERR_ASM_ESC_BACKSLASH;
return true;
}
// Recognize octal sequences.
if ((unsigned)(Str[i] - '0') <= 7) {
// Consume up to three octal characters.
unsigned Value = Str[i] - '0';
if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
++i;
Value = Value * 8 + (Str[i] - '0');
if (i + 1 != e && ((unsigned)(Str[i + 1] - '0')) <= 7) {
++i;
Value = Value * 8 + (Str[i] - '0');
}
}
if (Value > 255) {
// return TokError("invalid octal escape sequence (out of range)");
KsError = KS_ERR_ASM_ESC_BACKSLASH;
return true;
}
Data += (unsigned char)Value;
continue;
}
// Otherwise recognize individual escapes.
switch (Str[i]) {
default:
// Just reject invalid escape sequences for now.
// return TokError("invalid escape sequence (unrecognized character)");
KsError = KS_ERR_ASM_ESC_SEQUENCE;
return true;
case 'b': Data += '\b'; break;
case 'f': Data += '\f'; break;
case 'n': Data += '\n'; break;
case 'r': Data += '\r'; break;
case 't': Data += '\t'; break;
case '"': Data += '"'; break;
case '\\': Data += '\\'; break;
}
}
return false;
}
/// parseDirectiveAscii:
/// ::= ( .ascii | .asciz | .string ) [ "string" ( , "string" )* ]
bool AsmParser::parseDirectiveAscii(StringRef IDVal, bool ZeroTerminated)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
checkForValidSection();
for (;;) {
if (getLexer().isNot(AsmToken::String)) {
// return TokError("expected string in '" + Twine(IDVal) + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_STR;
return true;
}
std::string Data;
if (parseEscapedString(Data)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
getStreamer().EmitBytes(Data);
if (ZeroTerminated)
getStreamer().EmitBytes(StringRef("\0", 1));
Lex();
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
}
}
Lex();
return false;
}
/// parseDirectiveReloc
/// ::= .reloc expression , identifier [ , expression ]
bool AsmParser::parseDirectiveReloc(SMLoc DirectiveLoc)
{
const MCExpr *Offset;
const MCExpr *Expr = nullptr;
//SMLoc OffsetLoc = Lexer.getTok().getLoc();
if (parseExpression(Offset)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// We can only deal with constant expressions at the moment.
int64_t OffsetValue;
if (!Offset->evaluateAsAbsolute(OffsetValue)) {
//return Error(OffsetLoc, "expression is not a constant value");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (OffsetValue < 0) {
//return Error(OffsetLoc, "expression is negative");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Lexer.isNot(AsmToken::Comma)) {
// return TokError("expected comma");
KsError = KS_ERR_ASM_DIRECTIVE_COMMA;
return true;
}
Lexer.Lex();
if (Lexer.isNot(AsmToken::Identifier)) {
// return TokError("expected relocation name");
KsError = KS_ERR_ASM_DIRECTIVE_RELOC_NAME;
return true;
}
//SMLoc NameLoc = Lexer.getTok().getLoc();
StringRef Name = Lexer.getTok().getIdentifier();
Lexer.Lex();
if (Lexer.is(AsmToken::Comma)) {
Lexer.Lex();
//SMLoc ExprLoc = Lexer.getLoc();
if (parseExpression(Expr)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
MCValue Value;
if (!Expr->evaluateAsRelocatable(Value, nullptr, nullptr)) {
//return Error(ExprLoc, "expression must be relocatable");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
if (Lexer.isNot(AsmToken::EndOfStatement)) {
// return TokError("unexpected token in .reloc directive");
KsError = KS_ERR_ASM_DIRECTIVE_RELOC_TOKEN;
return true;
}
if (getStreamer().EmitRelocDirective(*Offset, Name, Expr, DirectiveLoc)) {
//return Error(NameLoc, "unknown relocation name");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
return false;
}
/// parseDirectiveValue
/// ::= (.byte | .short | ... ) [ expression (, expression)* ]
bool AsmParser::parseDirectiveValue(unsigned Size, unsigned int &KsError)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
checkForValidSection();
for (;;) {
const MCExpr *Value;
SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Special case constant expressions to match code generator.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
assert(Size <= 8 && "Invalid size");
uint64_t IntValue = MCE->getValue();
if (!isUIntN(8 * Size, IntValue) && !isIntN(8 * Size, IntValue)) {
// return Error(ExprLoc, "literal value out of range for directive");
KsError = KS_ERR_ASM_DIRECTIVE_VALUE_RANGE;
return true;
}
bool Error;
getStreamer().EmitIntValue(IntValue, Size, Error);
if (Error) {
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
} else
getStreamer().EmitValue(Value, Size, ExprLoc);
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
}
}
Lex();
return false;
}
/// ParseDirectiveOctaValue
/// ::= .octa [ hexconstant (, hexconstant)* ]
bool AsmParser::parseDirectiveOctaValue(unsigned int &KsError)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
checkForValidSection();
for (;;) {
if (Lexer.getKind() == AsmToken::Error) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Lexer.getKind() != AsmToken::Integer &&
Lexer.getKind() != AsmToken::BigNum) {
// return TokError("unknown token in expression");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
// SMLoc ExprLoc = getLexer().getLoc();
bool valid;
APInt IntValue = getTok().getAPIntVal(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
uint64_t hi, lo;
if (IntValue.isIntN(64)) {
hi = 0;
lo = IntValue.getZExtValue();
} else if (IntValue.isIntN(128)) {
// It might actually have more than 128 bits, but the top ones are zero.
hi = IntValue.getHiBits(IntValue.getBitWidth() - 64).getZExtValue();
lo = IntValue.getLoBits(64).getZExtValue();
} else {
// return Error(ExprLoc, "literal value out of range for directive");
KsError = KS_ERR_ASM_DIRECTIVE_VALUE_RANGE;
return true;
}
bool Error;
if (MAI.isLittleEndian()) {
getStreamer().EmitIntValue(lo, 8, Error);
getStreamer().EmitIntValue(hi, 8, Error);
} else {
getStreamer().EmitIntValue(hi, 8, Error);
getStreamer().EmitIntValue(lo, 8, Error);
}
if (getLexer().is(AsmToken::EndOfStatement))
break;
// FIXME: Improve diagnostic.
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
}
}
Lex();
return false;
}
/// parseDirectiveRealValue
/// ::= (.single | .double) [ expression (, expression)* ]
bool AsmParser::parseDirectiveRealValue(const fltSemantics &Semantics)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
checkForValidSection();
for (;;) {
// We don't truly support arithmetic on floating point expressions, so we
// have to manually parse unary prefixes.
bool IsNeg = false;
if (getLexer().is(AsmToken::Minus)) {
Lex();
IsNeg = true;
} else if (getLexer().is(AsmToken::Plus))
Lex();
if (getLexer().isNot(AsmToken::Integer) &&
getLexer().isNot(AsmToken::Real) &&
getLexer().isNot(AsmToken::Identifier)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
// Convert to an APFloat.
APFloat Value(Semantics);
StringRef IDVal = getTok().getString();
if (getLexer().is(AsmToken::Identifier)) {
if (!IDVal.compare_lower("infinity") || !IDVal.compare_lower("inf"))
Value = APFloat::getInf(Semantics);
else if (!IDVal.compare_lower("nan"))
Value = APFloat::getNaN(Semantics, false, ~0);
else {
// return TokError("invalid floating point literal");
KsError = KS_ERR_ASM_DIRECTIVE_FPOINT;
return true;
}
} else if (Value.convertFromString(IDVal, APFloat::rmNearestTiesToEven) ==
APFloat::opInvalidOp) {
// return TokError("invalid floating point literal");
KsError = KS_ERR_ASM_DIRECTIVE_FPOINT;
return true;
}
if (IsNeg)
Value.changeSign();
// Consume the numeric token.
Lex();
// Emit the value as an integer.
APInt AsInt = Value.bitcastToAPInt();
bool Error;
getStreamer().EmitIntValue(AsInt.getLimitedValue(),
AsInt.getBitWidth() / 8, Error);
if (Error) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
}
}
Lex();
return false;
}
/// parseDirectiveZero
/// ::= .zero expression
bool AsmParser::parseDirectiveZero()
{
checkForValidSection();
int64_t NumBytes;
if (parseAbsoluteExpression(NumBytes)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
int64_t Val = 0;
if (getLexer().is(AsmToken::Comma)) {
Lex();
if (parseAbsoluteExpression(Val)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// return TokError("unexpected token in '.zero' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
getStreamer().EmitFill(NumBytes, Val);
return false;
}
/// parseDirectiveFill
/// ::= .fill expression [ , expression [ , expression ] ]
bool AsmParser::parseDirectiveFill()
{
checkForValidSection();
SMLoc RepeatLoc = getLexer().getLoc();
int64_t NumValues;
if (parseAbsoluteExpression(NumValues)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (NumValues < 0) {
Warning(RepeatLoc,
"'.fill' directive with negative repeat count has no effect");
NumValues = 0;
}
int64_t FillSize = 1;
int64_t FillExpr = 0;
SMLoc SizeLoc, ExprLoc;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in '.fill' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
SizeLoc = getLexer().getLoc();
if (parseAbsoluteExpression(FillSize)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in '.fill' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
ExprLoc = getLexer().getLoc();
if (parseAbsoluteExpression(FillExpr)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// return TokError("unexpected token in '.fill' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
}
}
if (FillSize < 0) {
Warning(SizeLoc, "'.fill' directive with negative size has no effect");
NumValues = 0;
}
if (FillSize > 8) {
Warning(SizeLoc, "'.fill' directive with size greater than 8 has been truncated to 8");
FillSize = 8;
}
if (!isUInt<32>(FillExpr) && FillSize > 4)
Warning(ExprLoc, "'.fill' directive pattern has been truncated to 32-bits");
if (NumValues > 0) {
int64_t NonZeroFillSize = FillSize > 4 ? 4 : FillSize;
FillExpr &= ~0ULL >> (64 - NonZeroFillSize * 8);
bool Error;
for (uint64_t i = 0, e = NumValues; i != e; ++i) {
getStreamer().EmitIntValue(FillExpr, NonZeroFillSize, Error);
if (Error) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (NonZeroFillSize < FillSize) {
getStreamer().EmitIntValue(0, FillSize - NonZeroFillSize, Error);
if (Error) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
}
}
return false;
}
/// parseDirectiveOrg
/// ::= .org expression [ , expression ]
bool AsmParser::parseDirectiveOrg() {
checkForValidSection();
const MCExpr *Offset;
if (parseExpression(Offset)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Parse optional fill expression.
int64_t FillExpr = 0;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in '.org' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
if (parseAbsoluteExpression(FillExpr)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// return TokError("unexpected token in '.org' directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
}
Lex();
getStreamer().emitValueToOffset(Offset, FillExpr);
return false;
}
/// parseDirectiveAlign
/// ::= {.align, ...} expression [ , expression [ , expression ]]
bool AsmParser::parseDirectiveAlign(bool IsPow2, unsigned ValueSize)
{
checkForValidSection();
//SMLoc AlignmentLoc = getLexer().getLoc();
int64_t Alignment;
if (parseAbsoluteExpression(Alignment)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
SMLoc MaxBytesLoc;
bool HasFillExpr = false;
int64_t FillExpr = 0;
int64_t MaxBytesToFill = 0;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
// The fill expression can be omitted while specifying a maximum number of
// alignment bytes, e.g:
// .align 3,,4
if (getLexer().isNot(AsmToken::Comma)) {
HasFillExpr = true;
if (parseAbsoluteExpression(FillExpr)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
Lex();
MaxBytesLoc = getLexer().getLoc();
if (parseAbsoluteExpression(MaxBytesToFill)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_TOKEN;
return true;
}
}
}
Lex();
if (!HasFillExpr)
FillExpr = 0;
// Compute alignment in bytes.
if (IsPow2) {
// FIXME: Diagnose overflow.
if (Alignment >= 32) {
//Error(AlignmentLoc, "invalid alignment value");
Alignment = 31;
}
Alignment = 1ULL << Alignment;
} else {
// Reject alignments that aren't either a power of two or zero,
// for gas compatibility. Alignment of zero is silently rounded
// up to one.
if (Alignment == 0)
Alignment = 1;
if (!isPowerOf2_64(Alignment)) {
//Error(AlignmentLoc, "alignment must be a power of 2");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
// Diagnose non-sensical max bytes to align.
if (MaxBytesLoc.isValid()) {
if (MaxBytesToFill < 1) {
//Error(MaxBytesLoc, "alignment directive can never be satisfied in this "
// "many bytes, ignoring maximum bytes expression");
MaxBytesToFill = 0;
}
if (MaxBytesToFill >= Alignment) {
Warning(MaxBytesLoc, "maximum bytes expression exceeds alignment and "
"has no effect");
MaxBytesToFill = 0;
}
}
// Check whether we should use optimal code alignment for this .align
// directive.
const MCSection *Section = getStreamer().getCurrentSection().first;
assert(Section && "must have section to emit alignment");
bool UseCodeAlign = Section->UseCodeAlign();
if ((!HasFillExpr || Lexer.getMAI().getTextAlignFillValue() == FillExpr) &&
ValueSize == 1 && UseCodeAlign) {
getStreamer().EmitCodeAlignment(Alignment, MaxBytesToFill);
} else {
// FIXME: Target specific behavior about how the "extra" bytes are filled.
getStreamer().EmitValueToAlignment(Alignment, FillExpr, ValueSize,
MaxBytesToFill);
}
return false;
}
/// parseDirectiveFile
/// ::= .file [number] filename
/// ::= .file number directory filename
bool AsmParser::parseDirectiveFile(SMLoc DirectiveLoc)
{
// FIXME: I'm not sure what this is.
int64_t FileNumber = -1;
//SMLoc FileNumberLoc = getLexer().getLoc();
if (getLexer().is(AsmToken::Integer)) {
bool valid;
FileNumber = getTok().getIntVal(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
if (FileNumber < 1) {
//return TokError("file number less than one");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
if (getLexer().isNot(AsmToken::String)) {
//return TokError("unexpected token in '.file' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Usually the directory and filename together, otherwise just the directory.
// Allow the strings to have escaped octal character sequence.
std::string Path = getTok().getString();
if (parseEscapedString(Path))
return true;
Lex();
StringRef Directory;
StringRef Filename;
std::string FilenameData;
if (getLexer().is(AsmToken::String)) {
if (FileNumber == -1)
//return TokError("explicit path specified, but no file number");
return true;
if (parseEscapedString(FilenameData))
return true;
Filename = FilenameData;
Directory = Path;
Lex();
} else {
Filename = Path;
}
if (getLexer().isNot(AsmToken::EndOfStatement))
//return TokError("unexpected token in '.file' directive");
return true;
if (FileNumber == -1)
getStreamer().EmitFileDirective(Filename);
else {
if (getContext().getGenDwarfForAssembly())
//Error(DirectiveLoc,
// "input can't have .file dwarf directives when -g is "
// "used to generate dwarf debug info for assembly code");
return true;
if (getStreamer().EmitDwarfFileDirective(FileNumber, Directory, Filename) ==
0)
//Error(FileNumberLoc, "file number already allocated");
return true;
}
return false;
}
/// parseDirectiveLine
/// ::= .line [number]
bool AsmParser::parseDirectiveLine()
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Integer)) {
//return TokError("unexpected token in '.line' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
bool valid;
int64_t LineNumber = getTok().getIntVal(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
(void)LineNumber;
Lex();
// FIXME: Do something with the .line.
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.line' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
return false;
}
/// parseDirectiveLoc
/// ::= .loc FileNumber [LineNumber] [ColumnPos] [basic_block] [prologue_end]
/// [epilogue_begin] [is_stmt VALUE] [isa VALUE]
/// The first number is a file number, must have been previously assigned with
/// a .file directive, the second number is the line number and optionally the
/// third number is a column position (zero if not specified). The remaining
/// optional items are .loc sub-directives.
bool AsmParser::parseDirectiveLoc()
{
if (getLexer().isNot(AsmToken::Integer)) {
//return TokError("unexpected token in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
bool valid;
int64_t FileNumber = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (FileNumber < 1) {
//return TokError("file number less than one in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!getContext().isValidDwarfFileNumber(FileNumber)) {
//return TokError("unassigned file number in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
int64_t LineNumber = 0;
if (getLexer().is(AsmToken::Integer)) {
bool valid;
LineNumber = getTok().getIntVal(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (LineNumber < 0) {
//return TokError("line number less than zero in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
}
int64_t ColumnPos = 0;
if (getLexer().is(AsmToken::Integer)) {
bool valid;
ColumnPos = getTok().getIntVal(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (ColumnPos < 0) {
//return TokError("column position less than zero in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
}
unsigned Flags = DWARF2_LINE_DEFAULT_IS_STMT ? DWARF2_FLAG_IS_STMT : 0;
unsigned Isa = 0;
int64_t Discriminator = 0;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
if (getLexer().is(AsmToken::EndOfStatement))
break;
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name)) {
//return TokError("unexpected token in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Name == "basic_block")
Flags |= DWARF2_FLAG_BASIC_BLOCK;
else if (Name == "prologue_end")
Flags |= DWARF2_FLAG_PROLOGUE_END;
else if (Name == "epilogue_begin")
Flags |= DWARF2_FLAG_EPILOGUE_BEGIN;
else if (Name == "is_stmt") {
Loc = getTok().getLoc();
const MCExpr *Value;
if (parseExpression(Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// The expression must be the constant 0 or 1.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
int Value = MCE->getValue();
if (Value == 0)
Flags &= ~DWARF2_FLAG_IS_STMT;
else if (Value == 1)
Flags |= DWARF2_FLAG_IS_STMT;
else {
//return Error(Loc, "is_stmt value not 0 or 1");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
} else {
//return Error(Loc, "is_stmt value not the constant value of 0 or 1");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
} else if (Name == "isa") {
Loc = getTok().getLoc();
const MCExpr *Value;
if (parseExpression(Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// The expression must be a constant greater or equal to 0.
if (const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value)) {
int Value = MCE->getValue();
if (Value < 0) {
//return Error(Loc, "isa number less than zero");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Isa = Value;
} else {
//return Error(Loc, "isa number not a constant value");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
} else if (Name == "discriminator") {
if (parseAbsoluteExpression(Discriminator)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
} else {
//return Error(Loc, "unknown sub-directive in '.loc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().is(AsmToken::EndOfStatement))
break;
}
}
getStreamer().EmitDwarfLocDirective(FileNumber, LineNumber, ColumnPos, Flags,
Isa, Discriminator, StringRef());
return false;
}
/// parseDirectiveStabs
/// ::= .stabs string, number, number, number
bool AsmParser::parseDirectiveStabs()
{
//return TokError("unsupported directive '.stabs'");
return true;
}
/// parseDirectiveCVFile
/// ::= .cv_file number filename
bool AsmParser::parseDirectiveCVFile()
{
//SMLoc FileNumberLoc = getLexer().getLoc();
if (getLexer().isNot(AsmToken::Integer))
//return TokError("expected file number in '.cv_file' directive");
return true;
bool valid;
int64_t FileNumber = getTok().getIntVal(valid);
if (!valid) {
return true;
}
Lex();
if (FileNumber < 1)
//return TokError("file number less than one");
return true;
if (getLexer().isNot(AsmToken::String))
//return TokError("unexpected token in '.cv_file' directive");
return true;
// Usually the directory and filename together, otherwise just the directory.
// Allow the strings to have escaped octal character sequence.
std::string Filename;
if (parseEscapedString(Filename))
return true;
Lex();
if (getLexer().isNot(AsmToken::EndOfStatement))
//return TokError("unexpected token in '.cv_file' directive");
return true;
if (getStreamer().EmitCVFileDirective(FileNumber, Filename) == 0)
//Error(FileNumberLoc, "file number already allocated");
return true;
return false;
}
/// parseDirectiveCVLoc
/// ::= .cv_loc FunctionId FileNumber [LineNumber] [ColumnPos] [prologue_end]
/// [is_stmt VALUE]
/// The first number is a file number, must have been previously assigned with
/// a .file directive, the second number is the line number and optionally the
/// third number is a column position (zero if not specified). The remaining
/// optional items are .loc sub-directives.
bool AsmParser::parseDirectiveCVLoc()
{
if (getLexer().isNot(AsmToken::Integer))
//return TokError("unexpected token in '.cv_loc' directive");
return true;
bool valid;
int64_t FunctionId = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (FunctionId < 0)
//return TokError("function id less than zero in '.cv_loc' directive");
return true;
Lex();
int64_t FileNumber = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (FileNumber < 1)
//return TokError("file number less than one in '.cv_loc' directive");
return true;
if (!getContext().isValidCVFileNumber(FileNumber))
//return TokError("unassigned file number in '.cv_loc' directive");
return true;
Lex();
int64_t LineNumber = 0;
if (getLexer().is(AsmToken::Integer)) {
LineNumber = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (LineNumber < 0)
//return TokError("line number less than zero in '.cv_loc' directive");
return true;
Lex();
}
int64_t ColumnPos = 0;
if (getLexer().is(AsmToken::Integer)) {
ColumnPos = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (ColumnPos < 0)
//return TokError("column position less than zero in '.cv_loc' directive");
return true;
Lex();
}
bool PrologueEnd = false;
uint64_t IsStmt = 0;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
StringRef Name;
SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name))
//return TokError("unexpected token in '.cv_loc' directive");
return true;
if (Name == "prologue_end")
PrologueEnd = true;
else if (Name == "is_stmt") {
Loc = getTok().getLoc();
const MCExpr *Value;
if (parseExpression(Value))
return true;
// The expression must be the constant 0 or 1.
IsStmt = ~0ULL;
if (const auto *MCE = dyn_cast<MCConstantExpr>(Value))
IsStmt = MCE->getValue();
if (IsStmt > 1)
//return Error(Loc, "is_stmt value not 0 or 1");
return true;
} else {
//return Error(Loc, "unknown sub-directive in '.cv_loc' directive");
return true;
}
}
getStreamer().EmitCVLocDirective(FunctionId, FileNumber, LineNumber,
ColumnPos, PrologueEnd, IsStmt, StringRef());
return false;
}
/// parseDirectiveCVLinetable
/// ::= .cv_linetable FunctionId, FnStart, FnEnd
bool AsmParser::parseDirectiveCVLinetable()
{
bool valid;
int64_t FunctionId = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (FunctionId < 0)
//return TokError("function id less than zero in '.cv_linetable' directive");
return true;
Lex();
if (Lexer.isNot(AsmToken::Comma))
//return TokError("unexpected token in '.cv_linetable' directive");
return true;
Lex();
SMLoc Loc = getLexer().getLoc();
StringRef FnStartName;
if (parseIdentifier(FnStartName))
//return Error(Loc, "expected identifier in directive");
return true;
if (Lexer.isNot(AsmToken::Comma))
//return TokError("unexpected token in '.cv_linetable' directive");
return true;
Lex();
Loc = getLexer().getLoc();
StringRef FnEndName;
if (parseIdentifier(FnEndName))
//return Error(Loc, "expected identifier in directive");
return true;
if (FnStartName.empty() || FnEndName.empty()) {
return true;
}
MCSymbol *FnStartSym = getContext().getOrCreateSymbol(FnStartName);
MCSymbol *FnEndSym = getContext().getOrCreateSymbol(FnEndName);
getStreamer().EmitCVLinetableDirective(FunctionId, FnStartSym, FnEndSym);
return false;
}
/// parseDirectiveCVInlineLinetable
/// ::= .cv_inline_linetable PrimaryFunctionId FileId LineNum
/// ("contains" SecondaryFunctionId+)?
bool AsmParser::parseDirectiveCVInlineLinetable()
{
bool valid;
int64_t PrimaryFunctionId = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (PrimaryFunctionId < 0)
//return TokError(
// "function id less than zero in '.cv_inline_linetable' directive");
return true;
Lex();
int64_t SourceFileId = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (SourceFileId <= 0)
//return TokError(
// "File id less than zero in '.cv_inline_linetable' directive");
return true;
Lex();
int64_t SourceLineNum = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (SourceLineNum < 0)
//return TokError(
// "Line number less than zero in '.cv_inline_linetable' directive");
return true;
Lex();
SmallVector<unsigned, 8> SecondaryFunctionIds;
if (getLexer().is(AsmToken::Identifier)) {
if (getTok().getIdentifier() != "contains")
//return TokError(
// "unexpected identifier in '.cv_inline_linetable' directive");
return true;
Lex();
while (getLexer().isNot(AsmToken::EndOfStatement)) {
int64_t SecondaryFunctionId = getTok().getIntVal(valid);
if (!valid) {
return true;
}
if (SecondaryFunctionId < 0)
//return TokError(
// "function id less than zero in '.cv_inline_linetable' directive");
return true;
Lex();
SecondaryFunctionIds.push_back(SecondaryFunctionId);
}
}
getStreamer().EmitCVInlineLinetableDirective(
PrimaryFunctionId, SourceFileId, SourceLineNum, SecondaryFunctionIds);
return false;
}
/// parseDirectiveCVStringTable
/// ::= .cv_stringtable
bool AsmParser::parseDirectiveCVStringTable() {
getStreamer().EmitCVStringTableDirective();
return false;
}
/// parseDirectiveCVFileChecksums
/// ::= .cv_filechecksums
bool AsmParser::parseDirectiveCVFileChecksums() {
getStreamer().EmitCVFileChecksumsDirective();
return false;
}
/// parseDirectiveCFISections
/// ::= .cfi_sections section [, section]
bool AsmParser::parseDirectiveCFISections()
{
StringRef Name;
bool EH = false;
bool Debug = false;
if (parseIdentifier(Name))
//return TokError("Expected an identifier");
return true;
if (Name == ".eh_frame")
EH = true;
else if (Name == ".debug_frame")
Debug = true;
if (getLexer().is(AsmToken::Comma)) {
Lex();
if (parseIdentifier(Name))
//return TokError("Expected an identifier");
return true;
if (Name == ".eh_frame")
EH = true;
else if (Name == ".debug_frame")
Debug = true;
}
getStreamer().EmitCFISections(EH, Debug);
return false;
}
/// parseDirectiveCFIStartProc
/// ::= .cfi_startproc [simple]
bool AsmParser::parseDirectiveCFIStartProc()
{
StringRef Simple;
if (getLexer().isNot(AsmToken::EndOfStatement))
if (parseIdentifier(Simple) || Simple != "simple")
//return TokError("unexpected token in .cfi_startproc directive");
return true;
getStreamer().EmitCFIStartProc(!Simple.empty());
return false;
}
/// parseDirectiveCFIEndProc
/// ::= .cfi_endproc
bool AsmParser::parseDirectiveCFIEndProc() {
getStreamer().EmitCFIEndProc();
return false;
}
/// \brief parse register name or number.
bool AsmParser::parseRegisterOrRegisterNumber(int64_t &Register,
SMLoc DirectiveLoc) {
unsigned RegNo;
unsigned int ErrorCode;
if (getLexer().isNot(AsmToken::Integer)) {
if (getTargetParser().ParseRegister(RegNo, DirectiveLoc, DirectiveLoc, ErrorCode))
return true;
Register = getContext().getRegisterInfo()->getDwarfRegNum(RegNo, true);
} else
return parseAbsoluteExpression(Register);
return false;
}
/// parseDirectiveCFIDefCfa
/// ::= .cfi_def_cfa register, offset
bool AsmParser::parseDirectiveCFIDefCfa(SMLoc DirectiveLoc)
{
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
if (getLexer().isNot(AsmToken::Comma))
//return TokError("unexpected token in directive");
return true;
Lex();
int64_t Offset = 0;
if (parseAbsoluteExpression(Offset))
return true;
getStreamer().EmitCFIDefCfa(Register, Offset);
return false;
}
/// parseDirectiveCFIDefCfaOffset
/// ::= .cfi_def_cfa_offset offset
bool AsmParser::parseDirectiveCFIDefCfaOffset() {
int64_t Offset = 0;
if (parseAbsoluteExpression(Offset))
return true;
getStreamer().EmitCFIDefCfaOffset(Offset);
return false;
}
/// parseDirectiveCFIRegister
/// ::= .cfi_register register, register
bool AsmParser::parseDirectiveCFIRegister(SMLoc DirectiveLoc)
{
int64_t Register1 = 0;
if (parseRegisterOrRegisterNumber(Register1, DirectiveLoc))
return true;
if (getLexer().isNot(AsmToken::Comma))
//return TokError("unexpected token in directive");
return true;
Lex();
int64_t Register2 = 0;
if (parseRegisterOrRegisterNumber(Register2, DirectiveLoc))
return true;
getStreamer().EmitCFIRegister(Register1, Register2);
return false;
}
/// parseDirectiveCFIWindowSave
/// ::= .cfi_window_save
bool AsmParser::parseDirectiveCFIWindowSave() {
getStreamer().EmitCFIWindowSave();
return false;
}
/// parseDirectiveCFIAdjustCfaOffset
/// ::= .cfi_adjust_cfa_offset adjustment
bool AsmParser::parseDirectiveCFIAdjustCfaOffset() {
int64_t Adjustment = 0;
if (parseAbsoluteExpression(Adjustment))
return true;
getStreamer().EmitCFIAdjustCfaOffset(Adjustment);
return false;
}
/// parseDirectiveCFIDefCfaRegister
/// ::= .cfi_def_cfa_register register
bool AsmParser::parseDirectiveCFIDefCfaRegister(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
getStreamer().EmitCFIDefCfaRegister(Register);
return false;
}
/// parseDirectiveCFIOffset
/// ::= .cfi_offset register, offset
bool AsmParser::parseDirectiveCFIOffset(SMLoc DirectiveLoc)
{
int64_t Register = 0;
int64_t Offset = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
if (getLexer().isNot(AsmToken::Comma))
//return TokError("unexpected token in directive");
return true;
Lex();
if (parseAbsoluteExpression(Offset))
return true;
getStreamer().EmitCFIOffset(Register, Offset);
return false;
}
/// parseDirectiveCFIRelOffset
/// ::= .cfi_rel_offset register, offset
bool AsmParser::parseDirectiveCFIRelOffset(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
if (getLexer().isNot(AsmToken::Comma))
//return TokError("unexpected token in directive");
return true;
Lex();
int64_t Offset = 0;
if (parseAbsoluteExpression(Offset))
return true;
getStreamer().EmitCFIRelOffset(Register, Offset);
return false;
}
static bool isValidEncoding(int64_t Encoding) {
if (Encoding & ~0xff)
return false;
if (Encoding == dwarf::DW_EH_PE_omit)
return true;
const unsigned Format = Encoding & 0xf;
if (Format != dwarf::DW_EH_PE_absptr && Format != dwarf::DW_EH_PE_udata2 &&
Format != dwarf::DW_EH_PE_udata4 && Format != dwarf::DW_EH_PE_udata8 &&
Format != dwarf::DW_EH_PE_sdata2 && Format != dwarf::DW_EH_PE_sdata4 &&
Format != dwarf::DW_EH_PE_sdata8 && Format != dwarf::DW_EH_PE_signed)
return false;
const unsigned Application = Encoding & 0x70;
if (Application != dwarf::DW_EH_PE_absptr &&
Application != dwarf::DW_EH_PE_pcrel)
return false;
return true;
}
/// parseDirectiveCFIPersonalityOrLsda
/// IsPersonality true for cfi_personality, false for cfi_lsda
/// ::= .cfi_personality encoding, [symbol_name]
/// ::= .cfi_lsda encoding, [symbol_name]
bool AsmParser::parseDirectiveCFIPersonalityOrLsda(bool IsPersonality) {
int64_t Encoding = 0;
if (parseAbsoluteExpression(Encoding))
return true;
if (Encoding == dwarf::DW_EH_PE_omit)
return false;
if (!isValidEncoding(Encoding))
//return TokError("unsupported encoding.");
return true;
if (getLexer().isNot(AsmToken::Comma))
//return TokError("unexpected token in directive");
return true;
Lex();
StringRef Name;
if (parseIdentifier(Name))
//return TokError("expected identifier in directive");
return true;
if (Name.empty()) {
return true;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
if (IsPersonality)
getStreamer().EmitCFIPersonality(Sym, Encoding);
else
getStreamer().EmitCFILsda(Sym, Encoding);
return false;
}
/// parseDirectiveCFIRememberState
/// ::= .cfi_remember_state
bool AsmParser::parseDirectiveCFIRememberState() {
getStreamer().EmitCFIRememberState();
return false;
}
/// parseDirectiveCFIRestoreState
/// ::= .cfi_remember_state
bool AsmParser::parseDirectiveCFIRestoreState() {
getStreamer().EmitCFIRestoreState();
return false;
}
/// parseDirectiveCFISameValue
/// ::= .cfi_same_value register
bool AsmParser::parseDirectiveCFISameValue(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
getStreamer().EmitCFISameValue(Register);
return false;
}
/// parseDirectiveCFIRestore
/// ::= .cfi_restore register
bool AsmParser::parseDirectiveCFIRestore(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
getStreamer().EmitCFIRestore(Register);
return false;
}
/// parseDirectiveCFIEscape
/// ::= .cfi_escape expression[,...]
bool AsmParser::parseDirectiveCFIEscape() {
std::string Values;
int64_t CurrValue;
if (parseAbsoluteExpression(CurrValue))
return true;
Values.push_back((uint8_t)CurrValue);
while (getLexer().is(AsmToken::Comma)) {
Lex();
if (parseAbsoluteExpression(CurrValue))
return true;
Values.push_back((uint8_t)CurrValue);
}
getStreamer().EmitCFIEscape(Values);
return false;
}
/// parseDirectiveCFISignalFrame
/// ::= .cfi_signal_frame
bool AsmParser::parseDirectiveCFISignalFrame() {
if (getLexer().isNot(AsmToken::EndOfStatement))
//return Error(getLexer().getLoc(),
// "unexpected token in '.cfi_signal_frame'");
return true;
getStreamer().EmitCFISignalFrame();
return false;
}
/// parseDirectiveCFIUndefined
/// ::= .cfi_undefined register
bool AsmParser::parseDirectiveCFIUndefined(SMLoc DirectiveLoc) {
int64_t Register = 0;
if (parseRegisterOrRegisterNumber(Register, DirectiveLoc))
return true;
getStreamer().EmitCFIUndefined(Register);
return false;
}
/// parseDirectiveMacrosOnOff
/// ::= .macros_on
/// ::= .macros_off
bool AsmParser::parseDirectiveMacrosOnOff(StringRef Directive) {
if (getLexer().isNot(AsmToken::EndOfStatement))
//return Error(getLexer().getLoc(),
// "unexpected token in '" + Directive + "' directive");
return true;
setMacrosEnabled(Directive == ".macros_on");
return false;
}
/// parseDirectiveMacro
/// ::= .macro name[,] [parameters]
bool AsmParser::parseDirectiveMacro(SMLoc DirectiveLoc)
{
StringRef Name;
if (parseIdentifier(Name)) {
//return TokError("expected identifier in '.macro' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().is(AsmToken::Comma))
Lex();
MCAsmMacroParameters Parameters;
while (getLexer().isNot(AsmToken::EndOfStatement)) {
if (!Parameters.empty() && Parameters.back().Vararg) {
//return Error(Lexer.getLoc(),
// "Vararg parameter '" + Parameters.back().Name +
// "' should be last one in the list of parameters.");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
MCAsmMacroParameter Parameter;
if (parseIdentifier(Parameter.Name)) {
//return TokError("expected identifier in '.macro' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Lexer.is(AsmToken::Colon)) {
Lex(); // consume ':'
SMLoc QualLoc;
StringRef Qualifier;
QualLoc = Lexer.getLoc();
if (parseIdentifier(Qualifier)) {
//return Error(QualLoc, "missing parameter qualifier for "
// "'" + Parameter.Name + "' in macro '" + Name + "'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Qualifier == "req")
Parameter.Required = true;
else if (Qualifier == "vararg")
Parameter.Vararg = true;
else {
//return Error(QualLoc, Qualifier + " is not a valid parameter qualifier "
// "for '" + Parameter.Name + "' in macro '" + Name + "'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
if (getLexer().is(AsmToken::Equal)) {
Lex();
SMLoc ParamLoc;
ParamLoc = Lexer.getLoc();
if (parseMacroArgument(Parameter.Value, /*Vararg=*/false )) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Parameter.Required)
Warning(ParamLoc, "pointless default value for required parameter "
"'" + Parameter.Name + "' in macro '" + Name + "'");
}
Parameters.push_back(std::move(Parameter));
if (getLexer().is(AsmToken::Comma))
Lex();
}
// Eat the end of statement.
Lex();
AsmToken EndToken, StartToken = getTok();
unsigned MacroDepth = 0;
// Lex the macro definition.
for (;;) {
// Check whether we have reached the end of the file.
if (getLexer().is(AsmToken::Eof)) {
//return Error(DirectiveLoc, "no matching '.endmacro' in definition");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Otherwise, check whether we have reach the .endmacro.
if (getLexer().is(AsmToken::Identifier)) {
if (getTok().getIdentifier() == ".endm" ||
getTok().getIdentifier() == ".endmacro") {
if (MacroDepth == 0) { // Outermost macro.
EndToken = getTok();
Lex();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '" + EndToken.getIdentifier() +
// "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
break;
} else {
// Otherwise we just found the end of an inner macro.
--MacroDepth;
}
} else if (getTok().getIdentifier() == ".macro") {
// We allow nested macros. Those aren't instantiated until the outermost
// macro is expanded so just ignore them for now.
++MacroDepth;
}
}
// Otherwise, scan til the end of the statement.
eatToEndOfStatement();
}
if (lookupMacro(Name)) {
//return Error(DirectiveLoc, "macro '" + Name + "' is already defined");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
const char *BodyStart = StartToken.getLoc().getPointer();
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
checkForBadMacro(DirectiveLoc, Name, Body, Parameters);
defineMacro(Name, MCAsmMacro(Name, Body, std::move(Parameters)));
return false;
}
/// checkForBadMacro
///
/// With the support added for named parameters there may be code out there that
/// is transitioning from positional parameters. In versions of gas that did
/// not support named parameters they would be ignored on the macro definition.
/// But to support both styles of parameters this is not possible so if a macro
/// definition has named parameters but does not use them and has what appears
/// to be positional parameters, strings like $1, $2, ... and $n, then issue a
/// warning that the positional parameter found in body which have no effect.
/// Hoping the developer will either remove the named parameters from the macro
/// definition so the positional parameters get used if that was what was
/// intended or change the macro to use the named parameters. It is possible
/// this warning will trigger when the none of the named parameters are used
/// and the strings like $1 are infact to simply to be passed trough unchanged.
void AsmParser::checkForBadMacro(SMLoc DirectiveLoc, StringRef Name,
StringRef Body,
ArrayRef<MCAsmMacroParameter> Parameters) {
// If this macro is not defined with named parameters the warning we are
// checking for here doesn't apply.
unsigned NParameters = Parameters.size();
if (NParameters == 0)
return;
bool NamedParametersFound = false;
bool PositionalParametersFound = false;
// Look at the body of the macro for use of both the named parameters and what
// are likely to be positional parameters. This is what expandMacro() is
// doing when it finds the parameters in the body.
while (!Body.empty()) {
// Scan for the next possible parameter.
std::size_t End = Body.size(), Pos = 0;
for (; Pos != End; ++Pos) {
// Check for a substitution or escape.
// This macro is defined with parameters, look for \foo, \bar, etc.
if (Body[Pos] == '\\' && Pos + 1 != End)
break;
// This macro should have parameters, but look for $0, $1, ..., $n too.
if (Body[Pos] != '$' || Pos + 1 == End)
continue;
char Next = Body[Pos + 1];
if (Next == '$' || Next == 'n' ||
isdigit(static_cast<unsigned char>(Next)))
break;
}
// Check if we reached the end.
if (Pos == End)
break;
if (Body[Pos] == '$') {
switch (Body[Pos + 1]) {
// $$ => $
case '$':
break;
// $n => number of arguments
case 'n':
PositionalParametersFound = true;
break;
// $[0-9] => argument
default: {
PositionalParametersFound = true;
break;
}
}
Pos += 2;
} else {
unsigned I = Pos + 1;
while (isIdentifierChar(Body[I]) && I + 1 != End)
++I;
const char *Begin = Body.data() + Pos + 1;
StringRef Argument(Begin, I - (Pos + 1));
unsigned Index = 0;
for (; Index < NParameters; ++Index)
if (Parameters[Index].Name == Argument)
break;
if (Index == NParameters) {
if (Body[Pos + 1] == '(' && Body[Pos + 2] == ')')
Pos += 3;
else {
Pos = I;
}
} else {
NamedParametersFound = true;
Pos += 1 + Argument.size();
}
}
// Update the scan point.
Body = Body.substr(Pos);
}
if (!NamedParametersFound && PositionalParametersFound)
Warning(DirectiveLoc, "macro defined with named parameters which are not "
"used in macro body, possible positional parameter "
"found in body which will have no effect");
}
/// parseDirectiveExitMacro
/// ::= .exitm
bool AsmParser::parseDirectiveExitMacro(StringRef Directive)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '" + Directive + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!isInsideMacroInstantiation()) {
//return TokError("unexpected '" + Directive + "' in file, "
// "no current macro definition");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Exit all conditionals that are active in the current macro.
while (TheCondStack.size() != ActiveMacros.back()->CondStackDepth) {
TheCondState = TheCondStack.back();
TheCondStack.pop_back();
}
handleMacroExit();
return false;
}
/// parseDirectiveEndMacro
/// ::= .endm
/// ::= .endmacro
bool AsmParser::parseDirectiveEndMacro(StringRef Directive)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '" + Directive + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// If we are inside a macro instantiation, terminate the current
// instantiation.
if (isInsideMacroInstantiation()) {
handleMacroExit();
return false;
}
// Otherwise, this .endmacro is a stray entry in the file; well formed
// .endmacro directives are handled during the macro definition parsing.
//return TokError("unexpected '" + Directive + "' in file, "
// "no current macro definition");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
/// parseDirectivePurgeMacro
/// ::= .purgem
bool AsmParser::parseDirectivePurgeMacro(SMLoc DirectiveLoc)
{
StringRef Name;
if (parseIdentifier(Name)) {
//return TokError("expected identifier in '.purgem' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.purgem' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!lookupMacro(Name)) {
//return Error(DirectiveLoc, "macro '" + Name + "' is not defined");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
undefineMacro(Name);
return false;
}
/// parseDirectiveBundleAlignMode
/// ::= {.bundle_align_mode} expression
bool AsmParser::parseDirectiveBundleAlignMode()
{
checkForValidSection();
// Expect a single argument: an expression that evaluates to a constant
// in the inclusive range 0-30.
//SMLoc ExprLoc = getLexer().getLoc();
int64_t AlignSizePow2;
if (parseAbsoluteExpression(AlignSizePow2)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
} else if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token after expression in"
// " '.bundle_align_mode' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
} else if (AlignSizePow2 < 0 || AlignSizePow2 > 30) {
//return Error(ExprLoc,
// "invalid bundle alignment size (expected between 0 and 30)");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
// Because of AlignSizePow2's verified range we can safely truncate it to
// unsigned.
getStreamer().EmitBundleAlignMode(static_cast<unsigned>(AlignSizePow2));
return false;
}
/// parseDirectiveBundleLock
/// ::= {.bundle_lock} [align_to_end]
bool AsmParser::parseDirectiveBundleLock()
{
checkForValidSection();
bool AlignToEnd = false;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
StringRef Option;
//SMLoc Loc = getTok().getLoc();
//const char *kInvalidOptionError =
// "invalid option for '.bundle_lock' directive";
if (parseIdentifier(Option)) {
//return Error(Loc, kInvalidOptionError);
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Option != "align_to_end") {
//return Error(Loc, kInvalidOptionError);
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
} else if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return Error(Loc,
// "unexpected token after '.bundle_lock' directive option");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
AlignToEnd = true;
}
Lex();
getStreamer().EmitBundleLock(AlignToEnd);
return false;
}
/// parseDirectiveBundleLock
/// ::= {.bundle_lock}
bool AsmParser::parseDirectiveBundleUnlock()
{
checkForValidSection();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.bundle_unlock' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
getStreamer().EmitBundleUnlock();
return false;
}
/// parseDirectiveSpace
/// ::= (.skip | .space) expression [ , expression ]
bool AsmParser::parseDirectiveSpace(StringRef IDVal)
{
checkForValidSection();
int64_t NumBytes;
if (parseAbsoluteExpression(NumBytes)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
int64_t FillExpr = 0;
if (getLexer().isNot(AsmToken::EndOfStatement)) {
if (getLexer().isNot(AsmToken::Comma)) {
//return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
if (parseAbsoluteExpression(FillExpr))
return true;
if (getLexer().isNot(AsmToken::EndOfStatement))
//return TokError("unexpected token in '" + Twine(IDVal) + "' directive");
return true;
}
Lex();
if (NumBytes <= 0) {
//return TokError("invalid number of bytes in '" + Twine(IDVal) +
// "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// FIXME: Sometimes the fill expr is 'nop' if it isn't supplied, instead of 0.
getStreamer().EmitFill(NumBytes, FillExpr);
return false;
}
/// parseDirectiveLEB128
/// ::= (.sleb128 | .uleb128) [ expression (, expression)* ]
bool AsmParser::parseDirectiveLEB128(bool Signed)
{
checkForValidSection();
const MCExpr *Value;
for (;;) {
if (parseExpression(Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Signed)
getStreamer().EmitSLEB128Value(Value);
else
getStreamer().EmitULEB128Value(Value);
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma)) {
//return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
}
return false;
}
/// parseDirectiveSymbolAttribute
/// ::= { ".globl", ".weak", ... } [ identifier ( , identifier )* ]
bool AsmParser::parseDirectiveSymbolAttribute(MCSymbolAttr Attr)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
for (;;) {
StringRef Name;
//SMLoc Loc = getTok().getLoc();
if (parseIdentifier(Name)) {
//return Error(Loc, "expected identifier in directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Name.empty()) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
// Assembler local symbols don't make any sense here. Complain loudly.
if (Sym->isTemporary()) {
//return Error(Loc, "non-local symbol required in directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!getStreamer().EmitSymbolAttribute(Sym, Attr)) {
//return Error(Loc, "unable to emit symbol attribute");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().is(AsmToken::EndOfStatement))
break;
if (getLexer().isNot(AsmToken::Comma)) {
//return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
}
}
Lex();
return false;
}
/// parseDirectiveComm
/// ::= ( .comm | .lcomm ) identifier , size_expression [ , align_expression ]
bool AsmParser::parseDirectiveComm(bool IsLocal)
{
checkForValidSection();
//SMLoc IDLoc = getLexer().getLoc();
StringRef Name;
if (parseIdentifier(Name)) {
//return TokError("expected identifier in directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Name.empty()) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Handle the identifier as the key symbol.
MCSymbol *Sym = getContext().getOrCreateSymbol(Name);
if (getLexer().isNot(AsmToken::Comma)) {
//return TokError("unexpected token in directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
int64_t Size;
//SMLoc SizeLoc = getLexer().getLoc();
if (parseAbsoluteExpression(Size)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
int64_t Pow2Alignment = 0;
SMLoc Pow2AlignmentLoc;
if (getLexer().is(AsmToken::Comma)) {
Lex();
Pow2AlignmentLoc = getLexer().getLoc();
if (parseAbsoluteExpression(Pow2Alignment)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
LCOMM::LCOMMType LCOMM = Lexer.getMAI().getLCOMMDirectiveAlignmentType();
if (IsLocal && LCOMM == LCOMM::NoAlignment) {
//return Error(Pow2AlignmentLoc, "alignment not supported on this target");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// If this target takes alignments in bytes (not log) validate and convert.
if ((!IsLocal && Lexer.getMAI().getCOMMDirectiveAlignmentIsInBytes()) ||
(IsLocal && LCOMM == LCOMM::ByteAlignment)) {
if (!isPowerOf2_64(Pow2Alignment)) {
//return Error(Pow2AlignmentLoc, "alignment must be a power of 2");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Pow2Alignment = Log2_64(Pow2Alignment);
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.comm' or '.lcomm' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
// NOTE: a size of zero for a .comm should create a undefined symbol
// but a size of .lcomm creates a bss symbol of size zero.
if (Size < 0) {
//return Error(SizeLoc, "invalid '.comm' or '.lcomm' directive size, can't "
// "be less than zero");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// NOTE: The alignment in the directive is a power of 2 value, the assembler
// may internally end up wanting an alignment in bytes.
// FIXME: Diagnose overflow.
if (Pow2Alignment < 0) {
//return Error(Pow2AlignmentLoc, "invalid '.comm' or '.lcomm' directive "
// "alignment, can't be less than zero");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!Sym->isUndefined()) {
//return Error(IDLoc, "invalid symbol redefinition");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Create the Symbol as a common or local common with Size and Pow2Alignment
if (IsLocal) {
getStreamer().EmitLocalCommonSymbol(Sym, Size, 1 << Pow2Alignment);
return false;
}
getStreamer().EmitCommonSymbol(Sym, Size, 1 << Pow2Alignment);
return false;
}
/// parseDirectiveAbort
/// ::= .abort [... message ...]
bool AsmParser::parseDirectiveAbort()
{
// FIXME: Use loc from directive.
//SMLoc Loc = getLexer().getLoc();
StringRef Str = parseStringToEndOfStatement();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.abort' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
if (Str.empty()) {
//Error(Loc, ".abort detected. Assembly stopping.");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
} else {
//Error(Loc, ".abort '" + Str + "' detected. Assembly stopping.");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// FIXME: Actually abort assembly here.
return false;
}
/// parseDirectiveInclude
/// ::= .include "filename"
bool AsmParser::parseDirectiveInclude()
{
if (getLexer().isNot(AsmToken::String)) {
//return TokError("expected string in '.include' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Allow the strings to have escaped octal character sequence.
std::string Filename;
if (parseEscapedString(Filename)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
//SMLoc IncludeLoc = getLexer().getLoc();
Lex();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.include' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Attempt to switch the lexer to the included file before consuming the end
// of statement to avoid losing it when we switch.
if (enterIncludeFile(Filename)) {
//Error(IncludeLoc, "Could not find include file '" + Filename + "'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
return false;
}
/// parseDirectiveIncbin
/// ::= .incbin "filename"
bool AsmParser::parseDirectiveIncbin()
{
if (getLexer().isNot(AsmToken::String)) {
//return TokError("expected string in '.incbin' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Allow the strings to have escaped octal character sequence.
std::string Filename;
if (parseEscapedString(Filename)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
//SMLoc IncbinLoc = getLexer().getLoc();
Lex();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.incbin' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Attempt to process the included file.
if (processIncbinFile(Filename)) {
//Error(IncbinLoc, "Could not find incbin file '" + Filename + "'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
return false;
}
/// parseDirectiveIf
/// ::= .if{,eq,ge,gt,le,lt,ne} expression
bool AsmParser::parseDirectiveIf(SMLoc DirectiveLoc, DirectiveKind DirKind)
{
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.if' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
switch (DirKind) {
default:
llvm_unreachable("unsupported directive");
case DK_IF:
case DK_IFNE:
break;
case DK_IFEQ:
ExprValue = ExprValue == 0;
break;
case DK_IFGE:
ExprValue = ExprValue >= 0;
break;
case DK_IFGT:
ExprValue = ExprValue > 0;
break;
case DK_IFLE:
ExprValue = ExprValue <= 0;
break;
case DK_IFLT:
ExprValue = ExprValue < 0;
break;
}
TheCondState.CondMet = ExprValue;
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfb
/// ::= .ifb string
bool AsmParser::parseDirectiveIfb(SMLoc DirectiveLoc, bool ExpectBlank)
{
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
StringRef Str = parseStringToEndOfStatement();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.ifb' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
TheCondState.CondMet = ExpectBlank == Str.empty();
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfc
/// ::= .ifc string1, string2
/// ::= .ifnc string1, string2
bool AsmParser::parseDirectiveIfc(SMLoc DirectiveLoc, bool ExpectEqual)
{
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
StringRef Str1 = parseStringToComma();
if (getLexer().isNot(AsmToken::Comma)) {
//return TokError("unexpected token in '.ifc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
StringRef Str2 = parseStringToEndOfStatement();
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.ifc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
TheCondState.CondMet = ExpectEqual == (Str1.trim() == Str2.trim());
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveIfeqs
/// ::= .ifeqs string1, string2
bool AsmParser::parseDirectiveIfeqs(SMLoc DirectiveLoc, bool ExpectEqual)
{
if (Lexer.isNot(AsmToken::String)) {
//if (ExpectEqual)
// TokError("expected string parameter for '.ifeqs' directive");
//else
// TokError("expected string parameter for '.ifnes' directive");
eatToEndOfStatement();
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
bool valid;
StringRef String1 = getTok().getStringContents(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
if (Lexer.isNot(AsmToken::Comma)) {
//if (ExpectEqual)
// TokError("expected comma after first string for '.ifeqs' directive");
//else
// TokError("expected comma after first string for '.ifnes' directive");
eatToEndOfStatement();
return true;
}
Lex();
if (Lexer.isNot(AsmToken::String)) {
//if (ExpectEqual)
// TokError("expected string parameter for '.ifeqs' directive");
//else
// TokError("expected string parameter for '.ifnes' directive");
eatToEndOfStatement();
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
StringRef String2 = getTok().getStringContents(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
TheCondState.CondMet = ExpectEqual == (String1 == String2);
TheCondState.Ignore = !TheCondState.CondMet;
return false;
}
/// parseDirectiveIfdef
/// ::= .ifdef symbol
bool AsmParser::parseDirectiveIfdef(SMLoc DirectiveLoc, bool expect_defined) {
StringRef Name;
TheCondStack.push_back(TheCondState);
TheCondState.TheCond = AsmCond::IfCond;
if (TheCondState.Ignore) {
eatToEndOfStatement();
} else {
if (parseIdentifier(Name)) {
//return TokError("expected identifier after '.ifdef'");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
MCSymbol *Sym = getContext().lookupSymbol(Name);
if (expect_defined)
TheCondState.CondMet = (Sym && !Sym->isUndefined());
else
TheCondState.CondMet = (!Sym || Sym->isUndefined());
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElseIf
/// ::= .elseif expression
bool AsmParser::parseDirectiveElseIf(SMLoc DirectiveLoc)
{
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond) {
//Error(DirectiveLoc, "Encountered a .elseif that doesn't follow a .if or "
// " an .elseif");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
TheCondState.TheCond = AsmCond::ElseIfCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet) {
TheCondState.Ignore = true;
eatToEndOfStatement();
} else {
int64_t ExprValue;
if (parseAbsoluteExpression(ExprValue)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (getLexer().isNot(AsmToken::EndOfStatement))
//return TokError("unexpected token in '.elseif' directive");
return true;
Lex();
TheCondState.CondMet = ExprValue;
TheCondState.Ignore = !TheCondState.CondMet;
}
return false;
}
/// parseDirectiveElse
/// ::= .else
bool AsmParser::parseDirectiveElse(SMLoc DirectiveLoc)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.else' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
if (TheCondState.TheCond != AsmCond::IfCond &&
TheCondState.TheCond != AsmCond::ElseIfCond) {
//Error(DirectiveLoc, "Encountered a .else that doesn't follow a .if or an "
// ".elseif");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
TheCondState.TheCond = AsmCond::ElseCond;
bool LastIgnoreState = false;
if (!TheCondStack.empty())
LastIgnoreState = TheCondStack.back().Ignore;
if (LastIgnoreState || TheCondState.CondMet)
TheCondState.Ignore = true;
else
TheCondState.Ignore = false;
return false;
}
/// parseDirectiveEnd
/// ::= .end
bool AsmParser::parseDirectiveEnd(SMLoc DirectiveLoc)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.end' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
while (Lexer.isNot(AsmToken::Eof))
Lex();
return false;
}
/// parseDirectiveError
/// ::= .err
/// ::= .error [string]
bool AsmParser::parseDirectiveError(SMLoc L, bool WithMessage)
{
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
if (!WithMessage) {
//return Error(L, ".err encountered");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
StringRef Message = ".error directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (Lexer.isNot(AsmToken::String)) {
//TokError(".error argument must be a string");
eatToEndOfStatement();
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
bool valid;
Message = getTok().getStringContents(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
}
//Error(L, Message);
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
/// parseDirectiveWarning
/// ::= .warning [string]
bool AsmParser::parseDirectiveWarning(SMLoc L)
{
if (!TheCondStack.empty()) {
if (TheCondStack.back().Ignore) {
eatToEndOfStatement();
return false;
}
}
StringRef Message = ".warning directive invoked in source file";
if (Lexer.isNot(AsmToken::EndOfStatement)) {
if (Lexer.isNot(AsmToken::String)) {
//TokError(".warning argument must be a string");
eatToEndOfStatement();
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
bool valid;
Message = getTok().getStringContents(valid);
if (!valid) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
}
Warning(L, Message);
return false;
}
bool AsmParser::parseNasmDirectiveBits()
{
int64_t bits = 0;
if (parseAbsoluteExpression(bits)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
switch(bits) {
default: // invalid parameter
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
case 16: {
AsmToken bits(AsmToken::Identifier, StringRef(".code16"), 0);
getTargetParser().ParseDirective(bits);
break;
}
case 32: {
AsmToken bits(AsmToken::Identifier, StringRef(".code32"), 0);
getTargetParser().ParseDirective(bits);
break;
}
case 64: {
AsmToken bits(AsmToken::Identifier, StringRef(".code64"), 0);
getTargetParser().ParseDirective(bits);
break;
}
}
return false;
}
bool AsmParser::parseNasmDirectiveUse32()
{
AsmToken bits(AsmToken::Identifier, StringRef(".code32"), 0);
return getTargetParser().ParseDirective(bits);
}
bool AsmParser::parseNasmDirectiveDefault()
{
std::string flag = parseStringToEndOfStatement().lower();
if (flag == "rel") {
setNasmDefaultRel(true);
return false;
} else if (flag == "abs") {
setNasmDefaultRel(false);
return false;
}
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
/// parseDirectiveEndIf
/// ::= .endif
bool AsmParser::parseDirectiveEndIf(SMLoc DirectiveLoc)
{
if (getLexer().isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '.endif' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
if ((TheCondState.TheCond == AsmCond::NoCond) || TheCondStack.empty()) {
//Error(DirectiveLoc, "Encountered a .endif that doesn't follow a .if or "
// ".else");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (!TheCondStack.empty()) {
TheCondState = TheCondStack.back();
TheCondStack.pop_back();
}
return false;
}
void AsmParser::initializeDirectiveKindMap(int syntax)
{
KsSyntax = syntax;
if (syntax == KS_OPT_SYNTAX_NASM) {
// NASM syntax
DirectiveKindMap.clear();
DirectiveKindMap["db"] = DK_BYTE;
DirectiveKindMap["dw"] = DK_SHORT;
DirectiveKindMap["dd"] = DK_INT;
DirectiveKindMap["dq"] = DK_QUAD;
DirectiveKindMap["use16"] = DK_CODE16;
DirectiveKindMap["use32"] = DK_NASM_USE32;
DirectiveKindMap["global"] = DK_GLOBAL;
DirectiveKindMap["bits"] = DK_NASM_BITS;
DirectiveKindMap["default"] = DK_NASM_DEFAULT;
} else {
// default LLVM syntax
DirectiveKindMap.clear();
DirectiveKindMap[".set"] = DK_SET;
DirectiveKindMap[".equ"] = DK_EQU;
DirectiveKindMap[".equiv"] = DK_EQUIV;
DirectiveKindMap[".ascii"] = DK_ASCII;
DirectiveKindMap[".asciz"] = DK_ASCIZ;
DirectiveKindMap[".string"] = DK_STRING;
DirectiveKindMap[".byte"] = DK_BYTE;
DirectiveKindMap[".short"] = DK_SHORT;
DirectiveKindMap[".value"] = DK_VALUE;
DirectiveKindMap[".2byte"] = DK_2BYTE;
DirectiveKindMap[".long"] = DK_LONG;
DirectiveKindMap[".int"] = DK_INT;
DirectiveKindMap[".4byte"] = DK_4BYTE;
DirectiveKindMap[".quad"] = DK_QUAD;
DirectiveKindMap[".8byte"] = DK_8BYTE;
DirectiveKindMap[".octa"] = DK_OCTA;
DirectiveKindMap[".single"] = DK_SINGLE;
DirectiveKindMap[".float"] = DK_FLOAT;
DirectiveKindMap[".double"] = DK_DOUBLE;
DirectiveKindMap[".align"] = DK_ALIGN;
DirectiveKindMap[".align32"] = DK_ALIGN32;
DirectiveKindMap[".balign"] = DK_BALIGN;
DirectiveKindMap[".balignw"] = DK_BALIGNW;
DirectiveKindMap[".balignl"] = DK_BALIGNL;
DirectiveKindMap[".p2align"] = DK_P2ALIGN;
DirectiveKindMap[".p2alignw"] = DK_P2ALIGNW;
DirectiveKindMap[".p2alignl"] = DK_P2ALIGNL;
DirectiveKindMap[".org"] = DK_ORG;
DirectiveKindMap[".fill"] = DK_FILL;
DirectiveKindMap[".zero"] = DK_ZERO;
DirectiveKindMap[".extern"] = DK_EXTERN;
DirectiveKindMap[".globl"] = DK_GLOBL;
DirectiveKindMap[".global"] = DK_GLOBAL;
DirectiveKindMap[".lazy_reference"] = DK_LAZY_REFERENCE;
DirectiveKindMap[".no_dead_strip"] = DK_NO_DEAD_STRIP;
DirectiveKindMap[".symbol_resolver"] = DK_SYMBOL_RESOLVER;
DirectiveKindMap[".private_extern"] = DK_PRIVATE_EXTERN;
DirectiveKindMap[".reference"] = DK_REFERENCE;
DirectiveKindMap[".weak_definition"] = DK_WEAK_DEFINITION;
DirectiveKindMap[".weak_reference"] = DK_WEAK_REFERENCE;
DirectiveKindMap[".weak_def_can_be_hidden"] = DK_WEAK_DEF_CAN_BE_HIDDEN;
DirectiveKindMap[".comm"] = DK_COMM;
DirectiveKindMap[".common"] = DK_COMMON;
DirectiveKindMap[".lcomm"] = DK_LCOMM;
DirectiveKindMap[".abort"] = DK_ABORT;
DirectiveKindMap[".include"] = DK_INCLUDE;
DirectiveKindMap[".incbin"] = DK_INCBIN;
DirectiveKindMap[".code16"] = DK_CODE16;
DirectiveKindMap[".code16gcc"] = DK_CODE16GCC;
DirectiveKindMap[".rept"] = DK_REPT;
DirectiveKindMap[".rep"] = DK_REPT;
DirectiveKindMap[".irp"] = DK_IRP;
DirectiveKindMap[".irpc"] = DK_IRPC;
DirectiveKindMap[".endr"] = DK_ENDR;
DirectiveKindMap[".bundle_align_mode"] = DK_BUNDLE_ALIGN_MODE;
DirectiveKindMap[".bundle_lock"] = DK_BUNDLE_LOCK;
DirectiveKindMap[".bundle_unlock"] = DK_BUNDLE_UNLOCK;
DirectiveKindMap[".if"] = DK_IF;
DirectiveKindMap[".ifeq"] = DK_IFEQ;
DirectiveKindMap[".ifge"] = DK_IFGE;
DirectiveKindMap[".ifgt"] = DK_IFGT;
DirectiveKindMap[".ifle"] = DK_IFLE;
DirectiveKindMap[".iflt"] = DK_IFLT;
DirectiveKindMap[".ifne"] = DK_IFNE;
DirectiveKindMap[".ifb"] = DK_IFB;
DirectiveKindMap[".ifnb"] = DK_IFNB;
DirectiveKindMap[".ifc"] = DK_IFC;
DirectiveKindMap[".ifeqs"] = DK_IFEQS;
DirectiveKindMap[".ifnc"] = DK_IFNC;
DirectiveKindMap[".ifnes"] = DK_IFNES;
DirectiveKindMap[".ifdef"] = DK_IFDEF;
DirectiveKindMap[".ifndef"] = DK_IFNDEF;
DirectiveKindMap[".ifnotdef"] = DK_IFNOTDEF;
DirectiveKindMap[".elseif"] = DK_ELSEIF;
DirectiveKindMap[".else"] = DK_ELSE;
DirectiveKindMap[".end"] = DK_END;
DirectiveKindMap[".endif"] = DK_ENDIF;
DirectiveKindMap[".skip"] = DK_SKIP;
DirectiveKindMap[".space"] = DK_SPACE;
DirectiveKindMap[".file"] = DK_FILE;
DirectiveKindMap[".line"] = DK_LINE;
DirectiveKindMap[".loc"] = DK_LOC;
DirectiveKindMap[".stabs"] = DK_STABS;
DirectiveKindMap[".cv_file"] = DK_CV_FILE;
DirectiveKindMap[".cv_loc"] = DK_CV_LOC;
DirectiveKindMap[".cv_linetable"] = DK_CV_LINETABLE;
DirectiveKindMap[".cv_inline_linetable"] = DK_CV_INLINE_LINETABLE;
DirectiveKindMap[".cv_stringtable"] = DK_CV_STRINGTABLE;
DirectiveKindMap[".cv_filechecksums"] = DK_CV_FILECHECKSUMS;
DirectiveKindMap[".sleb128"] = DK_SLEB128;
DirectiveKindMap[".uleb128"] = DK_ULEB128;
DirectiveKindMap[".cfi_sections"] = DK_CFI_SECTIONS;
DirectiveKindMap[".cfi_startproc"] = DK_CFI_STARTPROC;
DirectiveKindMap[".cfi_endproc"] = DK_CFI_ENDPROC;
DirectiveKindMap[".cfi_def_cfa"] = DK_CFI_DEF_CFA;
DirectiveKindMap[".cfi_def_cfa_offset"] = DK_CFI_DEF_CFA_OFFSET;
DirectiveKindMap[".cfi_adjust_cfa_offset"] = DK_CFI_ADJUST_CFA_OFFSET;
DirectiveKindMap[".cfi_def_cfa_register"] = DK_CFI_DEF_CFA_REGISTER;
DirectiveKindMap[".cfi_offset"] = DK_CFI_OFFSET;
DirectiveKindMap[".cfi_rel_offset"] = DK_CFI_REL_OFFSET;
DirectiveKindMap[".cfi_personality"] = DK_CFI_PERSONALITY;
DirectiveKindMap[".cfi_lsda"] = DK_CFI_LSDA;
DirectiveKindMap[".cfi_remember_state"] = DK_CFI_REMEMBER_STATE;
DirectiveKindMap[".cfi_restore_state"] = DK_CFI_RESTORE_STATE;
DirectiveKindMap[".cfi_same_value"] = DK_CFI_SAME_VALUE;
DirectiveKindMap[".cfi_restore"] = DK_CFI_RESTORE;
DirectiveKindMap[".cfi_escape"] = DK_CFI_ESCAPE;
DirectiveKindMap[".cfi_signal_frame"] = DK_CFI_SIGNAL_FRAME;
DirectiveKindMap[".cfi_undefined"] = DK_CFI_UNDEFINED;
DirectiveKindMap[".cfi_register"] = DK_CFI_REGISTER;
DirectiveKindMap[".cfi_window_save"] = DK_CFI_WINDOW_SAVE;
DirectiveKindMap[".macros_on"] = DK_MACROS_ON;
DirectiveKindMap[".macros_off"] = DK_MACROS_OFF;
DirectiveKindMap[".macro"] = DK_MACRO;
DirectiveKindMap[".exitm"] = DK_EXITM;
DirectiveKindMap[".endm"] = DK_ENDM;
DirectiveKindMap[".endmacro"] = DK_ENDMACRO;
DirectiveKindMap[".purgem"] = DK_PURGEM;
DirectiveKindMap[".err"] = DK_ERR;
DirectiveKindMap[".error"] = DK_ERROR;
DirectiveKindMap[".warning"] = DK_WARNING;
DirectiveKindMap[".reloc"] = DK_RELOC;
}
}
MCAsmMacro *AsmParser::parseMacroLikeBody(SMLoc DirectiveLoc) {
AsmToken EndToken, StartToken = getTok();
unsigned NestLevel = 0;
for (;;) {
// Check whether we have reached the end of the file.
if (getLexer().is(AsmToken::Eof)) {
//Error(DirectiveLoc, "no matching '.endr' in definition");
return nullptr;
}
if (Lexer.is(AsmToken::Identifier) &&
(getTok().getIdentifier() == ".rept")) {
++NestLevel;
}
// Otherwise, check whether we have reached the .endr.
if (Lexer.is(AsmToken::Identifier) && getTok().getIdentifier() == ".endr") {
if (NestLevel == 0) {
EndToken = getTok();
Lex();
if (Lexer.isNot(AsmToken::EndOfStatement)) {
//TokError("unexpected token in '.endr' directive");
return nullptr;
}
break;
}
--NestLevel;
}
// Otherwise, scan till the end of the statement.
eatToEndOfStatement();
}
const char *BodyStart = StartToken.getLoc().getPointer();
const char *BodyEnd = EndToken.getLoc().getPointer();
StringRef Body = StringRef(BodyStart, BodyEnd - BodyStart);
// We Are Anonymous.
MacroLikeBodies.emplace_back(StringRef(), Body, MCAsmMacroParameters());
return &MacroLikeBodies.back();
}
void AsmParser::instantiateMacroLikeBody(MCAsmMacro *M, SMLoc DirectiveLoc,
raw_svector_ostream &OS) {
OS << ".endr\n";
std::unique_ptr<MemoryBuffer> Instantiation =
MemoryBuffer::getMemBufferCopy(OS.str(), "<instantiation>");
// Create the macro instantiation object and add to the current macro
// instantiation stack.
MacroInstantiation *MI = new MacroInstantiation(
DirectiveLoc, CurBuffer, getTok().getLoc(), TheCondStack.size());
ActiveMacros.push_back(MI);
// Jump to the macro instantiation and prime the lexer.
CurBuffer = SrcMgr.AddNewSourceBuffer(std::move(Instantiation), SMLoc());
Lexer.setBuffer(SrcMgr.getMemoryBuffer(CurBuffer)->getBuffer());
Lex();
}
/// parseDirectiveRept
/// ::= .rep | .rept count
bool AsmParser::parseDirectiveRept(SMLoc DirectiveLoc, StringRef Dir)
{
const MCExpr *CountExpr;
//SMLoc CountLoc = getTok().getLoc();
if (parseExpression(CountExpr)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
int64_t Count;
if (!CountExpr->evaluateAsAbsolute(Count)) {
eatToEndOfStatement();
//return Error(CountLoc, "unexpected token in '" + Dir + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Count < 0) {
//return Error(CountLoc, "Count is negative");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Lexer.isNot(AsmToken::EndOfStatement)) {
//return TokError("unexpected token in '" + Dir + "' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Eat the end of statement.
Lex();
// Lex the rept definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
while (Count--) {
// Note that the AtPseudoVariable is disabled for instantiations of .rep(t).
if (expandMacro(OS, M->Body, None, None, false, getTok().getLoc())) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
/// parseDirectiveIrp
/// ::= .irp symbol,values
bool AsmParser::parseDirectiveIrp(SMLoc DirectiveLoc)
{
MCAsmMacroParameter Parameter;
if (parseIdentifier(Parameter.Name)) {
//return TokError("expected identifier in '.irp' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Lexer.isNot(AsmToken::Comma)) {
//return TokError("expected comma in '.irp' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
MCAsmMacroArguments A;
if (parseMacroArguments(nullptr, A)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Eat the end of statement.
Lex();
// Lex the irp definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
for (const MCAsmMacroArgument &Arg : A) {
// Note that the AtPseudoVariable is enabled for instantiations of .irp.
// This is undocumented, but GAS seems to support it.
if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
/// parseDirectiveIrpc
/// ::= .irpc symbol,values
bool AsmParser::parseDirectiveIrpc(SMLoc DirectiveLoc)
{
MCAsmMacroParameter Parameter;
if (parseIdentifier(Parameter.Name)) {
//return TokError("expected identifier in '.irpc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (Lexer.isNot(AsmToken::Comma)) {
//return TokError("expected comma in '.irpc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Lex();
MCAsmMacroArguments A;
if (parseMacroArguments(nullptr, A)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
if (A.size() != 1 || A.front().size() != 1) {
//return TokError("unexpected token in '.irpc' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Eat the end of statement.
Lex();
// Lex the irpc definition.
MCAsmMacro *M = parseMacroLikeBody(DirectiveLoc);
if (!M) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// Macro instantiation is lexical, unfortunately. We construct a new buffer
// to hold the macro body with substitutions.
SmallString<256> Buf;
raw_svector_ostream OS(Buf);
StringRef Values = A.front().front().getString();
for (std::size_t I = 0, End = Values.size(); I != End; ++I) {
MCAsmMacroArgument Arg;
Arg.emplace_back(AsmToken::Identifier, Values.slice(I, I + 1));
// Note that the AtPseudoVariable is enabled for instantiations of .irpc.
// This is undocumented, but GAS seems to support it.
if (expandMacro(OS, M->Body, Parameter, Arg, true, getTok().getLoc())) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
}
instantiateMacroLikeBody(M, DirectiveLoc, OS);
return false;
}
bool AsmParser::parseDirectiveEndr(SMLoc DirectiveLoc)
{
if (ActiveMacros.empty()) {
//return TokError("unmatched '.endr' directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
// The only .repl that should get here are the ones created by
// instantiateMacroLikeBody.
assert(getLexer().is(AsmToken::EndOfStatement));
handleMacroExit();
return false;
}
bool AsmParser::parseDirectiveMSEmit(SMLoc IDLoc, ParseStatementInfo &Info,
size_t Len)
{
const MCExpr *Value;
//SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE) {
//return Error(ExprLoc, "unexpected expression in _emit");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
uint64_t IntValue = MCE->getValue();
if (!isUInt<8>(IntValue) && !isInt<8>(IntValue)) {
//return Error(ExprLoc, "literal value out of range for directive");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Info.AsmRewrites->emplace_back(AOK_Emit, IDLoc, Len);
return false;
}
bool AsmParser::parseDirectiveMSAlign(SMLoc IDLoc, ParseStatementInfo &Info)
{
const MCExpr *Value;
//SMLoc ExprLoc = getLexer().getLoc();
if (parseExpression(Value)) {
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
const MCConstantExpr *MCE = dyn_cast<MCConstantExpr>(Value);
if (!MCE) {
//return Error(ExprLoc, "unexpected expression in align");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
uint64_t IntValue = MCE->getValue();
if (!isPowerOf2_64(IntValue)) {
//return Error(ExprLoc, "literal value not a power of two greater then zero");
KsError = KS_ERR_ASM_DIRECTIVE_INVALID;
return true;
}
Info.AsmRewrites->emplace_back(AOK_Align, IDLoc, 5, Log2_64(IntValue));
return false;
}
// We are comparing pointers, but the pointers are relative to a single string.
// Thus, this should always be deterministic.
static int rewritesSort(const AsmRewrite *AsmRewriteA,
const AsmRewrite *AsmRewriteB) {
if (AsmRewriteA->Loc.getPointer() < AsmRewriteB->Loc.getPointer())
return -1;
if (AsmRewriteB->Loc.getPointer() < AsmRewriteA->Loc.getPointer())
return 1;
// It's possible to have a SizeDirective, Imm/ImmPrefix and an Input/Output
// rewrite to the same location. Make sure the SizeDirective rewrite is
// performed first, then the Imm/ImmPrefix and finally the Input/Output. This
// ensures the sort algorithm is stable.
if (AsmRewritePrecedence[AsmRewriteA->Kind] >
AsmRewritePrecedence[AsmRewriteB->Kind])
return -1;
if (AsmRewritePrecedence[AsmRewriteA->Kind] <
AsmRewritePrecedence[AsmRewriteB->Kind])
return 1;
llvm_unreachable("Unstable rewrite sort.");
}
bool AsmParser::parseMSInlineAsm(
void *AsmLoc, std::string &AsmString, unsigned &NumOutputs,
unsigned &NumInputs, SmallVectorImpl<std::pair<void *, bool> > &OpDecls,
SmallVectorImpl<std::string> &Constraints,
SmallVectorImpl<std::string> &Clobbers, const MCInstrInfo *MII,
MCAsmParserSemaCallback &SI, uint64_t &Address)
{
SmallVector<void *, 4> InputDecls;
SmallVector<void *, 4> OutputDecls;
SmallVector<bool, 4> InputDeclsAddressOf;
SmallVector<bool, 4> OutputDeclsAddressOf;
SmallVector<std::string, 4> InputConstraints;
SmallVector<std::string, 4> OutputConstraints;
SmallVector<unsigned, 4> ClobberRegs;
SmallVector<AsmRewrite, 4> AsmStrRewrites;
// Prime the lexer.
Lex();
// While we have input, parse each statement.
unsigned InputIdx = 0;
unsigned OutputIdx = 0;
while (getLexer().isNot(AsmToken::Eof)) {
ParseStatementInfo Info(&AsmStrRewrites);
if (parseStatement(Info, &SI, Address))
return true;
if (Info.ParseError)
return true;
if (Info.Opcode == ~0U)
continue;
const MCInstrDesc &Desc = MII->get(Info.Opcode);
// Build the list of clobbers, outputs and inputs.
for (unsigned i = 1, e = Info.ParsedOperands.size(); i != e; ++i) {
MCParsedAsmOperand &Operand = *Info.ParsedOperands[i];
// Immediate.
if (Operand.isImm())
continue;
// Register operand.
if (Operand.isReg() && !Operand.needAddressOf() &&
!getTargetParser().OmitRegisterFromClobberLists(Operand.getReg())) {
unsigned NumDefs = Desc.getNumDefs();
// Clobber.
if (NumDefs && Operand.getMCOperandNum() < NumDefs)
ClobberRegs.push_back(Operand.getReg());
continue;
}
// Expr/Input or Output.
StringRef SymName = Operand.getSymName();
if (SymName.empty())
continue;
void *OpDecl = Operand.getOpDecl();
if (!OpDecl)
continue;
bool isOutput = (i == 1) && Desc.mayStore();
SMLoc Start = SMLoc::getFromPointer(SymName.data());
if (isOutput) {
++InputIdx;
OutputDecls.push_back(OpDecl);
OutputDeclsAddressOf.push_back(Operand.needAddressOf());
OutputConstraints.push_back(("=" + Operand.getConstraint()).str());
AsmStrRewrites.emplace_back(AOK_Output, Start, SymName.size());
} else {
InputDecls.push_back(OpDecl);
InputDeclsAddressOf.push_back(Operand.needAddressOf());
InputConstraints.push_back(Operand.getConstraint().str());
AsmStrRewrites.emplace_back(AOK_Input, Start, SymName.size());
}
}
// Consider implicit defs to be clobbers. Think of cpuid and push.
ArrayRef<MCPhysReg> ImpDefs(Desc.getImplicitDefs(),
Desc.getNumImplicitDefs());
ClobberRegs.insert(ClobberRegs.end(), ImpDefs.begin(), ImpDefs.end());
}
// Set the number of Outputs and Inputs.
NumOutputs = OutputDecls.size();
NumInputs = InputDecls.size();
// Set the unique clobbers.
array_pod_sort(ClobberRegs.begin(), ClobberRegs.end());
ClobberRegs.erase(std::unique(ClobberRegs.begin(), ClobberRegs.end()),
ClobberRegs.end());
Clobbers.assign(ClobberRegs.size(), std::string());
for (unsigned I = 0, E = ClobberRegs.size(); I != E; ++I) {
raw_string_ostream OS(Clobbers[I]);
//IP->printRegName(OS, ClobberRegs[I]);
}
// Merge the various outputs and inputs. Output are expected first.
if (NumOutputs || NumInputs) {
unsigned NumExprs = NumOutputs + NumInputs;
OpDecls.resize(NumExprs);
Constraints.resize(NumExprs);
for (unsigned i = 0; i < NumOutputs; ++i) {
OpDecls[i] = std::make_pair(OutputDecls[i], OutputDeclsAddressOf[i]);
Constraints[i] = OutputConstraints[i];
}
for (unsigned i = 0, j = NumOutputs; i < NumInputs; ++i, ++j) {
OpDecls[j] = std::make_pair(InputDecls[i], InputDeclsAddressOf[i]);
Constraints[j] = InputConstraints[i];
}
}
// Build the IR assembly string.
std::string AsmStringIR;
raw_string_ostream OS(AsmStringIR);
StringRef ASMString =
SrcMgr.getMemoryBuffer(SrcMgr.getMainFileID())->getBuffer();
const char *AsmStart = ASMString.begin();
const char *AsmEnd = ASMString.end();
array_pod_sort(AsmStrRewrites.begin(), AsmStrRewrites.end(), rewritesSort);
for (const AsmRewrite &AR : AsmStrRewrites) {
AsmRewriteKind Kind = AR.Kind;
if (Kind == AOK_Delete)
continue;
const char *Loc = AR.Loc.getPointer();
assert(Loc >= AsmStart && "Expected Loc to be at or after Start!");
// Emit everything up to the immediate/expression.
if (unsigned Len = Loc - AsmStart)
OS << StringRef(AsmStart, Len);
// Skip the original expression.
if (Kind == AOK_Skip) {
AsmStart = Loc + AR.Len;
continue;
}
unsigned AdditionalSkip = 0;
// Rewrite expressions in $N notation.
switch (Kind) {
default:
break;
case AOK_Imm:
OS << "$$" << AR.Val;
break;
case AOK_ImmPrefix:
OS << "$$";
break;
case AOK_Label:
OS << Ctx.getAsmInfo()->getPrivateLabelPrefix() << AR.Label;
break;
case AOK_Input:
OS << '$' << InputIdx++;
break;
case AOK_Output:
OS << '$' << OutputIdx++;
break;
case AOK_SizeDirective:
switch (AR.Val) {
default: break;
case 8: OS << "byte ptr "; break;
case 16: OS << "word ptr "; break;
case 32: OS << "dword ptr "; break;
case 64: OS << "qword ptr "; break;
case 80: OS << "xword ptr "; break;
case 128: OS << "xmmword ptr "; break;
case 256: OS << "ymmword ptr "; break;
}
break;
case AOK_Emit:
OS << ".byte";
break;
case AOK_Align: {
// MS alignment directives are measured in bytes. If the native assembler
// measures alignment in bytes, we can pass it straight through.
OS << ".align";
if (getContext().getAsmInfo()->getAlignmentIsInBytes())
break;
// Alignment is in log2 form, so print that instead and skip the original
// immediate.
unsigned Val = AR.Val;
OS << ' ' << Val;
assert(Val < 10 && "Expected alignment less then 2^10.");
AdditionalSkip = (Val < 4) ? 2 : Val < 7 ? 3 : 4;
break;
}
case AOK_EVEN:
OS << ".even";
break;
case AOK_DotOperator:
// Insert the dot if the user omitted it.
OS.flush();
if (AsmStringIR.back() != '.')
OS << '.';
OS << AR.Val;
break;
}
// Skip the original expression.
AsmStart = Loc + AR.Len + AdditionalSkip;
}
// Emit the remainder of the asm string.
if (AsmStart != AsmEnd)
OS << StringRef(AsmStart, AsmEnd - AsmStart);
AsmString = OS.str();
return false;
}
namespace llvm_ks {
namespace MCParserUtils {
/// Returns whether the given symbol is used anywhere in the given expression,
/// or subexpressions.
static bool isSymbolUsedInExpression(const MCSymbol *Sym, const MCExpr *Value) {
switch (Value->getKind()) {
case MCExpr::Binary: {
const MCBinaryExpr *BE = static_cast<const MCBinaryExpr *>(Value);
return isSymbolUsedInExpression(Sym, BE->getLHS()) ||
isSymbolUsedInExpression(Sym, BE->getRHS());
}
case MCExpr::Target:
case MCExpr::Constant:
return false;
case MCExpr::SymbolRef: {
const MCSymbol &S =
static_cast<const MCSymbolRefExpr *>(Value)->getSymbol();
if (S.isVariable())
return isSymbolUsedInExpression(Sym, S.getVariableValue());
return &S == Sym;
}
case MCExpr::Unary:
return isSymbolUsedInExpression(
Sym, static_cast<const MCUnaryExpr *>(Value)->getSubExpr());
}
llvm_unreachable("Unknown expr kind!");
}
bool parseAssignmentExpression(StringRef Name, bool allow_redef,
MCAsmParser &Parser, MCSymbol *&Sym,
const MCExpr *&Value)
{
MCAsmLexer &Lexer = Parser.getLexer();
// FIXME: Use better location, we should use proper tokens.
//SMLoc EqualLoc = Lexer.getLoc();
if (Parser.parseExpression(Value)) {
//Parser.TokError("missing expression");
Parser.eatToEndOfStatement();
return true;
}
// Note: we don't count b as used in "a = b". This is to allow
// a = b
// b = c
if (Lexer.isNot(AsmToken::EndOfStatement))
//return Parser.TokError("unexpected token in assignment");
return true;
// Eat the end of statement marker.
Parser.Lex();
// Validate that the LHS is allowed to be a variable (either it has not been
// used as a symbol, or it is an absolute symbol).
Sym = Parser.getContext().lookupSymbol(Name);
if (Sym) {
// Diagnose assignment to a label.
//
// FIXME: Diagnostics. Note the location of the definition as a label.
// FIXME: Diagnose assignment to protected identifier (e.g., register name).
if (isSymbolUsedInExpression(Sym, Value))
//return Parser.Error(EqualLoc, "Recursive use of '" + Name + "'");
return true;
else if (Sym->isUndefined(/*SetUsed*/ false) && !Sym->isUsed() &&
!Sym->isVariable())
; // Allow redefinitions of undefined symbols only used in directives.
else if (Sym->isVariable() && !Sym->isUsed() && allow_redef)
; // Allow redefinitions of variables that haven't yet been used.
else if (!Sym->isUndefined() && (!Sym->isVariable() || !allow_redef))
//return Parser.Error(EqualLoc, "redefinition of '" + Name + "'");
return true;
else if (!Sym->isVariable())
//return Parser.Error(EqualLoc, "invalid assignment to '" + Name + "'");
return true;
else if (!isa<MCConstantExpr>(Sym->getVariableValue()))
//return Parser.Error(EqualLoc,
// "invalid reassignment of non-absolute variable '" +
// Name + "'");
return true;
} else if (Name == ".") {
Parser.getStreamer().emitValueToOffset(Value, 0);
return false;
} else {
if (Name.empty()) {
return true;
}
Sym = Parser.getContext().getOrCreateSymbol(Name);
}
Sym->setRedefinable(allow_redef);
return false;
}
} // namespace MCParserUtils
} // namespace llvm_ks
/// \brief Create an MCAsmParser instance.
MCAsmParser *llvm_ks::createMCAsmParser(SourceMgr &SM, MCContext &C,
MCStreamer &Out, const MCAsmInfo &MAI) {
return new AsmParser(SM, C, Out, MAI);
}