You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

607 lines
23 KiB

#include <string>
#include <vmemu_t.hpp>
namespace vm {
emu_t::emu_t(vm::vmctx_t* vm_ctx) : m_vm(vm_ctx) {};
emu_t::~emu_t() {
if (uc) uc_close(uc);
}
bool emu_t::init() {
uc_err err;
if ((err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc))) {
std::printf("> uc_open err = %d\n", err);
return false;
}
if ((err = uc_mem_map(uc, STACK_BASE, STACK_SIZE, UC_PROT_ALL))) {
std::printf("> uc_mem_map stack err, reason = %d\n", err);
return false;
}
if ((err = uc_mem_map(uc, m_vm->m_module_base, m_vm->m_image_size,
UC_PROT_ALL))) {
std::printf("> map memory failed, reason = %d\n", err);
return false;
}
if ((err = uc_mem_write(uc, m_vm->m_module_base,
reinterpret_cast<void*>(m_vm->m_module_base),
m_vm->m_image_size))) {
std::printf("> failed to write memory... reason = %d\n", err);
return false;
}
if ((err = uc_hook_add(uc, &code_exec_hook, UC_HOOK_CODE,
(void*)&vm::emu_t::code_exec_callback, this,
m_vm->m_module_base,
m_vm->m_module_base + m_vm->m_image_size))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
if ((err = uc_hook_add(uc, &int_hook, UC_HOOK_INTR,
(void*)&vm::emu_t::int_callback, this, 0ull, 0ull))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
if ((err =
uc_hook_add(uc, &invalid_mem_hook,
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED |
UC_HOOK_MEM_FETCH_UNMAPPED,
(void*)&vm::emu_t::invalid_mem, this, true, false))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
return true;
}
bool emu_t::emulate(std::uint32_t vmenter_rva, vm::instrs::vrtn_t& vrtn) {
uc_err err;
vrtn.m_rva = vmenter_rva;
auto& blk = vrtn.m_blks.emplace_back();
blk.m_vip = {0ull, 0ull};
blk.m_vm = {m_vm->get_vip(), m_vm->get_vsp()};
cc_blk = &blk;
cc_vrtn = &vrtn;
cc_trace.m_uc = uc;
std::uintptr_t rip = vmenter_rva + m_vm->m_module_base,
rsp = STACK_BASE + STACK_SIZE - PAGE_4KB;
if ((err = uc_reg_write(uc, UC_X86_REG_RSP, &rsp))) {
std::printf("> uc_reg_write error, reason = %d\n", err);
return false;
}
if ((err = uc_reg_write(uc, UC_X86_REG_RIP, &rip))) {
std::printf("> uc_reg_write error, reason = %d\n", err);
return false;
}
cc_trace.m_vip = cc_blk->m_vm.vip;
cc_trace.m_vsp = cc_blk->m_vm.vsp;
std::printf("> beginning execution at = %p (%p)\n", rip, rip - m_vm->m_module_base + m_vm->m_image_base);
if ((err = uc_emu_start(uc, rip, 0ull, 0ull, 0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
extract_branch_data();
std::printf("> emulated blk_%p\n\n", cc_blk->m_vip.img_based);
// keep track of the emulated blocks... by their addresses...
std::vector<std::uintptr_t> blk_addrs;
blk_addrs.push_back(blk.m_vip.rva + m_vm->m_module_base);
// the vector containing the vblk's grows inside of this for loop
// thus we cannot use an advanced for loop (which uses itr's)...
for (auto idx = 0u; idx < cc_vrtn->m_blks.size(); ++idx) {
vm::instrs::vblk_t blk = cc_vrtn->m_blks[idx];
if (blk.branch_type != vm::instrs::vbranch_type::none) {
// force the emulation of all branches...
for (const auto br : blk.branches) {
// only emulate blocks that havent been emulated before...
if (std::find(blk_addrs.begin(), blk_addrs.end(), br) !=
blk_addrs.end())
continue;
std::uintptr_t vsp = 0ull;
uc_context_restore(uc, blk.m_jmp.ctx);
uc_mem_write(uc, STACK_BASE, blk.m_jmp.stack, STACK_SIZE);
uc_reg_read(uc, vm::instrs::reg_map[blk.m_vm.vsp], &vsp);
// setup new cc_blk...
auto& new_blk = vrtn.m_blks.emplace_back();
new_blk.m_vip = {0ull, 0ull};
new_blk.m_vm = {blk.m_jmp.m_vm.vip, blk.m_jmp.m_vm.vsp};
cc_blk = &new_blk;
// emulate the branch...
uc_mem_write(uc, vsp, &br, sizeof br);
std::printf("> beginning execution at = %p (%p)\n", rip, rip - m_vm->m_module_base + m_vm->m_image_base);
if ((err = uc_emu_start(uc, blk.m_jmp.rip, 0ull, 0ull, 0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
extract_branch_data();
std::printf("> emulated blk_%p\n", cc_blk->m_vip.img_based);
}
}
}
// free all virtual code block virtual jmp information...
std::for_each(vrtn.m_blks.begin(), vrtn.m_blks.end(),
[&](vm::instrs::vblk_t& blk) {
if (blk.m_jmp.ctx) uc_context_free(blk.m_jmp.ctx);
if (blk.m_jmp.stack) delete[] blk.m_jmp.stack;
});
return true;
}
void emu_t::extract_branch_data() {
if (cc_blk->m_vinstrs.empty())
{
cc_blk->branch_type = vm::instrs::vbranch_type::none;
return;
}
auto br_info = could_have_jcc(cc_blk->m_vinstrs);
if (br_info.has_value()) {
auto [br1, br2] = br_info.value();
// convert to absolute addresses...
br1 -= m_vm->m_image_base;
br2 -= m_vm->m_image_base;
br1 += m_vm->m_module_base;
br2 += m_vm->m_module_base;
auto br1_legit = legit_branch(*cc_blk, br1);
auto br2_legit = legit_branch(*cc_blk, br2);
std::printf("> br1 legit: %d, br2 legit: %d\n", br1_legit, br2_legit);
if (br1_legit && br2_legit) {
std::printf("> virtual jcc uncovered... br1 = %p, br2 = %p\n", br1, br2);
cc_blk->branch_type = vm::instrs::vbranch_type::jcc;
cc_blk->branches.push_back(br1);
cc_blk->branches.push_back(br2);
} else if (br1_legit || br2_legit) {
std::printf("> absolute virtual jmp uncovered... branch = %p\n",
br1_legit ? br1 : br2);
cc_blk->branch_type = vm::instrs::vbranch_type::absolute;
cc_blk->branches.push_back(br1_legit ? br1 : br2);
} else {
std::printf("> unknown branch type...\n");
}
} else if (cc_blk->m_vinstrs.back().mnemonic ==
vm::instrs::mnemonic_t::vmexit) {
cc_blk->branch_type = vm::instrs::vbranch_type::none;
} else if (cc_blk->m_vinstrs.back().mnemonic == vm::instrs::mnemonic_t::jmp) {
// see if there is 1 lconst...
if (auto last_lconst = std::find_if(
cc_blk->m_vinstrs.rbegin(), cc_blk->m_vinstrs.rend(),
[&](vm::instrs::vinstr_t& vinstr) -> bool {
return vinstr.mnemonic == vm::instrs::mnemonic_t::lconst &&
vinstr.imm.size == 64;
});
last_lconst != cc_blk->m_vinstrs.rend()) {
const auto imm_img_based = last_lconst->imm.val;
const auto imm_mod_based =
(imm_img_based - m_vm->m_image_base) + m_vm->m_module_base;
// check to see if the imm is inside of the module... and if the ptr lands
// inside of an executable section... then lastly check to see if its a
// legit branch or not...
if (imm_img_based >= m_vm->m_image_base &&
imm_img_based < m_vm->m_image_base + m_vm->m_image_size &&
vm::utils::scn::executable(m_vm->m_module_base, imm_mod_based)) {
cc_blk->branches.push_back(imm_mod_based);
cc_blk->branch_type = vm::instrs::vbranch_type::absolute;
}
} else {
std::printf("> jump table detected... review instruction stream...\n");
uc_emu_stop(uc);
}
}
}
void emu_t::int_callback(uc_engine* uc, std::uint32_t intno, emu_t* obj) {
uc_err err;
std::uintptr_t rip = 0ull;
static thread_local zydis_decoded_instr_t instr;
if ((err = uc_reg_read(uc, UC_X86_REG_RIP, &rip))) {
std::printf("> failed to read rip... reason = %d\n", err);
return;
}
if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(vm::utils::g_decoder.get(),
reinterpret_cast<void*>(rip),
PAGE_4KB, &instr))) {
std::printf("> failed to decode instruction at = 0x%p\n", rip);
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
return;
}
// advance rip over the instruction that caused the exception... this is
// usually a division by 0...
rip += instr.length;
if ((err = uc_reg_write(uc, UC_X86_REG_RIP, &rip))) {
std::printf("> failed to write rip... reason = %d\n", err);
return;
}
}
bool emu_t::branch_pred_spec_exec(uc_engine* uc, uint64_t address,
uint32_t size, emu_t* obj) {
uc_err err;
static thread_local zydis_decoded_instr_t instr;
if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(vm::utils::g_decoder.get(),
reinterpret_cast<void*>(address),
PAGE_4KB, &instr))) {
std::printf("> failed to decode instruction at = 0x%p\n", address);
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
return false;
}
if (instr.mnemonic == ZYDIS_MNEMONIC_INVALID) return false;
uc_context* ctx;
uc_context_alloc(uc, &ctx);
uc_context_save(uc, ctx);
// if this is the first instruction of this handler then save the stack...
if (!obj->cc_trace.m_instrs.size()) {
obj->cc_trace.m_stack = new std::uint8_t[STACK_SIZE];
uc_mem_read(uc, STACK_BASE, obj->cc_trace.m_stack, STACK_SIZE);
}
obj->cc_trace.m_instrs.push_back({instr, ctx});
// RET or JMP REG means the end of a vm handler...
if (instr.mnemonic == ZYDIS_MNEMONIC_RET ||
(instr.mnemonic == ZYDIS_MNEMONIC_JMP &&
instr.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER)) {
// deobfuscate the instruction stream before profiling...
// makes it easier for profiles to be correct...
vm::instrs::deobfuscate(obj->cc_trace);
// find the last MOV REG, DWORD PTR [VIP] in the instruction stream, then
// remove any instructions from this instruction to the JMP/RET...
const auto rva_fetch = std::find_if(
obj->cc_trace.m_instrs.rbegin(), obj->cc_trace.m_instrs.rend(),
[& vip = obj->cc_trace.m_vip](
const vm::instrs::emu_instr_t& instr) -> bool {
const auto& i = instr.m_instr;
return i.mnemonic == ZYDIS_MNEMONIC_MOV &&
i.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER &&
i.operands[1].type == ZYDIS_OPERAND_TYPE_MEMORY &&
i.operands[1].mem.base == vip && i.operands[1].size == 32;
});
if (rva_fetch != obj->cc_trace.m_instrs.rend())
obj->cc_trace.m_instrs.erase((rva_fetch + 1).base(),
obj->cc_trace.m_instrs.end());
const auto vinstr = vm::instrs::determine(obj->cc_trace);
// -- free the trace since we will start a new one...
std::for_each(obj->cc_trace.m_instrs.begin(), obj->cc_trace.m_instrs.end(),
[&](const vm::instrs::emu_instr_t& instr) {
uc_context_free(instr.m_cpu);
});
delete[] obj->cc_trace.m_stack;
obj->cc_trace.m_instrs.clear();
if (vinstr.mnemonic != vm::instrs::mnemonic_t::jmp) {
if (vinstr.mnemonic != vm::instrs::mnemonic_t::sreg) uc_emu_stop(uc);
if (!vinstr.imm.has_imm) uc_emu_stop(uc);
if (vinstr.imm.size != 8 || vinstr.imm.val > 8 * VIRTUAL_REGISTER_COUNT)
uc_emu_stop(uc);
// -- stop after 10 legit SREG's...
if (++obj->m_sreg_cnt == 10) uc_emu_stop(uc);
}
}
return true;
}
bool emu_t::code_exec_callback(uc_engine* uc, uint64_t address, uint32_t size,
emu_t* obj) {
uc_err err;
static thread_local zydis_decoded_instr_t instr;
if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(vm::utils::g_decoder.get(),
reinterpret_cast<void*>(address),
PAGE_4KB, &instr))) {
std::printf("> failed to decode instruction at = 0x%p\n", address);
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
return false;
}
if (instr.mnemonic == ZYDIS_MNEMONIC_INVALID) return false;
uc_context* ctx;
uc_context_alloc(uc, &ctx);
uc_context_save(uc, ctx);
// if this is the first instruction of this handler then save the stack...
if (!obj->cc_trace.m_instrs.size()) {
obj->cc_trace.m_stack = new std::uint8_t[STACK_SIZE];
obj->cc_trace.m_begin = address;
uc_mem_read(uc, STACK_BASE, obj->cc_trace.m_stack, STACK_SIZE);
}
obj->cc_trace.m_instrs.push_back({instr, ctx});
// RET or JMP REG means the end of a vm handler...
if (instr.mnemonic == ZYDIS_MNEMONIC_RET ||
(instr.mnemonic == ZYDIS_MNEMONIC_JMP &&
instr.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER)) {
// deobfuscate the instruction stream before profiling...
// makes it easier for profiles to be correct...
vm::instrs::deobfuscate(obj->cc_trace);
// find the last MOV REG, DWORD PTR [VIP] in the instruction stream, then
// remove any instructions from this instruction to the JMP/RET...
const auto rva_fetch = std::find_if(
obj->cc_trace.m_instrs.rbegin(), obj->cc_trace.m_instrs.rend(),
[& vip = obj->cc_trace.m_vip](
const vm::instrs::emu_instr_t& instr) -> bool {
const auto& i = instr.m_instr;
return i.mnemonic == ZYDIS_MNEMONIC_MOV &&
i.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER &&
i.operands[1].type == ZYDIS_OPERAND_TYPE_MEMORY &&
i.operands[1].mem.base == vip && i.operands[1].size == 32;
});
if (rva_fetch != obj->cc_trace.m_instrs.rend())
obj->cc_trace.m_instrs.erase((rva_fetch + 1).base(),
--obj->cc_trace.m_instrs.end());
// set the virtual code block vip address information...
if (!obj->cc_blk->m_vip.rva || !obj->cc_blk->m_vip.img_based) {
// find the last write done to VIP...
auto vip_write = std::find_if(
obj->cc_trace.m_instrs.rbegin(), obj->cc_trace.m_instrs.rend(),
[& vip =
obj->cc_trace.m_vip](vm::instrs::emu_instr_t& instr) -> bool {
const auto& i = instr.m_instr;
return i.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER &&
i.operands[0].reg.value == vip;
});
uc_context* backup;
uc_context_alloc(uc, &backup);
uc_context_save(uc, backup);
uc_context_restore(uc, (--vip_write)->m_cpu);
std::uintptr_t vip_addr = 0ull;
uc_reg_read(uc, vm::instrs::reg_map[obj->cc_trace.m_vip], &vip_addr);
obj->cc_blk->m_vip.rva = vip_addr -= obj->m_vm->m_module_base;
obj->cc_blk->m_vip.img_based = vip_addr += obj->m_vm->m_image_base;
uc_context_restore(uc, backup);
uc_context_free(backup);
} else {
const auto vinstr = vm::instrs::determine(obj->cc_trace);
if (vinstr.mnemonic != vm::instrs::mnemonic_t::unknown) {
std::printf("%p: ", obj->cc_trace.m_begin + obj->m_vm->m_image_base - obj->m_vm->m_module_base);
if (vinstr.imm.has_imm)
if (vinstr.mnemonic == instrs::mnemonic_t::lreg || vinstr.mnemonic == instrs::mnemonic_t::sreg)
std::printf("> %s %s_%s\n",
vm::instrs::get_profile(vinstr.mnemonic)->name.c_str(),
vm::reg_names::prefixes[(vinstr.imm.val / 8) % 8].c_str(),
vm::reg_names::suffixes[(vinstr.imm.val / 8) / 8].c_str());
else
std::printf("> %s %p\n",
vm::instrs::get_profile(vinstr.mnemonic)->name.c_str(),
vinstr.imm.val);
else
std::printf("> %s\n",
vm::instrs::get_profile(vinstr.mnemonic)->name.c_str());
} else {
zydis_rtn_t inst_stream;
std::for_each(obj->cc_trace.m_instrs.begin(),
obj->cc_trace.m_instrs.end(),
[&](vm::instrs::emu_instr_t& instr) {
inst_stream.push_back({instr.m_instr});
});
std::printf(
"> err: please define the following vm handler (at = %p):\n",
(obj->cc_trace.m_begin - obj->m_vm->m_module_base) +
obj->m_vm->m_image_base);
std::printf("vsp: %s, vip: %s\n", ZydisRegisterGetString(obj->cc_blk->m_vm.vsp),
ZydisRegisterGetString(obj->cc_blk->m_vm.vip));
vm::utils::print(inst_stream);
uc_emu_stop(uc);
return false;
}
if (obj->cc_blk->m_vinstrs.size()) {
if (vinstr.mnemonic == vm::instrs::mnemonic_t::jmp) {
uc_context *backup, *copy;
// backup current unicorn-engine context...
uc_context_alloc(uc, &backup);
uc_context_alloc(uc, &copy);
uc_context_save(uc, backup);
// make a copy of the first cpu context of the jmp handler...
uc_context_restore(uc, obj->cc_trace.m_instrs.begin()->m_cpu);
uc_context_save(uc, copy);
// restore the unicorn-engine context... also free the backup...
uc_context_restore(uc, backup);
uc_context_free(backup);
// set current code block virtual jmp instruction information...
obj->cc_blk->m_jmp.ctx = copy;
obj->cc_blk->m_jmp.rip = obj->cc_trace.m_begin;
obj->cc_blk->m_jmp.stack = new std::uint8_t[STACK_SIZE];
obj->cc_blk->m_jmp.m_vm = {obj->cc_trace.m_vip, obj->cc_trace.m_vsp};
std::memcpy(obj->cc_blk->m_jmp.stack, obj->cc_trace.m_stack,
STACK_SIZE);
}
if (vinstr.mnemonic == vm::instrs::mnemonic_t::jmp ||
vinstr.mnemonic == vm::instrs::mnemonic_t::vmexit)
uc_emu_stop(obj->uc);
}
obj->cc_blk->m_vinstrs.push_back(vinstr);
}
// -- free the trace since we will start a new one...
std::for_each(obj->cc_trace.m_instrs.begin(), obj->cc_trace.m_instrs.end(),
[&](const vm::instrs::emu_instr_t& instr) {
uc_context_free(instr.m_cpu);
});
delete[] obj->cc_trace.m_stack;
obj->cc_trace.m_instrs.clear();
}
return true;
}
void emu_t::invalid_mem(uc_engine* uc, uc_mem_type type, uint64_t address,
int size, int64_t value, emu_t* obj) {
switch (type) {
case UC_MEM_READ_UNMAPPED: {
uc_mem_map(uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL);
std::printf(">>> reading invalid memory at address = %p, size = 0x%x\n",
address, size);
break;
}
case UC_MEM_WRITE_UNMAPPED: {
uc_mem_map(uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL);
std::printf(
">>> writing invalid memory at address = %p, size = 0x%x, val = "
"0x%x\n",
address, size, value);
break;
}
case UC_MEM_FETCH_UNMAPPED: {
std::printf(">>> fetching invalid instructions at address = %p\n",
address);
break;
}
default:
break;
}
}
bool emu_t::legit_branch(vm::instrs::vblk_t& vblk, std::uintptr_t branch_addr) {
// remove normal execution callback...
uc_hook_del(uc, code_exec_hook);
// add branch pred hook...
uc_hook_add(uc, &branch_pred_hook, UC_HOOK_CODE,
(void*)&vm::emu_t::branch_pred_spec_exec, this,
m_vm->m_module_base, m_vm->m_module_base + m_vm->m_image_size);
// make a backup of the current emulation state...
uc_context* backup;
uc_context_alloc(uc, &backup);
uc_context_save(uc, backup);
std::uint8_t* stack = new std::uint8_t[STACK_SIZE];
uc_mem_read(uc, STACK_BASE, stack, STACK_SIZE);
// restore cpu and stack back to the virtual jump handler...
uc_context_restore(uc, vblk.m_jmp.ctx);
uc_mem_write(uc, STACK_BASE, vblk.m_jmp.stack, STACK_SIZE);
// force the virtual machine to try and emulate the branch address...
std::uintptr_t vsp = 0ull, rip = 0ull;
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
uc_reg_read(uc, vm::instrs::reg_map[vblk.m_vm.vsp], &vsp);
uc_mem_write(uc, vsp, &branch_addr, sizeof branch_addr);
m_sreg_cnt = 0u;
uc_emu_start(uc, rip, 0ull, 0ull, 0ull);
// restore original cpu and stack...
uc_mem_write(uc, STACK_BASE, stack, STACK_SIZE);
uc_context_restore(uc, backup);
uc_context_free(backup);
delete[] stack;
// add normal execution callback back...
uc_hook_del(uc, branch_pred_hook);
uc_hook_add(uc, &code_exec_hook, UC_HOOK_CODE,
(void*)&vm::emu_t::code_exec_callback, this, m_vm->m_module_base,
m_vm->m_module_base + m_vm->m_image_size);
// we will consider this a legit branch if there is at least 10
// SREG instructions...
return m_sreg_cnt == 10;
}
std::optional<std::pair<std::uintptr_t, std::uintptr_t>> emu_t::could_have_jcc(
std::vector<vm::instrs::vinstr_t>& vinstrs) {
if (vinstrs.back().mnemonic == vm::instrs::mnemonic_t::vmexit) return {};
// check to see if there is at least 3 LCONST %i64's
if (std::accumulate(
vinstrs.begin(), vinstrs.end(), 0u,
[&](std::uint32_t val, vm::instrs::vinstr_t& v) -> std::uint32_t {
return v.mnemonic == vm::instrs::mnemonic_t::lconst &&
v.imm.size == 64
? ++val
: val;
}) < 3)
return {};
// extract the lconst64's out of the virtual instruction stream...
static const auto lconst64_chk = [&](vm::instrs::vinstr_t& v) -> bool {
return v.mnemonic == vm::instrs::mnemonic_t::lconst && v.imm.size == 64;
};
const auto lconst1 =
std::find_if(vinstrs.rbegin(), vinstrs.rend(), lconst64_chk);
if (lconst1 == vinstrs.rend()) return {};
const auto lconst2 = std::find_if(lconst1 + 1, vinstrs.rend(), lconst64_chk);
if (lconst2 == vinstrs.rend()) return {};
// check to see if the imm val is inside of the image...
if (lconst1->imm.val > m_vm->m_image_base + m_vm->m_image_size ||
lconst1->imm.val < m_vm->m_image_base ||
lconst2->imm.val > m_vm->m_image_base + m_vm->m_image_size ||
lconst2->imm.val < m_vm->m_image_base)
return {};
// check to see if the imm's points to something inside of an executable
// section...
if (!vm::utils::scn::executable(
m_vm->m_module_base,
(lconst1->imm.val - m_vm->m_image_base) + m_vm->m_module_base) ||
!vm::utils::scn::executable(
m_vm->m_module_base,
(lconst2->imm.val - m_vm->m_image_base) + m_vm->m_module_base))
return {};
return {{lconst1->imm.val, lconst2->imm.val}};
}
} // namespace vm