//===-- ARMAddressingModes.h - ARM Addressing Modes -------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains the ARM addressing mode implementation stuff. // //===----------------------------------------------------------------------===// /* Capstone Disassembly Engine */ /* By Nguyen Anh Quynh , 2013-2015 */ #ifndef CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H #define CS_LLVM_TARGET_ARM_ARMADDRESSINGMODES_H #include "capstone/platform.h" #include "../../MathExtras.h" /// ARM_AM - ARM Addressing Mode Stuff typedef enum ARM_AM_ShiftOpc { ARM_AM_no_shift = 0, ARM_AM_asr, ARM_AM_lsl, ARM_AM_lsr, ARM_AM_ror, ARM_AM_rrx } ARM_AM_ShiftOpc; typedef enum ARM_AM_AddrOpc { ARM_AM_sub = 0, ARM_AM_add } ARM_AM_AddrOpc; static inline const char *ARM_AM_getAddrOpcStr(ARM_AM_AddrOpc Op) { return Op == ARM_AM_sub ? "-" : ""; } static inline const char *ARM_AM_getShiftOpcStr(ARM_AM_ShiftOpc Op) { switch (Op) { default: return ""; //llvm_unreachable("Unknown shift opc!"); case ARM_AM_asr: return "asr"; case ARM_AM_lsl: return "lsl"; case ARM_AM_lsr: return "lsr"; case ARM_AM_ror: return "ror"; case ARM_AM_rrx: return "rrx"; } } static inline unsigned ARM_AM_getShiftOpcEncoding(ARM_AM_ShiftOpc Op) { switch (Op) { default: return (unsigned int)-1; //llvm_unreachable("Unknown shift opc!"); case ARM_AM_asr: return 2; case ARM_AM_lsl: return 0; case ARM_AM_lsr: return 1; case ARM_AM_ror: return 3; } } typedef enum ARM_AM_AMSubMode { ARM_AM_bad_am_submode = 0, ARM_AM_ia, ARM_AM_ib, ARM_AM_da, ARM_AM_db } ARM_AM_AMSubMode; static inline const char *ARM_AM_getAMSubModeStr(ARM_AM_AMSubMode Mode) { switch (Mode) { default: return ""; case ARM_AM_ia: return "ia"; case ARM_AM_ib: return "ib"; case ARM_AM_da: return "da"; case ARM_AM_db: return "db"; } } /// rotr32 - Rotate a 32-bit unsigned value right by a specified # bits. /// static inline unsigned rotr32(unsigned Val, unsigned Amt) { //assert(Amt < 32 && "Invalid rotate amount"); return (Val >> Amt) | (Val << ((32-Amt)&31)); } /// rotl32 - Rotate a 32-bit unsigned value left by a specified # bits. /// static inline unsigned rotl32(unsigned Val, unsigned Amt) { //assert(Amt < 32 && "Invalid rotate amount"); return (Val << Amt) | (Val >> ((32-Amt)&31)); } //===--------------------------------------------------------------------===// // Addressing Mode #1: shift_operand with registers //===--------------------------------------------------------------------===// // // This 'addressing mode' is used for arithmetic instructions. It can // represent things like: // reg // reg [asr|lsl|lsr|ror|rrx] reg // reg [asr|lsl|lsr|ror|rrx] imm // // This is stored three operands [rega, regb, opc]. The first is the base // reg, the second is the shift amount (or reg0 if not present or imm). The // third operand encodes the shift opcode and the imm if a reg isn't present. // static inline unsigned getSORegOpc(ARM_AM_ShiftOpc ShOp, unsigned Imm) { return ShOp | (Imm << 3); } static inline unsigned getSORegOffset(unsigned Op) { return Op >> 3; } static inline ARM_AM_ShiftOpc ARM_AM_getSORegShOp(unsigned Op) { return (ARM_AM_ShiftOpc)(Op & 7); } /// getSOImmValImm - Given an encoded imm field for the reg/imm form, return /// the 8-bit imm value. static inline unsigned getSOImmValImm(unsigned Imm) { return Imm & 0xFF; } /// getSOImmValRot - Given an encoded imm field for the reg/imm form, return /// the rotate amount. static inline unsigned getSOImmValRot(unsigned Imm) { return (Imm >> 8) * 2; } /// getSOImmValRotate - Try to handle Imm with an immediate shifter operand, /// computing the rotate amount to use. If this immediate value cannot be /// handled with a single shifter-op, determine a good rotate amount that will /// take a maximal chunk of bits out of the immediate. static inline unsigned getSOImmValRotate(unsigned Imm) { unsigned TZ, RotAmt; // 8-bit (or less) immediates are trivially shifter_operands with a rotate // of zero. if ((Imm & ~255U) == 0) return 0; // Use CTZ to compute the rotate amount. TZ = CountTrailingZeros_32(Imm); // Rotate amount must be even. Something like 0x200 must be rotated 8 bits, // not 9. RotAmt = TZ & ~1; // If we can handle this spread, return it. if ((rotr32(Imm, RotAmt) & ~255U) == 0) return (32-RotAmt)&31; // HW rotates right, not left. // For values like 0xF000000F, we should ignore the low 6 bits, then // retry the hunt. if (Imm & 63U) { unsigned TZ2 = CountTrailingZeros_32(Imm & ~63U); unsigned RotAmt2 = TZ2 & ~1; if ((rotr32(Imm, RotAmt2) & ~255U) == 0) return (32-RotAmt2)&31; // HW rotates right, not left. } // Otherwise, we have no way to cover this span of bits with a single // shifter_op immediate. Return a chunk of bits that will be useful to // handle. return (32-RotAmt)&31; // HW rotates right, not left. } /// getSOImmVal - Given a 32-bit immediate, if it is something that can fit /// into an shifter_operand immediate operand, return the 12-bit encoding for /// it. If not, return -1. static inline int getSOImmVal(unsigned Arg) { unsigned RotAmt; // 8-bit (or less) immediates are trivially shifter_operands with a rotate // of zero. if ((Arg & ~255U) == 0) return Arg; RotAmt = getSOImmValRotate(Arg); // If this cannot be handled with a single shifter_op, bail out. if (rotr32(~255U, RotAmt) & Arg) return -1; // Encode this correctly. return rotl32(Arg, RotAmt) | ((RotAmt>>1) << 8); } /// isSOImmTwoPartVal - Return true if the specified value can be obtained by /// or'ing together two SOImmVal's. static inline bool isSOImmTwoPartVal(unsigned V) { // If this can be handled with a single shifter_op, bail out. V = rotr32(~255U, getSOImmValRotate(V)) & V; if (V == 0) return false; // If this can be handled with two shifter_op's, accept. V = rotr32(~255U, getSOImmValRotate(V)) & V; return V == 0; } /// getSOImmTwoPartFirst - If V is a value that satisfies isSOImmTwoPartVal, /// return the first chunk of it. static inline unsigned getSOImmTwoPartFirst(unsigned V) { return rotr32(255U, getSOImmValRotate(V)) & V; } /// getSOImmTwoPartSecond - If V is a value that satisfies isSOImmTwoPartVal, /// return the second chunk of it. static inline unsigned getSOImmTwoPartSecond(unsigned V) { // Mask out the first hunk. V = rotr32(~255U, getSOImmValRotate(V)) & V; // Take what's left. //assert(V == (rotr32(255U, getSOImmValRotate(V)) & V)); return V; } /// getThumbImmValShift - Try to handle Imm with a 8-bit immediate followed /// by a left shift. Returns the shift amount to use. static inline unsigned getThumbImmValShift(unsigned Imm) { // 8-bit (or less) immediates are trivially immediate operand with a shift // of zero. if ((Imm & ~255U) == 0) return 0; // Use CTZ to compute the shift amount. return CountTrailingZeros_32(Imm); } /// isThumbImmShiftedVal - Return true if the specified value can be obtained /// by left shifting a 8-bit immediate. static inline bool isThumbImmShiftedVal(unsigned V) { // If this can be handled with V = (~255U << getThumbImmValShift(V)) & V; return V == 0; } /// getThumbImm16ValShift - Try to handle Imm with a 16-bit immediate followed /// by a left shift. Returns the shift amount to use. static inline unsigned getThumbImm16ValShift(unsigned Imm) { // 16-bit (or less) immediates are trivially immediate operand with a shift // of zero. if ((Imm & ~65535U) == 0) return 0; // Use CTZ to compute the shift amount. return CountTrailingZeros_32(Imm); } /// isThumbImm16ShiftedVal - Return true if the specified value can be /// obtained by left shifting a 16-bit immediate. static inline bool isThumbImm16ShiftedVal(unsigned V) { // If this can be handled with V = (~65535U << getThumbImm16ValShift(V)) & V; return V == 0; } /// getThumbImmNonShiftedVal - If V is a value that satisfies /// isThumbImmShiftedVal, return the non-shiftd value. static inline unsigned getThumbImmNonShiftedVal(unsigned V) { return V >> getThumbImmValShift(V); } /// getT2SOImmValSplat - Return the 12-bit encoded representation /// if the specified value can be obtained by splatting the low 8 bits /// into every other byte or every byte of a 32-bit value. i.e., /// 00000000 00000000 00000000 abcdefgh control = 0 /// 00000000 abcdefgh 00000000 abcdefgh control = 1 /// abcdefgh 00000000 abcdefgh 00000000 control = 2 /// abcdefgh abcdefgh abcdefgh abcdefgh control = 3 /// Return -1 if none of the above apply. /// See ARM Reference Manual A6.3.2. static inline int getT2SOImmValSplatVal(unsigned V) { unsigned u, Vs, Imm; // control = 0 if ((V & 0xffffff00) == 0) return V; // If the value is zeroes in the first byte, just shift those off Vs = ((V & 0xff) == 0) ? V >> 8 : V; // Any passing value only has 8 bits of payload, splatted across the word Imm = Vs & 0xff; // Likewise, any passing values have the payload splatted into the 3rd byte u = Imm | (Imm << 16); // control = 1 or 2 if (Vs == u) return (((Vs == V) ? 1 : 2) << 8) | Imm; // control = 3 if (Vs == (u | (u << 8))) return (3 << 8) | Imm; return -1; } /// getT2SOImmValRotateVal - Return the 12-bit encoded representation if the /// specified value is a rotated 8-bit value. Return -1 if no rotation /// encoding is possible. /// See ARM Reference Manual A6.3.2. static inline int getT2SOImmValRotateVal(unsigned V) { unsigned RotAmt = CountLeadingZeros_32(V); if (RotAmt >= 24) return -1; // If 'Arg' can be handled with a single shifter_op return the value. if ((rotr32(0xff000000U, RotAmt) & V) == V) return (rotr32(V, 24 - RotAmt) & 0x7f) | ((RotAmt + 8) << 7); return -1; } /// getT2SOImmVal - Given a 32-bit immediate, if it is something that can fit /// into a Thumb-2 shifter_operand immediate operand, return the 12-bit /// encoding for it. If not, return -1. /// See ARM Reference Manual A6.3.2. static inline int getT2SOImmVal(unsigned Arg) { int Rot; // If 'Arg' is an 8-bit splat, then get the encoded value. int Splat = getT2SOImmValSplatVal(Arg); if (Splat != -1) return Splat; // If 'Arg' can be handled with a single shifter_op return the value. Rot = getT2SOImmValRotateVal(Arg); if (Rot != -1) return Rot; return -1; } static inline unsigned getT2SOImmValRotate(unsigned V) { unsigned RotAmt; if ((V & ~255U) == 0) return 0; // Use CTZ to compute the rotate amount. RotAmt = CountTrailingZeros_32(V); return (32 - RotAmt) & 31; } static inline bool isT2SOImmTwoPartVal (unsigned Imm) { unsigned V = Imm; // Passing values can be any combination of splat values and shifter // values. If this can be handled with a single shifter or splat, bail // out. Those should be handled directly, not with a two-part val. if (getT2SOImmValSplatVal(V) != -1) return false; V = rotr32 (~255U, getT2SOImmValRotate(V)) & V; if (V == 0) return false; // If this can be handled as an immediate, accept. if (getT2SOImmVal(V) != -1) return true; // Likewise, try masking out a splat value first. V = Imm; if (getT2SOImmValSplatVal(V & 0xff00ff00U) != -1) V &= ~0xff00ff00U; else if (getT2SOImmValSplatVal(V & 0x00ff00ffU) != -1) V &= ~0x00ff00ffU; // If what's left can be handled as an immediate, accept. if (getT2SOImmVal(V) != -1) return true; // Otherwise, do not accept. return false; } static inline unsigned getT2SOImmTwoPartFirst(unsigned Imm) { //assert (isT2SOImmTwoPartVal(Imm) && // "Immedate cannot be encoded as two part immediate!"); // Try a shifter operand as one part unsigned V = rotr32 (~(unsigned int)255, getT2SOImmValRotate(Imm)) & Imm; // If the rest is encodable as an immediate, then return it. if (getT2SOImmVal(V) != -1) return V; // Try masking out a splat value first. if (getT2SOImmValSplatVal(Imm & 0xff00ff00U) != -1) return Imm & 0xff00ff00U; // The other splat is all that's left as an option. //assert (getT2SOImmValSplatVal(Imm & 0x00ff00ffU) != -1); return Imm & 0x00ff00ffU; } static inline unsigned getT2SOImmTwoPartSecond(unsigned Imm) { // Mask out the first hunk Imm ^= getT2SOImmTwoPartFirst(Imm); // Return what's left //assert (getT2SOImmVal(Imm) != -1 && // "Unable to encode second part of T2 two part SO immediate"); return Imm; } //===--------------------------------------------------------------------===// // Addressing Mode #2 //===--------------------------------------------------------------------===// // // This is used for most simple load/store instructions. // // addrmode2 := reg +/- reg shop imm // addrmode2 := reg +/- imm12 // // The first operand is always a Reg. The second operand is a reg if in // reg/reg form, otherwise it's reg#0. The third field encodes the operation // in bit 12, the immediate in bits 0-11, and the shift op in 13-15. The // fourth operand 16-17 encodes the index mode. // // If this addressing mode is a frame index (before prolog/epilog insertion // and code rewriting), this operand will have the form: FI#, reg0, // with no shift amount for the frame offset. // static inline unsigned ARM_AM_getAM2Opc(ARM_AM_AddrOpc Opc, unsigned Imm12, ARM_AM_ShiftOpc SO, unsigned IdxMode) { //assert(Imm12 < (1 << 12) && "Imm too large!"); bool isSub = Opc == ARM_AM_sub; return Imm12 | ((int)isSub << 12) | (SO << 13) | (IdxMode << 16) ; } static inline unsigned getAM2Offset(unsigned AM2Opc) { return AM2Opc & ((1 << 12)-1); } static inline ARM_AM_AddrOpc getAM2Op(unsigned AM2Opc) { return ((AM2Opc >> 12) & 1) ? ARM_AM_sub : ARM_AM_add; } static inline ARM_AM_ShiftOpc getAM2ShiftOpc(unsigned AM2Opc) { return (ARM_AM_ShiftOpc)((AM2Opc >> 13) & 7); } static inline unsigned getAM2IdxMode(unsigned AM2Opc) { return (AM2Opc >> 16); } //===--------------------------------------------------------------------===// // Addressing Mode #3 //===--------------------------------------------------------------------===// // // This is used for sign-extending loads, and load/store-pair instructions. // // addrmode3 := reg +/- reg // addrmode3 := reg +/- imm8 // // The first operand is always a Reg. The second operand is a reg if in // reg/reg form, otherwise it's reg#0. The third field encodes the operation // in bit 8, the immediate in bits 0-7. The fourth operand 9-10 encodes the // index mode. /// getAM3Opc - This function encodes the addrmode3 opc field. static inline unsigned getAM3Opc(ARM_AM_AddrOpc Opc, unsigned char Offset, unsigned IdxMode) { bool isSub = Opc == ARM_AM_sub; return ((int)isSub << 8) | Offset | (IdxMode << 9); } static inline unsigned char getAM3Offset(unsigned AM3Opc) { return AM3Opc & 0xFF; } static inline ARM_AM_AddrOpc getAM3Op(unsigned AM3Opc) { return ((AM3Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; } static inline unsigned getAM3IdxMode(unsigned AM3Opc) { return (AM3Opc >> 9); } //===--------------------------------------------------------------------===// // Addressing Mode #4 //===--------------------------------------------------------------------===// // // This is used for load / store multiple instructions. // // addrmode4 := reg, // // The four modes are: // IA - Increment after // IB - Increment before // DA - Decrement after // DB - Decrement before // For VFP instructions, only the IA and DB modes are valid. static inline ARM_AM_AMSubMode getAM4SubMode(unsigned Mode) { return (ARM_AM_AMSubMode)(Mode & 0x7); } static inline unsigned getAM4ModeImm(ARM_AM_AMSubMode SubMode) { return (int)SubMode; } //===--------------------------------------------------------------------===// // Addressing Mode #5 //===--------------------------------------------------------------------===// // // This is used for coprocessor instructions, such as FP load/stores. // // addrmode5 := reg +/- imm8*4 // // The first operand is always a Reg. The second operand encodes the // operation in bit 8 and the immediate in bits 0-7. /// getAM5Opc - This function encodes the addrmode5 opc field. static inline unsigned ARM_AM_getAM5Opc(ARM_AM_AddrOpc Opc, unsigned char Offset) { bool isSub = Opc == ARM_AM_sub; return ((int)isSub << 8) | Offset; } static inline unsigned char ARM_AM_getAM5Offset(unsigned AM5Opc) { return AM5Opc & 0xFF; } static inline ARM_AM_AddrOpc ARM_AM_getAM5Op(unsigned AM5Opc) { return ((AM5Opc >> 8) & 1) ? ARM_AM_sub : ARM_AM_add; } //===--------------------------------------------------------------------===// // Addressing Mode #6 //===--------------------------------------------------------------------===// // // This is used for NEON load / store instructions. // // addrmode6 := reg with optional alignment // // This is stored in two operands [regaddr, align]. The first is the // address register. The second operand is the value of the alignment // specifier in bytes or zero if no explicit alignment. // Valid alignments depend on the specific instruction. //===--------------------------------------------------------------------===// // NEON Modified Immediates //===--------------------------------------------------------------------===// // // Several NEON instructions (e.g., VMOV) take a "modified immediate" // vector operand, where a small immediate encoded in the instruction // specifies a full NEON vector value. These modified immediates are // represented here as encoded integers. The low 8 bits hold the immediate // value; bit 12 holds the "Op" field of the instruction, and bits 11-8 hold // the "Cmode" field of the instruction. The interfaces below treat the // Op and Cmode values as a single 5-bit value. static inline unsigned createNEONModImm(unsigned OpCmode, unsigned Val) { return (OpCmode << 8) | Val; } static inline unsigned getNEONModImmOpCmode(unsigned ModImm) { return (ModImm >> 8) & 0x1f; } static inline unsigned getNEONModImmVal(unsigned ModImm) { return ModImm & 0xff; } /// decodeNEONModImm - Decode a NEON modified immediate value into the /// element value and the element size in bits. (If the element size is /// smaller than the vector, it is splatted into all the elements.) static inline uint64_t ARM_AM_decodeNEONModImm(unsigned ModImm, unsigned *EltBits) { unsigned OpCmode = getNEONModImmOpCmode(ModImm); unsigned Imm8 = getNEONModImmVal(ModImm); uint64_t Val = 0; unsigned ByteNum; if (OpCmode == 0xe) { // 8-bit vector elements Val = Imm8; *EltBits = 8; } else if ((OpCmode & 0xc) == 0x8) { // 16-bit vector elements ByteNum = (OpCmode & 0x6) >> 1; Val = (uint64_t)Imm8 << (8 * ByteNum); *EltBits = 16; } else if ((OpCmode & 0x8) == 0) { // 32-bit vector elements, zero with one byte set ByteNum = (OpCmode & 0x6) >> 1; Val = (uint64_t)Imm8 << (8 * ByteNum); *EltBits = 32; } else if ((OpCmode & 0xe) == 0xc) { // 32-bit vector elements, one byte with low bits set ByteNum = 1 + (OpCmode & 0x1); Val = (Imm8 << (8 * ByteNum)) | (0xffff >> (8 * (2 - ByteNum))); *EltBits = 32; } else if (OpCmode == 0x1e) { // 64-bit vector elements for (ByteNum = 0; ByteNum < 8; ++ByteNum) { if ((ModImm >> ByteNum) & 1) Val |= (uint64_t)0xff << (8 * ByteNum); } *EltBits = 64; } else { //llvm_unreachable("Unsupported NEON immediate"); } return Val; } ARM_AM_AMSubMode getLoadStoreMultipleSubMode(int Opcode); //===--------------------------------------------------------------------===// // Floating-point Immediates // static inline float getFPImmFloat(unsigned Imm) { // We expect an 8-bit binary encoding of a floating-point number here. union { uint32_t I; float F; } FPUnion; uint8_t Sign = (Imm >> 7) & 0x1; uint8_t Exp = (Imm >> 4) & 0x7; uint8_t Mantissa = Imm & 0xf; // 8-bit FP iEEEE Float Encoding // abcd efgh aBbbbbbc defgh000 00000000 00000000 // // where B = NOT(b); FPUnion.I = 0; FPUnion.I |= ((uint32_t) Sign) << 31; FPUnion.I |= ((Exp & 0x4) != 0 ? 0 : 1) << 30; FPUnion.I |= ((Exp & 0x4) != 0 ? 0x1f : 0) << 25; FPUnion.I |= (Exp & 0x3) << 23; FPUnion.I |= Mantissa << 19; return FPUnion.F; } #endif