/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ #include "snes9x.h" #include "memmap.h" static void DSP2_Op01 (void); static void DSP2_Op03 (void); static void DSP2_Op05 (void); static void DSP2_Op06 (void); static void DSP2_Op09 (void); static void DSP2_Op0D (void); // convert bitmap to bitplane tile static void DSP2_Op01 (void) { // Op01 size is always 32 bytes input and output // The hardware does strange things if you vary the size uint8 c0, c1, c2, c3; uint8 *p1 = DSP2.parameters; uint8 *p2a = DSP2.output; uint8 *p2b = DSP2.output + 16; // halfway // Process 8 blocks of 4 bytes each for (int j = 0; j < 8; j++) { c0 = *p1++; c1 = *p1++; c2 = *p1++; c3 = *p1++; *p2a++ = (c0 & 0x10) << 3 | (c0 & 0x01) << 6 | (c1 & 0x10) << 1 | (c1 & 0x01) << 4 | (c2 & 0x10) >> 1 | (c2 & 0x01) << 2 | (c3 & 0x10) >> 3 | (c3 & 0x01); *p2a++ = (c0 & 0x20) << 2 | (c0 & 0x02) << 5 | (c1 & 0x20) | (c1 & 0x02) << 3 | (c2 & 0x20) >> 2 | (c2 & 0x02) << 1 | (c3 & 0x20) >> 4 | (c3 & 0x02) >> 1; *p2b++ = (c0 & 0x40) << 1 | (c0 & 0x04) << 4 | (c1 & 0x40) >> 1 | (c1 & 0x04) << 2 | (c2 & 0x40) >> 3 | (c2 & 0x04) | (c3 & 0x40) >> 5 | (c3 & 0x04) >> 2; *p2b++ = (c0 & 0x80) | (c0 & 0x08) << 3 | (c1 & 0x80) >> 2 | (c1 & 0x08) << 1 | (c2 & 0x80) >> 4 | (c2 & 0x08) >> 1 | (c3 & 0x80) >> 6 | (c3 & 0x08) >> 3; } } // set transparent color static void DSP2_Op03 (void) { DSP2.Op05Transparent = DSP2.parameters[0]; } // replace bitmap using transparent color static void DSP2_Op05 (void) { // Overlay bitmap with transparency. // Input: // // Bitmap 1: i[0] <=> i[size-1] // Bitmap 2: i[size] <=> i[2*size-1] // // Output: // // Bitmap 3: o[0] <=> o[size-1] // // Processing: // // Process all 4-bit pixels (nibbles) in the bitmap // // if ( BM2_pixel == transparent_color ) // pixelout = BM1_pixel // else // pixelout = BM2_pixel // The max size bitmap is limited to 255 because the size parameter is a byte // I think size=0 is an error. The behavior of the chip on size=0 is to // return the last value written to DR if you read DR on Op05 with // size = 0. I don't think it's worth implementing this quirk unless it's // proven necessary. uint8 color; uint8 c1, c2; uint8 *p1 = DSP2.parameters; uint8 *p2 = DSP2.parameters + DSP2.Op05Len; uint8 *p3 = DSP2.output; color = DSP2.Op05Transparent & 0x0f; for (int32 n = 0; n < DSP2.Op05Len; n++) { c1 = *p1++; c2 = *p2++; *p3++ = (((c2 >> 4) == color) ? c1 & 0xf0: c2 & 0xf0) | (((c2 & 0x0f) == color) ? c1 & 0x0f: c2 & 0x0f); } } // reverse bitmap static void DSP2_Op06 (void) { // Input: // size // bitmap for (int32 i = 0, j = DSP2.Op06Len - 1; i < DSP2.Op06Len; i++, j--) DSP2.output[j] = (DSP2.parameters[i] << 4) | (DSP2.parameters[i] >> 4); } // multiply static void DSP2_Op09 (void) { DSP2.Op09Word1 = DSP2.parameters[0] | (DSP2.parameters[1] << 8); DSP2.Op09Word2 = DSP2.parameters[2] | (DSP2.parameters[3] << 8); uint32 temp = DSP2.Op09Word1 * DSP2.Op09Word2; DSP2.output[0] = temp & 0xFF; DSP2.output[1] = (temp >> 8) & 0xFF; DSP2.output[2] = (temp >> 16) & 0xFF; DSP2.output[3] = (temp >> 24) & 0xFF; } // scale bitmap static void DSP2_Op0D (void) { // Bit accurate hardware algorithm - uses fixed point math // This should match the DSP2 Op0D output exactly // I wouldn't recommend using this unless you're doing hardware debug. // In some situations it has small visual artifacts that // are not readily apparent on a TV screen but show up clearly // on a monitor. Use Overload's scaling instead. // This is for hardware verification testing. // // One note: the HW can do odd byte scaling but since we divide // by two to get the count of bytes this won't work well for // odd byte scaling (in any of the current algorithm implementations). // So far I haven't seen Dungeon Master use it. // If it does we can adjust the parameters and code to work with it uint32 multiplier; // Any size int >= 32-bits uint32 pixloc; // match size of multiplier uint8 pixelarray[512]; if (DSP2.Op0DInLen <= DSP2.Op0DOutLen) multiplier = 0x10000; // In our self defined fixed point 0x10000 == 1 else multiplier = (DSP2.Op0DInLen << 17) / ((DSP2.Op0DOutLen << 1) + 1); pixloc = 0; for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++) { int32 j = pixloc >> 16; if (j & 1) pixelarray[i] = DSP2.parameters[j >> 1] & 0x0f; else pixelarray[i] = (DSP2.parameters[j >> 1] & 0xf0) >> 4; pixloc += multiplier; } for (int32 i = 0; i < DSP2.Op0DOutLen; i++) DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1]; } /* static void DSP2_Op0D (void) { // Overload's algorithm - use this unless doing hardware testing // One note: the HW can do odd byte scaling but since we divide // by two to get the count of bytes this won't work well for // odd byte scaling (in any of the current algorithm implementations). // So far I haven't seen Dungeon Master use it. // If it does we can adjust the parameters and code to work with it int32 pixel_offset; uint8 pixelarray[512]; for (int32 i = 0; i < DSP2.Op0DOutLen * 2; i++) { pixel_offset = (i * DSP2.Op0DInLen) / DSP2.Op0DOutLen; if ((pixel_offset & 1) == 0) pixelarray[i] = DSP2.parameters[pixel_offset >> 1] >> 4; else pixelarray[i] = DSP2.parameters[pixel_offset >> 1] & 0x0f; } for (int32 i = 0; i < DSP2.Op0DOutLen; i++) DSP2.output[i] = (pixelarray[i << 1] << 4) | pixelarray[(i << 1) + 1]; } */ void DSP2SetByte (uint8 byte, uint16 address) { if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP2.waiting4command) { DSP2.command = byte; DSP2.in_index = 0; DSP2.waiting4command = FALSE; switch (byte) { case 0x01: DSP2.in_count = 32; break; case 0x03: DSP2.in_count = 1; break; case 0x05: DSP2.in_count = 1; break; case 0x06: DSP2.in_count = 1; break; case 0x09: DSP2.in_count = 4; break; case 0x0D: DSP2.in_count = 2; break; default: #ifdef DEBUGGER //printf("Op%02X\n", byte); #endif case 0x0f: DSP2.in_count = 0; break; } } else { DSP2.parameters[DSP2.in_index] = byte; DSP2.in_index++; } if (DSP2.in_count == DSP2.in_index) { DSP2.waiting4command = TRUE; DSP2.out_index = 0; switch (DSP2.command) { case 0x01: DSP2.out_count = 32; DSP2_Op01(); break; case 0x03: DSP2_Op03(); break; case 0x05: if (DSP2.Op05HasLen) { DSP2.Op05HasLen = FALSE; DSP2.out_count = DSP2.Op05Len; DSP2_Op05(); } else { DSP2.Op05Len = DSP2.parameters[0]; DSP2.in_index = 0; DSP2.in_count = 2 * DSP2.Op05Len; DSP2.Op05HasLen = TRUE; if (byte) DSP2.waiting4command = FALSE; } break; case 0x06: if (DSP2.Op06HasLen) { DSP2.Op06HasLen = FALSE; DSP2.out_count = DSP2.Op06Len; DSP2_Op06(); } else { DSP2.Op06Len = DSP2.parameters[0]; DSP2.in_index = 0; DSP2.in_count = DSP2.Op06Len; DSP2.Op06HasLen = TRUE; if (byte) DSP2.waiting4command = FALSE; } break; case 0x09: DSP2.out_count = 4; DSP2_Op09(); break; case 0x0D: if (DSP2.Op0DHasLen) { DSP2.Op0DHasLen = FALSE; DSP2.out_count = DSP2.Op0DOutLen; DSP2_Op0D(); } else { DSP2.Op0DInLen = DSP2.parameters[0]; DSP2.Op0DOutLen = DSP2.parameters[1]; DSP2.in_index = 0; DSP2.in_count = (DSP2.Op0DInLen + 1) >> 1; DSP2.Op0DHasLen = TRUE; if (byte) DSP2.waiting4command = FALSE; } break; case 0x0f: default: break; } } } } uint8 DSP2GetByte (uint16 address) { uint8 t; if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP2.out_count) { t = (uint8) DSP2.output[DSP2.out_index]; DSP2.out_index++; if (DSP2.out_count == DSP2.out_index) DSP2.out_count = 0; } else t = 0xff; } else t = 0x80; return (t); }