/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ /* Due recognition and credit are given on Overload's DSP website. Thank those contributors for their hard work on this chip. Fixed-point math reminder: [sign, integer, fraction] 1.15.00 * 1.15.00 = 2.30.00 -> 1.30.00 (DSP) -> 1.31.00 (LSB is '0') 1.15.00 * 1.00.15 = 2.15.15 -> 1.15.15 (DSP) -> 1.15.16 (LSB is '0') */ #include "snes9x.h" #include "memmap.h" #define DSP4_CLEAR_OUT() \ { DSP4.out_count = 0; DSP4.out_index = 0; } #define DSP4_WRITE_BYTE(d) \ { WRITE_WORD(DSP4.output + DSP4.out_count, (d)); DSP4.out_count++; } #define DSP4_WRITE_WORD(d) \ { WRITE_WORD(DSP4.output + DSP4.out_count, (d)); DSP4.out_count += 2; } #ifndef MSB_FIRST #define DSP4_WRITE_16_WORD(d) \ { memcpy(DSP4.output + DSP4.out_count, (d), 32); DSP4.out_count += 32; } #else #define DSP4_WRITE_16_WORD(d) \ { for (int p = 0; p < 16; p++) DSP4_WRITE_WORD((d)[p]); } #endif // used to wait for dsp i/o #define DSP4_WAIT(x) \ DSP4.in_index = 0; DSP4.Logic = (x); return // 1.7.8 -> 1.15.16 #define SEX78(a) (((int32) ((int16) (a))) << 8) // 1.15.0 -> 1.15.16 #define SEX16(a) (((int32) ((int16) (a))) << 16) static int16 DSP4_READ_WORD (void); static int32 DSP4_READ_DWORD (void); static int16 DSP4_Inverse (int16); static void DSP4_Multiply (int16, int16, int32 *); static void DSP4_OP01 (void); static void DSP4_OP03 (void); static void DSP4_OP05 (void); static void DSP4_OP06 (void); static void DSP4_OP07 (void); static void DSP4_OP08 (void); static void DSP4_OP09 (void); static void DSP4_OP0A (int16, int16 *, int16 *, int16 *, int16 *); static void DSP4_OP0B (bool8 *, int16, int16, int16, bool8, bool8); static void DSP4_OP0D (void); static void DSP4_OP0E (void); static void DSP4_OP0F (void); static void DSP4_OP10 (void); static void DSP4_OP11 (int16, int16, int16, int16, int16 *); static void DSP4_SetByte (void); static void DSP4_GetByte (void); static int16 DSP4_READ_WORD (void) { int16 out; out = READ_WORD(DSP4.parameters + DSP4.in_index); DSP4.in_index += 2; return (out); } static int32 DSP4_READ_DWORD (void) { int32 out; out = READ_DWORD(DSP4.parameters + DSP4.in_index); DSP4.in_index += 4; return (out); } static int16 DSP4_Inverse (int16 value) { // Attention: This lookup table is not verified const uint16 div_lut[64] = { 0x0000, 0x8000, 0x4000, 0x2aaa, 0x2000, 0x1999, 0x1555, 0x1249, 0x1000, 0x0e38, 0x0ccc, 0x0ba2, 0x0aaa, 0x09d8, 0x0924, 0x0888, 0x0800, 0x0787, 0x071c, 0x06bc, 0x0666, 0x0618, 0x05d1, 0x0590, 0x0555, 0x051e, 0x04ec, 0x04bd, 0x0492, 0x0469, 0x0444, 0x0421, 0x0400, 0x03e0, 0x03c3, 0x03a8, 0x038e, 0x0375, 0x035e, 0x0348, 0x0333, 0x031f, 0x030c, 0x02fa, 0x02e8, 0x02d8, 0x02c8, 0x02b9, 0x02aa, 0x029c, 0x028f, 0x0282, 0x0276, 0x026a, 0x025e, 0x0253, 0x0249, 0x023e, 0x0234, 0x022b, 0x0222, 0x0219, 0x0210, 0x0208 }; // saturate bounds if (value < 0) value = 0; if (value > 63) value = 63; return (div_lut[value]); } static void DSP4_Multiply (int16 Multiplicand, int16 Multiplier, int32 *Product) { *Product = (Multiplicand * Multiplier << 1) >> 1; } static void DSP4_OP01 (void) { DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; case 3: goto resume3; break; } //////////////////////////////////////////////////// // process initial inputs // sort inputs DSP4.world_y = DSP4_READ_DWORD(); DSP4.poly_bottom[0][0] = DSP4_READ_WORD(); DSP4.poly_top[0][0] = DSP4_READ_WORD(); DSP4.poly_cx[1][0] = DSP4_READ_WORD(); DSP4.viewport_bottom = DSP4_READ_WORD(); DSP4.world_x = DSP4_READ_DWORD(); DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_ptr[0][0] = DSP4_READ_WORD(); DSP4.world_yofs = DSP4_READ_WORD(); DSP4.world_dy = DSP4_READ_DWORD(); DSP4.world_dx = DSP4_READ_DWORD(); DSP4.distance = DSP4_READ_WORD(); DSP4_READ_WORD(); // 0x0000 DSP4.world_xenv = DSP4_READ_DWORD(); DSP4.world_ddy = DSP4_READ_WORD(); DSP4.world_ddx = DSP4_READ_WORD(); DSP4.view_yofsenv = DSP4_READ_WORD(); // initial (x, y, offset) at starting raster line DSP4.view_x1 = (DSP4.world_x + DSP4.world_xenv) >> 16; DSP4.view_y1 = DSP4.world_y >> 16; DSP4.view_xofs1 = DSP4.world_x >> 16; DSP4.view_yofs1 = DSP4.world_yofs; DSP4.view_turnoff_x = 0; DSP4.view_turnoff_dx = 0; // first raster line DSP4.poly_raster[0][0] = DSP4.poly_bottom[0][0]; do { //////////////////////////////////////////////////// // process one iteration of projection // perspective projection of world (x, y, scroll) points // based on the current projection lines DSP4.view_x2 = (((DSP4.world_x + DSP4.world_xenv) >> 16) * DSP4.distance >> 15) + (DSP4.view_turnoff_x * DSP4.distance >> 15); DSP4.view_y2 = (DSP4.world_y >> 16) * DSP4.distance >> 15; DSP4.view_xofs2 = DSP4.view_x2; DSP4.view_yofs2 = (DSP4.world_yofs * DSP4.distance >> 15) + DSP4.poly_bottom[0][0] - DSP4.view_y2; // 1. World x-location before transformation // 2. Viewer x-position at the next // 3. World y-location before perspective projection // 4. Viewer y-position below the horizon // 5. Number of raster lines drawn in this iteration DSP4_CLEAR_OUT(); DSP4_WRITE_WORD((DSP4.world_x + DSP4.world_xenv) >> 16); DSP4_WRITE_WORD(DSP4.view_x2); DSP4_WRITE_WORD(DSP4.world_y >> 16); DSP4_WRITE_WORD(DSP4.view_y2); ////////////////////////////////////////////////////// // SR = 0x00 // determine # of raster lines used DSP4.segments = DSP4.poly_raster[0][0] - DSP4.view_y2; // prevent overdraw if (DSP4.view_y2 >= DSP4.poly_raster[0][0]) DSP4.segments = 0; else DSP4.poly_raster[0][0] = DSP4.view_y2; // don't draw outside the window if (DSP4.view_y2 < DSP4.poly_top[0][0]) { DSP4.segments = 0; // flush remaining raster lines if (DSP4.view_y1 >= DSP4.poly_top[0][0]) DSP4.segments = DSP4.view_y1 - DSP4.poly_top[0][0]; } // SR = 0x80 DSP4_WRITE_WORD(DSP4.segments); ////////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { int32 px_dx, py_dy; int32 x_scroll, y_scroll; // SR = 0x00 // linear interpolation (lerp) between projected points px_dx = (DSP4.view_xofs2 - DSP4.view_xofs1) * DSP4_Inverse(DSP4.segments) << 1; py_dy = (DSP4.view_yofs2 - DSP4.view_yofs1) * DSP4_Inverse(DSP4.segments) << 1; // starting step values x_scroll = SEX16(DSP4.poly_cx[0][0] + DSP4.view_xofs1); y_scroll = SEX16(-DSP4.viewport_bottom + DSP4.view_yofs1 + DSP4.view_yofsenv + DSP4.poly_cx[1][0] - DSP4.world_yofs); // SR = 0x80 // rasterize line for (DSP4.lcv = 0; DSP4.lcv < DSP4.segments; DSP4.lcv++) { // 1. HDMA memory pointer (bg1) // 2. vertical scroll offset ($210E) // 3. horizontal scroll offset ($210D) DSP4_WRITE_WORD(DSP4.poly_ptr[0][0]); DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16); DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16); // update memory address DSP4.poly_ptr[0][0] -= 4; // update screen values x_scroll += px_dx; y_scroll += py_dy; } } //////////////////////////////////////////////////// // Post-update // update new viewer (x, y, scroll) to last raster line drawn DSP4.view_x1 = DSP4.view_x2; DSP4.view_y1 = DSP4.view_y2; DSP4.view_xofs1 = DSP4.view_xofs2; DSP4.view_yofs1 = DSP4.view_yofs2; // add deltas for projection lines DSP4.world_dx += SEX78(DSP4.world_ddx); DSP4.world_dy += SEX78(DSP4.world_ddy); // update projection lines DSP4.world_x += (DSP4.world_dx + DSP4.world_xenv); DSP4.world_y += DSP4.world_dy; // update road turnoff position DSP4.view_turnoff_x += DSP4.view_turnoff_dx; //////////////////////////////////////////////////// // command check // scan next command DSP4.in_count = 2; DSP4_WAIT(1); resume1: // check for termination DSP4.distance = DSP4_READ_WORD(); if (DSP4.distance == -0x8000) break; // road turnoff if ((uint16) DSP4.distance == 0x8001) { DSP4.in_count = 6; DSP4_WAIT(2); resume2: DSP4.distance = DSP4_READ_WORD(); DSP4.view_turnoff_x = DSP4_READ_WORD(); DSP4.view_turnoff_dx = DSP4_READ_WORD(); // factor in new changes DSP4.view_x1 += (DSP4.view_turnoff_x * DSP4.distance >> 15); DSP4.view_xofs1 += (DSP4.view_turnoff_x * DSP4.distance >> 15); // update stepping values DSP4.view_turnoff_x += DSP4.view_turnoff_dx; DSP4.in_count = 2; DSP4_WAIT(1); } // already have 2 bytes read DSP4.in_count = 6; DSP4_WAIT(3); resume3: // inspect inputs DSP4.world_ddy = DSP4_READ_WORD(); DSP4.world_ddx = DSP4_READ_WORD(); DSP4.view_yofsenv = DSP4_READ_WORD(); // no envelope here DSP4.world_xenv = 0; } while (1); // terminate op DSP4.waiting4command = TRUE; } static void DSP4_OP03 (void) { DSP4.OAM_RowMax = 33; memset(DSP4.OAM_Row, 0, 64); } static void DSP4_OP05 (void) { DSP4.OAM_index = 0; DSP4.OAM_bits = 0; memset(DSP4.OAM_attr, 0, 32); DSP4.sprite_count = 0; } static void DSP4_OP06 (void) { DSP4_CLEAR_OUT(); DSP4_WRITE_16_WORD(DSP4.OAM_attr); } static void DSP4_OP07 (void) { DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; } //////////////////////////////////////////////////// // sort inputs DSP4.world_y = DSP4_READ_DWORD(); DSP4.poly_bottom[0][0] = DSP4_READ_WORD(); DSP4.poly_top[0][0] = DSP4_READ_WORD(); DSP4.poly_cx[1][0] = DSP4_READ_WORD(); DSP4.viewport_bottom = DSP4_READ_WORD(); DSP4.world_x = DSP4_READ_DWORD(); DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_ptr[0][0] = DSP4_READ_WORD(); DSP4.world_yofs = DSP4_READ_WORD(); DSP4.distance = DSP4_READ_WORD(); DSP4.view_y2 = DSP4_READ_WORD(); DSP4.view_dy = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_x2 = DSP4_READ_WORD(); DSP4.view_dx = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_yofsenv = DSP4_READ_WORD(); // initial (x, y, offset) at starting raster line DSP4.view_x1 = DSP4.world_x >> 16; DSP4.view_y1 = DSP4.world_y >> 16; DSP4.view_xofs1 = DSP4.view_x1; DSP4.view_yofs1 = DSP4.world_yofs; // first raster line DSP4.poly_raster[0][0] = DSP4.poly_bottom[0][0]; do { //////////////////////////////////////////////////// // process one iteration of projection // add shaping DSP4.view_x2 += DSP4.view_dx; DSP4.view_y2 += DSP4.view_dy; // vertical scroll calculation DSP4.view_xofs2 = DSP4.view_x2; DSP4.view_yofs2 = (DSP4.world_yofs * DSP4.distance >> 15) + DSP4.poly_bottom[0][0] - DSP4.view_y2; // 1. Viewer x-position at the next // 2. Viewer y-position below the horizon // 3. Number of raster lines drawn in this iteration DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(DSP4.view_x2); DSP4_WRITE_WORD(DSP4.view_y2); ////////////////////////////////////////////////////// // SR = 0x00 // determine # of raster lines used DSP4.segments = DSP4.view_y1 - DSP4.view_y2; // prevent overdraw if (DSP4.view_y2 >= DSP4.poly_raster[0][0]) DSP4.segments = 0; else DSP4.poly_raster[0][0] = DSP4.view_y2; // don't draw outside the window if (DSP4.view_y2 < DSP4.poly_top[0][0]) { DSP4.segments = 0; // flush remaining raster lines if (DSP4.view_y1 >= DSP4.poly_top[0][0]) DSP4.segments = DSP4.view_y1 - DSP4.poly_top[0][0]; } // SR = 0x80 DSP4_WRITE_WORD(DSP4.segments); ////////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { int32 px_dx, py_dy; int32 x_scroll, y_scroll; // SR = 0x00 // linear interpolation (lerp) between projected points px_dx = (DSP4.view_xofs2 - DSP4.view_xofs1) * DSP4_Inverse(DSP4.segments) << 1; py_dy = (DSP4.view_yofs2 - DSP4.view_yofs1) * DSP4_Inverse(DSP4.segments) << 1; // starting step values x_scroll = SEX16(DSP4.poly_cx[0][0] + DSP4.view_xofs1); y_scroll = SEX16(-DSP4.viewport_bottom + DSP4.view_yofs1 + DSP4.view_yofsenv + DSP4.poly_cx[1][0] - DSP4.world_yofs); // SR = 0x80 // rasterize line for (DSP4.lcv = 0; DSP4.lcv < DSP4.segments; DSP4.lcv++) { // 1. HDMA memory pointer (bg2) // 2. vertical scroll offset ($2110) // 3. horizontal scroll offset ($210F) DSP4_WRITE_WORD(DSP4.poly_ptr[0][0]); DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16); DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16); // update memory address DSP4.poly_ptr[0][0] -= 4; // update screen values x_scroll += px_dx; y_scroll += py_dy; } } ///////////////////////////////////////////////////// // Post-update // update new viewer (x, y, scroll) to last raster line drawn DSP4.view_x1 = DSP4.view_x2; DSP4.view_y1 = DSP4.view_y2; DSP4.view_xofs1 = DSP4.view_xofs2; DSP4.view_yofs1 = DSP4.view_yofs2; //////////////////////////////////////////////////// // command check // scan next command DSP4.in_count = 2; DSP4_WAIT(1); resume1: // check for opcode termination DSP4.distance = DSP4_READ_WORD(); if (DSP4.distance == -0x8000) break; // already have 2 bytes in queue DSP4.in_count = 10; DSP4_WAIT(2); resume2: // inspect inputs DSP4.view_y2 = DSP4_READ_WORD(); DSP4.view_dy = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_x2 = DSP4_READ_WORD(); DSP4.view_dx = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_yofsenv = DSP4_READ_WORD(); } while (1); DSP4.waiting4command = TRUE; } static void DSP4_OP08 (void) { int16 win_left, win_right; int16 view_x[2], view_y[2]; int16 envelope[2][2]; DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; } //////////////////////////////////////////////////// // process initial inputs for two polygons // clip values DSP4.poly_clipRt[0][0] = DSP4_READ_WORD(); DSP4.poly_clipRt[0][1] = DSP4_READ_WORD(); DSP4.poly_clipRt[1][0] = DSP4_READ_WORD(); DSP4.poly_clipRt[1][1] = DSP4_READ_WORD(); DSP4.poly_clipLf[0][0] = DSP4_READ_WORD(); DSP4.poly_clipLf[0][1] = DSP4_READ_WORD(); DSP4.poly_clipLf[1][0] = DSP4_READ_WORD(); DSP4.poly_clipLf[1][1] = DSP4_READ_WORD(); // unknown (constant) (ex. 1P/2P = $00A6, $00A6, $00A6, $00A6) DSP4_READ_WORD(); DSP4_READ_WORD(); DSP4_READ_WORD(); DSP4_READ_WORD(); // unknown (constant) (ex. 1P/2P = $00A5, $00A5, $00A7, $00A7) DSP4_READ_WORD(); DSP4_READ_WORD(); DSP4_READ_WORD(); DSP4_READ_WORD(); // polygon centering (left, right) DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_cx[0][1] = DSP4_READ_WORD(); DSP4.poly_cx[1][0] = DSP4_READ_WORD(); DSP4.poly_cx[1][1] = DSP4_READ_WORD(); // HDMA pointer locations DSP4.poly_ptr[0][0] = DSP4_READ_WORD(); DSP4.poly_ptr[0][1] = DSP4_READ_WORD(); DSP4.poly_ptr[1][0] = DSP4_READ_WORD(); DSP4.poly_ptr[1][1] = DSP4_READ_WORD(); // starting raster line below the horizon DSP4.poly_bottom[0][0] = DSP4_READ_WORD(); DSP4.poly_bottom[0][1] = DSP4_READ_WORD(); DSP4.poly_bottom[1][0] = DSP4_READ_WORD(); DSP4.poly_bottom[1][1] = DSP4_READ_WORD(); // top boundary line to clip DSP4.poly_top[0][0] = DSP4_READ_WORD(); DSP4.poly_top[0][1] = DSP4_READ_WORD(); DSP4.poly_top[1][0] = DSP4_READ_WORD(); DSP4.poly_top[1][1] = DSP4_READ_WORD(); // unknown // (ex. 1P = $2FC8, $0034, $FF5C, $0035) // // (ex. 2P = $3178, $0034, $FFCC, $0035) // (ex. 2P = $2FC8, $0034, $FFCC, $0035) DSP4_READ_WORD(); DSP4_READ_WORD(); DSP4_READ_WORD(); DSP4_READ_WORD(); // look at guidelines for both polygon shapes DSP4.distance = DSP4_READ_WORD(); view_x[0] = DSP4_READ_WORD(); view_y[0] = DSP4_READ_WORD(); view_x[1] = DSP4_READ_WORD(); view_y[1] = DSP4_READ_WORD(); // envelope shaping guidelines (one frame only) envelope[0][0] = DSP4_READ_WORD(); envelope[0][1] = DSP4_READ_WORD(); envelope[1][0] = DSP4_READ_WORD(); envelope[1][1] = DSP4_READ_WORD(); // starting base values to project from DSP4.poly_start[0] = view_x[0]; DSP4.poly_start[1] = view_x[1]; // starting raster lines to begin drawing DSP4.poly_raster[0][0] = view_y[0]; DSP4.poly_raster[0][1] = view_y[0]; DSP4.poly_raster[1][0] = view_y[1]; DSP4.poly_raster[1][1] = view_y[1]; // starting distances DSP4.poly_plane[0] = DSP4.distance; DSP4.poly_plane[1] = DSP4.distance; // SR = 0x00 // re-center coordinates win_left = DSP4.poly_cx[0][0] - view_x[0] + envelope[0][0]; win_right = DSP4.poly_cx[0][1] - view_x[0] + envelope[0][1]; // saturate offscreen data for polygon #1 if (win_left < DSP4.poly_clipLf[0][0]) win_left = DSP4.poly_clipLf[0][0]; if (win_left > DSP4.poly_clipRt[0][0]) win_left = DSP4.poly_clipRt[0][0]; if (win_right < DSP4.poly_clipLf[0][1]) win_right = DSP4.poly_clipLf[0][1]; if (win_right > DSP4.poly_clipRt[0][1]) win_right = DSP4.poly_clipRt[0][1]; // SR = 0x80 // initial output for polygon #1 DSP4_CLEAR_OUT(); DSP4_WRITE_BYTE(win_left & 0xff); DSP4_WRITE_BYTE(win_right & 0xff); do { int16 polygon; //////////////////////////////////////////////////// // command check // scan next command DSP4.in_count = 2; DSP4_WAIT(1); resume1: // terminate op DSP4.distance = DSP4_READ_WORD(); if (DSP4.distance == -0x8000) break; // already have 2 bytes in queue DSP4.in_count = 16; DSP4_WAIT(2); resume2: // look at guidelines for both polygon shapes view_x[0] = DSP4_READ_WORD(); view_y[0] = DSP4_READ_WORD(); view_x[1] = DSP4_READ_WORD(); view_y[1] = DSP4_READ_WORD(); // envelope shaping guidelines (one frame only) envelope[0][0] = DSP4_READ_WORD(); envelope[0][1] = DSP4_READ_WORD(); envelope[1][0] = DSP4_READ_WORD(); envelope[1][1] = DSP4_READ_WORD(); //////////////////////////////////////////////////// // projection begins // init DSP4_CLEAR_OUT(); ////////////////////////////////////////////// // solid polygon renderer - 2 shapes for (polygon = 0; polygon < 2; polygon++) { int32 left_inc, right_inc; int16 x1_final, x2_final; int16 env[2][2]; int16 poly; // SR = 0x00 // # raster lines to draw DSP4.segments = DSP4.poly_raster[polygon][0] - view_y[polygon]; // prevent overdraw if (DSP4.segments > 0) { // bump drawing cursor DSP4.poly_raster[polygon][0] = view_y[polygon]; DSP4.poly_raster[polygon][1] = view_y[polygon]; } else DSP4.segments = 0; // don't draw outside the window if (view_y[polygon] < DSP4.poly_top[polygon][0]) { DSP4.segments = 0; // flush remaining raster lines if (view_y[polygon] >= DSP4.poly_top[polygon][0]) DSP4.segments = view_y[polygon] - DSP4.poly_top[polygon][0]; } // SR = 0x80 // tell user how many raster structures to read in DSP4_WRITE_WORD(DSP4.segments); // normal parameters poly = polygon; ///////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { int32 w_left, w_right; // road turnoff selection if ((uint16) envelope[polygon][0] == (uint16) 0xc001) poly = 1; else if (envelope[polygon][1] == 0x3fff) poly = 1; /////////////////////////////////////////////// // left side of polygon // perspective correction on additional shaping parameters env[0][0] = envelope[polygon][0] * DSP4.poly_plane[poly] >> 15; env[0][1] = envelope[polygon][0] * DSP4.distance >> 15; // project new shapes (left side) x1_final = view_x[poly] + env[0][0]; x2_final = DSP4.poly_start[poly] + env[0][1]; // interpolate between projected points with shaping left_inc = (x2_final - x1_final) * DSP4_Inverse(DSP4.segments) << 1; if (DSP4.segments == 1) left_inc = -left_inc; /////////////////////////////////////////////// // right side of polygon // perspective correction on additional shaping parameters env[1][0] = envelope[polygon][1] * DSP4.poly_plane[poly] >> 15; env[1][1] = envelope[polygon][1] * DSP4.distance >> 15; // project new shapes (right side) x1_final = view_x[poly] + env[1][0]; x2_final = DSP4.poly_start[poly] + env[1][1]; // interpolate between projected points with shaping right_inc = (x2_final - x1_final) * DSP4_Inverse(DSP4.segments) << 1; if (DSP4.segments == 1) right_inc = -right_inc; /////////////////////////////////////////////// // update each point on the line w_left = SEX16(DSP4.poly_cx[polygon][0] - DSP4.poly_start[poly] + env[0][0]); w_right = SEX16(DSP4.poly_cx[polygon][1] - DSP4.poly_start[poly] + env[1][0]); // update distance drawn into world DSP4.poly_plane[polygon] = DSP4.distance; // rasterize line for (DSP4.lcv = 0; DSP4.lcv < DSP4.segments; DSP4.lcv++) { int16 x_left, x_right; // project new coordinates w_left += left_inc; w_right += right_inc; // grab integer portion, drop fraction (no rounding) x_left = w_left >> 16; x_right = w_right >> 16; // saturate offscreen data if (x_left < DSP4.poly_clipLf[polygon][0]) x_left = DSP4.poly_clipLf[polygon][0]; if (x_left > DSP4.poly_clipRt[polygon][0]) x_left = DSP4.poly_clipRt[polygon][0]; if (x_right < DSP4.poly_clipLf[polygon][1]) x_right = DSP4.poly_clipLf[polygon][1]; if (x_right > DSP4.poly_clipRt[polygon][1]) x_right = DSP4.poly_clipRt[polygon][1]; // 1. HDMA memory pointer // 2. Left window position ($2126/$2128) // 3. Right window position ($2127/$2129) DSP4_WRITE_WORD(DSP4.poly_ptr[polygon][0]); DSP4_WRITE_BYTE(x_left & 0xff); DSP4_WRITE_BYTE(x_right & 0xff); // update memory pointers DSP4.poly_ptr[polygon][0] -= 4; DSP4.poly_ptr[polygon][1] -= 4; } // end rasterize line } //////////////////////////////////////////////// // Post-update // new projection spot to continue rasterizing from DSP4.poly_start[polygon] = view_x[poly]; } // end polygon rasterizer } while (1); // unknown output DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(0); DSP4.waiting4command = TRUE; } static void DSP4_OP09 (void) { DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; case 3: goto resume3; break; case 4: goto resume4; break; case 5: goto resume5; break; case 6: goto resume6; break; } //////////////////////////////////////////////////// // process initial inputs // grab screen information DSP4.viewport_cx = DSP4_READ_WORD(); DSP4.viewport_cy = DSP4_READ_WORD(); DSP4_READ_WORD(); // 0x0000 DSP4.viewport_left = DSP4_READ_WORD(); DSP4.viewport_right = DSP4_READ_WORD(); DSP4.viewport_top = DSP4_READ_WORD(); DSP4.viewport_bottom = DSP4_READ_WORD(); // starting raster line below the horizon DSP4.poly_bottom[0][0] = DSP4.viewport_bottom - DSP4.viewport_cy; DSP4.poly_raster[0][0] = 0x100; do { //////////////////////////////////////////////////// // check for new sprites DSP4.in_count = 4; DSP4_WAIT(1); resume1: //////////////////////////////////////////////// // raster overdraw check DSP4.raster = DSP4_READ_WORD(); // continue updating the raster line where overdraw begins if (DSP4.raster < DSP4.poly_raster[0][0]) { DSP4.sprite_clipy = DSP4.viewport_bottom - (DSP4.poly_bottom[0][0] - DSP4.raster); DSP4.poly_raster[0][0] = DSP4.raster; } ///////////////////////////////////////////////// // identify sprite // op termination DSP4.distance = DSP4_READ_WORD(); if (DSP4.distance == -0x8000) goto terminate; // no sprite if (DSP4.distance == 0x0000) continue; //////////////////////////////////////////////////// // process projection information // vehicle sprite if ((uint16) DSP4.distance == 0x9000) { int16 car_left, car_right, car_back; int16 impact_left, impact_back; int16 world_spx, world_spy; int16 view_spx, view_spy; uint16 energy; // we already have 4 bytes we want DSP4.in_count = 14; DSP4_WAIT(2); resume2: // filter inputs energy = DSP4_READ_WORD(); impact_back = DSP4_READ_WORD(); car_back = DSP4_READ_WORD(); impact_left = DSP4_READ_WORD(); car_left = DSP4_READ_WORD(); DSP4.distance = DSP4_READ_WORD(); car_right = DSP4_READ_WORD(); // calculate car's world (x, y) values world_spx = car_right - car_left; world_spy = car_back; // add in collision vector [needs bit-twiddling] world_spx -= energy * (impact_left - car_left) >> 16; world_spy -= energy * (car_back - impact_back) >> 16; // perspective correction for world (x, y) view_spx = world_spx * DSP4.distance >> 15; view_spy = world_spy * DSP4.distance >> 15; // convert to screen values DSP4.sprite_x = DSP4.viewport_cx + view_spx; DSP4.sprite_y = DSP4.viewport_bottom - (DSP4.poly_bottom[0][0] - view_spy); // make the car's (x)-coordinate available DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(world_spx); // grab a few remaining vehicle values DSP4.in_count = 4; DSP4_WAIT(3); resume3: // add vertical lift factor DSP4.sprite_y += DSP4_READ_WORD(); } // terrain sprite else { int16 world_spx, world_spy; int16 view_spx, view_spy; // we already have 4 bytes we want DSP4.in_count = 10; DSP4_WAIT(4); resume4: // sort loop inputs DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_raster[0][1] = DSP4_READ_WORD(); world_spx = DSP4_READ_WORD(); world_spy = DSP4_READ_WORD(); // compute base raster line from the bottom DSP4.segments = DSP4.poly_bottom[0][0] - DSP4.raster; // perspective correction for world (x, y) view_spx = world_spx * DSP4.distance >> 15; view_spy = world_spy * DSP4.distance >> 15; // convert to screen values DSP4.sprite_x = DSP4.viewport_cx + view_spx - DSP4.poly_cx[0][0]; DSP4.sprite_y = DSP4.viewport_bottom - DSP4.segments + view_spy; } // default sprite size: 16x16 DSP4.sprite_size = 1; DSP4.sprite_attr = DSP4_READ_WORD(); //////////////////////////////////////////////////// // convert tile data to SNES OAM format do { int16 sp_x, sp_y, sp_attr, sp_dattr; int16 sp_dx, sp_dy; int16 pixels; uint16 header; bool8 draw; DSP4.in_count = 2; DSP4_WAIT(5); resume5: draw = TRUE; // opcode termination DSP4.raster = DSP4_READ_WORD(); if (DSP4.raster == -0x8000) goto terminate; // stop code if (DSP4.raster == 0x0000 && !DSP4.sprite_size) break; // toggle sprite size if (DSP4.raster == 0x0000) { DSP4.sprite_size = !DSP4.sprite_size; continue; } // check for valid sprite header header = DSP4.raster; header >>= 8; if (header != 0x20 && header != 0x2e && // This is for attractor sprite header != 0x40 && header != 0x60 && header != 0xa0 && header != 0xc0 && header != 0xe0) break; // read in rest of sprite data DSP4.in_count = 4; DSP4_WAIT(6); resume6: draw = TRUE; ///////////////////////////////////// // process tile data // sprite deltas sp_dattr = DSP4.raster; sp_dy = DSP4_READ_WORD(); sp_dx = DSP4_READ_WORD(); // update coordinates to screen space sp_x = DSP4.sprite_x + sp_dx; sp_y = DSP4.sprite_y + sp_dy; // update sprite nametable/attribute information sp_attr = DSP4.sprite_attr + sp_dattr; // allow partially visibile tiles pixels = DSP4.sprite_size ? 15 : 7; DSP4_CLEAR_OUT(); // transparent tile to clip off parts of a sprite (overdraw) if (DSP4.sprite_clipy - pixels <= sp_y && sp_y <= DSP4.sprite_clipy && sp_x >= DSP4.viewport_left - pixels && sp_x <= DSP4.viewport_right && DSP4.sprite_clipy >= DSP4.viewport_top - pixels && DSP4.sprite_clipy <= DSP4.viewport_bottom) DSP4_OP0B(&draw, sp_x, DSP4.sprite_clipy, 0x00EE, DSP4.sprite_size, 0); // normal sprite tile if (sp_x >= DSP4.viewport_left - pixels && sp_x <= DSP4.viewport_right && sp_y >= DSP4.viewport_top - pixels && sp_y <= DSP4.viewport_bottom && sp_y <= DSP4.sprite_clipy) DSP4_OP0B(&draw, sp_x, sp_y, sp_attr, DSP4.sprite_size, 0); // no following OAM data DSP4_OP0B(&draw, 0, 0x0100, 0, 0, 1); } while (1); } while (1); terminate: DSP4.waiting4command = TRUE; } static void DSP4_OP0A (int16 n2, int16 *o1, int16 *o2, int16 *o3, int16 *o4) { const uint16 OP0A_Values[16] = { 0x0000, 0x0030, 0x0060, 0x0090, 0x00c0, 0x00f0, 0x0120, 0x0150, 0xfe80, 0xfeb0, 0xfee0, 0xff10, 0xff40, 0xff70, 0xffa0, 0xffd0 }; *o4 = OP0A_Values[(n2 & 0x000f)]; *o3 = OP0A_Values[(n2 & 0x00f0) >> 4]; *o2 = OP0A_Values[(n2 & 0x0f00) >> 8]; *o1 = OP0A_Values[(n2 & 0xf000) >> 12]; } static void DSP4_OP0B (bool8 *draw, int16 sp_x, int16 sp_y, int16 sp_attr, bool8 size, bool8 stop) { int16 Row1, Row2; // SR = 0x00 // align to nearest 8-pixel row Row1 = (sp_y >> 3) & 0x1f; Row2 = (Row1 + 1) & 0x1f; // check boundaries if (!((sp_y < 0) || ((sp_y & 0x01ff) < 0x00eb))) *draw = 0; if (size) { if (DSP4.OAM_Row[Row1] + 1 >= DSP4.OAM_RowMax) *draw = 0; if (DSP4.OAM_Row[Row2] + 1 >= DSP4.OAM_RowMax) *draw = 0; } else { if (DSP4.OAM_Row[Row1] >= DSP4.OAM_RowMax) *draw = 0; } // emulator fail-safe (unknown if this really exists) if (DSP4.sprite_count >= 128) *draw = 0; // SR = 0x80 if (*draw) { // Row tiles if (size) { DSP4.OAM_Row[Row1] += 2; DSP4.OAM_Row[Row2] += 2; } else DSP4.OAM_Row[Row1]++; // yield OAM output DSP4_WRITE_WORD(1); // pack OAM data: x, y, name, attr DSP4_WRITE_BYTE(sp_x & 0xff); DSP4_WRITE_BYTE(sp_y & 0xff); DSP4_WRITE_WORD(sp_attr); DSP4.sprite_count++; // OAM: size, msb data // save post-oam table data for future retrieval DSP4.OAM_attr[DSP4.OAM_index] |= ((sp_x < 0 || sp_x > 255) << DSP4.OAM_bits); DSP4.OAM_bits++; DSP4.OAM_attr[DSP4.OAM_index] |= (size << DSP4.OAM_bits); DSP4.OAM_bits++; // move to next byte in buffer if (DSP4.OAM_bits == 16) { DSP4.OAM_bits = 0; DSP4.OAM_index++; } } else if (stop) // yield no OAM output DSP4_WRITE_WORD(0); } static void DSP4_OP0D (void) { DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; } //////////////////////////////////////////////////// // process initial inputs // sort inputs DSP4.world_y = DSP4_READ_DWORD(); DSP4.poly_bottom[0][0] = DSP4_READ_WORD(); DSP4.poly_top[0][0] = DSP4_READ_WORD(); DSP4.poly_cx[1][0] = DSP4_READ_WORD(); DSP4.viewport_bottom = DSP4_READ_WORD(); DSP4.world_x = DSP4_READ_DWORD(); DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_ptr[0][0] = DSP4_READ_WORD(); DSP4.world_yofs = DSP4_READ_WORD(); DSP4.world_dy = DSP4_READ_DWORD(); DSP4.world_dx = DSP4_READ_DWORD(); DSP4.distance = DSP4_READ_WORD(); DSP4_READ_WORD(); // 0x0000 DSP4.world_xenv = SEX78(DSP4_READ_WORD()); DSP4.world_ddy = DSP4_READ_WORD(); DSP4.world_ddx = DSP4_READ_WORD(); DSP4.view_yofsenv = DSP4_READ_WORD(); // initial (x, y, offset) at starting raster line DSP4.view_x1 = (DSP4.world_x + DSP4.world_xenv) >> 16; DSP4.view_y1 = DSP4.world_y >> 16; DSP4.view_xofs1 = DSP4.world_x >> 16; DSP4.view_yofs1 = DSP4.world_yofs; // first raster line DSP4.poly_raster[0][0] = DSP4.poly_bottom[0][0]; do { //////////////////////////////////////////////////// // process one iteration of projection // perspective projection of world (x, y, scroll) points // based on the current projection lines DSP4.view_x2 = (((DSP4.world_x + DSP4.world_xenv) >> 16) * DSP4.distance >> 15) + (DSP4.view_turnoff_x * DSP4.distance >> 15); DSP4.view_y2 = (DSP4.world_y >> 16) * DSP4.distance >> 15; DSP4.view_xofs2 = DSP4.view_x2; DSP4.view_yofs2 = (DSP4.world_yofs * DSP4.distance >> 15) + DSP4.poly_bottom[0][0] - DSP4.view_y2; // 1. World x-location before transformation // 2. Viewer x-position at the current // 3. World y-location before perspective projection // 4. Viewer y-position below the horizon // 5. Number of raster lines drawn in this iteration DSP4_CLEAR_OUT(); DSP4_WRITE_WORD((DSP4.world_x + DSP4.world_xenv) >> 16); DSP4_WRITE_WORD(DSP4.view_x2); DSP4_WRITE_WORD(DSP4.world_y >> 16); DSP4_WRITE_WORD(DSP4.view_y2); ////////////////////////////////////////////////////////// // SR = 0x00 // determine # of raster lines used DSP4.segments = DSP4.view_y1 - DSP4.view_y2; // prevent overdraw if (DSP4.view_y2 >= DSP4.poly_raster[0][0]) DSP4.segments = 0; else DSP4.poly_raster[0][0] = DSP4.view_y2; // don't draw outside the window if (DSP4.view_y2 < DSP4.poly_top[0][0]) { DSP4.segments = 0; // flush remaining raster lines if (DSP4.view_y1 >= DSP4.poly_top[0][0]) DSP4.segments = DSP4.view_y1 - DSP4.poly_top[0][0]; } // SR = 0x80 DSP4_WRITE_WORD(DSP4.segments); ////////////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { int32 px_dx, py_dy; int32 x_scroll, y_scroll; // SR = 0x00 // linear interpolation (lerp) between projected points px_dx = (DSP4.view_xofs2 - DSP4.view_xofs1) * DSP4_Inverse(DSP4.segments) << 1; py_dy = (DSP4.view_yofs2 - DSP4.view_yofs1) * DSP4_Inverse(DSP4.segments) << 1; // starting step values x_scroll = SEX16(DSP4.poly_cx[0][0] + DSP4.view_xofs1); y_scroll = SEX16(-DSP4.viewport_bottom + DSP4.view_yofs1 + DSP4.view_yofsenv + DSP4.poly_cx[1][0] - DSP4.world_yofs); // SR = 0x80 // rasterize line for (DSP4.lcv = 0; DSP4.lcv < DSP4.segments; DSP4.lcv++) { // 1. HDMA memory pointer (bg1) // 2. vertical scroll offset ($210E) // 3. horizontal scroll offset ($210D) DSP4_WRITE_WORD(DSP4.poly_ptr[0][0]); DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16); DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16); // update memory address DSP4.poly_ptr[0][0] -= 4; // update screen values x_scroll += px_dx; y_scroll += py_dy; } } ///////////////////////////////////////////////////// // Post-update // update new viewer (x, y, scroll) to last raster line drawn DSP4.view_x1 = DSP4.view_x2; DSP4.view_y1 = DSP4.view_y2; DSP4.view_xofs1 = DSP4.view_xofs2; DSP4.view_yofs1 = DSP4.view_yofs2; // add deltas for projection lines DSP4.world_dx += SEX78(DSP4.world_ddx); DSP4.world_dy += SEX78(DSP4.world_ddy); // update projection lines DSP4.world_x += (DSP4.world_dx + DSP4.world_xenv); DSP4.world_y += DSP4.world_dy; //////////////////////////////////////////////////// // command check // scan next command DSP4.in_count = 2; DSP4_WAIT(1); resume1: // inspect input DSP4.distance = DSP4_READ_WORD(); // terminate op if (DSP4.distance == -0x8000) break; // already have 2 bytes in queue DSP4.in_count = 6; DSP4_WAIT(2); resume2: // inspect inputs DSP4.world_ddy = DSP4_READ_WORD(); DSP4.world_ddx = DSP4_READ_WORD(); DSP4.view_yofsenv = DSP4_READ_WORD(); // no envelope here DSP4.world_xenv = 0; } while (1); DSP4.waiting4command = TRUE; } static void DSP4_OP0E (void) { DSP4.OAM_RowMax = 16; memset(DSP4.OAM_Row, 0, 64); } static void DSP4_OP0F (void) { DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; case 3: goto resume3; break; case 4: goto resume4; break; } //////////////////////////////////////////////////// // process initial inputs // sort inputs DSP4_READ_WORD(); // 0x0000 DSP4.world_y = DSP4_READ_DWORD(); DSP4.poly_bottom[0][0] = DSP4_READ_WORD(); DSP4.poly_top[0][0] = DSP4_READ_WORD(); DSP4.poly_cx[1][0] = DSP4_READ_WORD(); DSP4.viewport_bottom = DSP4_READ_WORD(); DSP4.world_x = DSP4_READ_DWORD(); DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_ptr[0][0] = DSP4_READ_WORD(); DSP4.world_yofs = DSP4_READ_WORD(); DSP4.world_dy = DSP4_READ_DWORD(); DSP4.world_dx = DSP4_READ_DWORD(); DSP4.distance = DSP4_READ_WORD(); DSP4_READ_WORD(); // 0x0000 DSP4.world_xenv = DSP4_READ_DWORD(); DSP4.world_ddy = DSP4_READ_WORD(); DSP4.world_ddx = DSP4_READ_WORD(); DSP4.view_yofsenv = DSP4_READ_WORD(); // initial (x, y, offset) at starting raster line DSP4.view_x1 = (DSP4.world_x + DSP4.world_xenv) >> 16; DSP4.view_y1 = DSP4.world_y >> 16; DSP4.view_xofs1 = DSP4.world_x >> 16; DSP4.view_yofs1 = DSP4.world_yofs; DSP4.view_turnoff_x = 0; DSP4.view_turnoff_dx = 0; // first raster line DSP4.poly_raster[0][0] = DSP4.poly_bottom[0][0]; do { //////////////////////////////////////////////////// // process one iteration of projection // perspective projection of world (x, y, scroll) points // based on the current projection lines DSP4.view_x2 = ((DSP4.world_x + DSP4.world_xenv) >> 16) * DSP4.distance >> 15; DSP4.view_y2 = (DSP4.world_y >> 16) * DSP4.distance >> 15; DSP4.view_xofs2 = DSP4.view_x2; DSP4.view_yofs2 = (DSP4.world_yofs * DSP4.distance >> 15) + DSP4.poly_bottom[0][0] - DSP4.view_y2; // 1. World x-location before transformation // 2. Viewer x-position at the next // 3. World y-location before perspective projection // 4. Viewer y-position below the horizon // 5. Number of raster lines drawn in this iteration DSP4_CLEAR_OUT(); DSP4_WRITE_WORD((DSP4.world_x + DSP4.world_xenv) >> 16); DSP4_WRITE_WORD(DSP4.view_x2); DSP4_WRITE_WORD(DSP4.world_y >> 16); DSP4_WRITE_WORD(DSP4.view_y2); ////////////////////////////////////////////////////// // SR = 0x00 // determine # of raster lines used DSP4.segments = DSP4.poly_raster[0][0] - DSP4.view_y2; // prevent overdraw if (DSP4.view_y2 >= DSP4.poly_raster[0][0]) DSP4.segments = 0; else DSP4.poly_raster[0][0] = DSP4.view_y2; // don't draw outside the window if (DSP4.view_y2 < DSP4.poly_top[0][0]) { DSP4.segments = 0; // flush remaining raster lines if (DSP4.view_y1 >= DSP4.poly_top[0][0]) DSP4.segments = DSP4.view_y1 - DSP4.poly_top[0][0]; } // SR = 0x80 DSP4_WRITE_WORD(DSP4.segments); ////////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { int32 px_dx, py_dy; int32 x_scroll, y_scroll; for (DSP4.lcv = 0; DSP4.lcv < 4; DSP4.lcv++) { // grab inputs DSP4.in_count = 4; DSP4_WAIT(1); resume1: for (;;) { int16 dist; int16 color, red, green, blue; dist = DSP4_READ_WORD(); color = DSP4_READ_WORD(); // U1+B5+G5+R5 red = color & 0x1f; green = (color >> 5) & 0x1f; blue = (color >> 10) & 0x1f; // dynamic lighting red = (red * dist >> 15) & 0x1f; green = (green * dist >> 15) & 0x1f; blue = (blue * dist >> 15) & 0x1f; color = red | (green << 5) | (blue << 10); DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(color); break; } } ////////////////////////////////////////////////////// // SR = 0x00 // linear interpolation (lerp) between projected points px_dx = (DSP4.view_xofs2 - DSP4.view_xofs1) * DSP4_Inverse(DSP4.segments) << 1; py_dy = (DSP4.view_yofs2 - DSP4.view_yofs1) * DSP4_Inverse(DSP4.segments) << 1; // starting step values x_scroll = SEX16(DSP4.poly_cx[0][0] + DSP4.view_xofs1); y_scroll = SEX16(-DSP4.viewport_bottom + DSP4.view_yofs1 + DSP4.view_yofsenv + DSP4.poly_cx[1][0] - DSP4.world_yofs); // SR = 0x80 // rasterize line for (DSP4.lcv = 0; DSP4.lcv < DSP4.segments; DSP4.lcv++) { // 1. HDMA memory pointer // 2. vertical scroll offset ($210E) // 3. horizontal scroll offset ($210D) DSP4_WRITE_WORD(DSP4.poly_ptr[0][0]); DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16); DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16); // update memory address DSP4.poly_ptr[0][0] -= 4; // update screen values x_scroll += px_dx; y_scroll += py_dy; } } //////////////////////////////////////////////////// // Post-update // update new viewer (x, y, scroll) to last raster line drawn DSP4.view_x1 = DSP4.view_x2; DSP4.view_y1 = DSP4.view_y2; DSP4.view_xofs1 = DSP4.view_xofs2; DSP4.view_yofs1 = DSP4.view_yofs2; // add deltas for projection lines DSP4.world_dx += SEX78(DSP4.world_ddx); DSP4.world_dy += SEX78(DSP4.world_ddy); // update projection lines DSP4.world_x += (DSP4.world_dx + DSP4.world_xenv); DSP4.world_y += DSP4.world_dy; // update road turnoff position DSP4.view_turnoff_x += DSP4.view_turnoff_dx; //////////////////////////////////////////////////// // command check // scan next command DSP4.in_count = 2; DSP4_WAIT(2); resume2: // check for termination DSP4.distance = DSP4_READ_WORD(); if (DSP4.distance == -0x8000) break; // road splice if ((uint16) DSP4.distance == 0x8001) { DSP4.in_count = 6; DSP4_WAIT(3); resume3: DSP4.distance = DSP4_READ_WORD(); DSP4.view_turnoff_x = DSP4_READ_WORD(); DSP4.view_turnoff_dx = DSP4_READ_WORD(); // factor in new changes DSP4.view_x1 += (DSP4.view_turnoff_x * DSP4.distance >> 15); DSP4.view_xofs1 += (DSP4.view_turnoff_x * DSP4.distance >> 15); // update stepping values DSP4.view_turnoff_x += DSP4.view_turnoff_dx; DSP4.in_count = 2; DSP4_WAIT(2); } // already have 2 bytes in queue DSP4.in_count = 6; DSP4_WAIT(4); resume4: // inspect inputs DSP4.world_ddy = DSP4_READ_WORD(); DSP4.world_ddx = DSP4_READ_WORD(); DSP4.view_yofsenv = DSP4_READ_WORD(); // no envelope here DSP4.world_xenv = 0; } while (1); // terminate op DSP4.waiting4command = TRUE; } static void DSP4_OP10 (void) { DSP4.waiting4command = FALSE; // op flow control switch (DSP4.Logic) { case 1: goto resume1; break; case 2: goto resume2; break; case 3: goto resume3; break; } //////////////////////////////////////////////////// // sort inputs DSP4_READ_WORD(); // 0x0000 DSP4.world_y = DSP4_READ_DWORD(); DSP4.poly_bottom[0][0] = DSP4_READ_WORD(); DSP4.poly_top[0][0] = DSP4_READ_WORD(); DSP4.poly_cx[1][0] = DSP4_READ_WORD(); DSP4.viewport_bottom = DSP4_READ_WORD(); DSP4.world_x = DSP4_READ_DWORD(); DSP4.poly_cx[0][0] = DSP4_READ_WORD(); DSP4.poly_ptr[0][0] = DSP4_READ_WORD(); DSP4.world_yofs = DSP4_READ_WORD(); DSP4.distance = DSP4_READ_WORD(); DSP4.view_y2 = DSP4_READ_WORD(); DSP4.view_dy = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_x2 = DSP4_READ_WORD(); DSP4.view_dx = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_yofsenv = DSP4_READ_WORD(); // initial (x, y, offset) at starting raster line DSP4.view_x1 = DSP4.world_x >> 16; DSP4.view_y1 = DSP4.world_y >> 16; DSP4.view_xofs1 = DSP4.view_x1; DSP4.view_yofs1 = DSP4.world_yofs; // first raster line DSP4.poly_raster[0][0] = DSP4.poly_bottom[0][0]; do { //////////////////////////////////////////////////// // process one iteration of projection // add shaping DSP4.view_x2 += DSP4.view_dx; DSP4.view_y2 += DSP4.view_dy; // vertical scroll calculation DSP4.view_xofs2 = DSP4.view_x2; DSP4.view_yofs2 = (DSP4.world_yofs * DSP4.distance >> 15) + DSP4.poly_bottom[0][0] - DSP4.view_y2; // 1. Viewer x-position at the next // 2. Viewer y-position below the horizon // 3. Number of raster lines drawn in this iteration DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(DSP4.view_x2); DSP4_WRITE_WORD(DSP4.view_y2); ////////////////////////////////////////////////////// // SR = 0x00 // determine # of raster lines used DSP4.segments = DSP4.view_y1 - DSP4.view_y2; // prevent overdraw if (DSP4.view_y2 >= DSP4.poly_raster[0][0]) DSP4.segments = 0; else DSP4.poly_raster[0][0] = DSP4.view_y2; // don't draw outside the window if (DSP4.view_y2 < DSP4.poly_top[0][0]) { DSP4.segments = 0; // flush remaining raster lines if (DSP4.view_y1 >= DSP4.poly_top[0][0]) DSP4.segments = DSP4.view_y1 - DSP4.poly_top[0][0]; } // SR = 0x80 DSP4_WRITE_WORD(DSP4.segments); ////////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { for (DSP4.lcv = 0; DSP4.lcv < 4; DSP4.lcv++) { // grab inputs DSP4.in_count = 4; DSP4_WAIT(1); resume1: for (;;) { int16 dist; int16 color, red, green, blue; dist = DSP4_READ_WORD(); color = DSP4_READ_WORD(); // U1+B5+G5+R5 red = color & 0x1f; green = (color >> 5) & 0x1f; blue = (color >> 10) & 0x1f; // dynamic lighting red = (red * dist >> 15) & 0x1f; green = (green * dist >> 15) & 0x1f; blue = (blue * dist >> 15) & 0x1f; color = red | (green << 5) | (blue << 10); DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(color); break; } } } ////////////////////////////////////////////////////// // scan next command if no SR check needed if (DSP4.segments) { int32 px_dx, py_dy; int32 x_scroll, y_scroll; // SR = 0x00 // linear interpolation (lerp) between projected points px_dx = (DSP4.view_xofs2 - DSP4.view_xofs1) * DSP4_Inverse(DSP4.segments) << 1; py_dy = (DSP4.view_yofs2 - DSP4.view_yofs1) * DSP4_Inverse(DSP4.segments) << 1; // starting step values x_scroll = SEX16(DSP4.poly_cx[0][0] + DSP4.view_xofs1); y_scroll = SEX16(-DSP4.viewport_bottom + DSP4.view_yofs1 + DSP4.view_yofsenv + DSP4.poly_cx[1][0] - DSP4.world_yofs); // SR = 0x80 // rasterize line for (DSP4.lcv = 0; DSP4.lcv < DSP4.segments; DSP4.lcv++) { // 1. HDMA memory pointer (bg2) // 2. vertical scroll offset ($2110) // 3. horizontal scroll offset ($210F) DSP4_WRITE_WORD(DSP4.poly_ptr[0][0]); DSP4_WRITE_WORD((y_scroll + 0x8000) >> 16); DSP4_WRITE_WORD((x_scroll + 0x8000) >> 16); // update memory address DSP4.poly_ptr[0][0] -= 4; // update screen values x_scroll += px_dx; y_scroll += py_dy; } } ///////////////////////////////////////////////////// // Post-update // update new viewer (x, y, scroll) to last raster line drawn DSP4.view_x1 = DSP4.view_x2; DSP4.view_y1 = DSP4.view_y2; DSP4.view_xofs1 = DSP4.view_xofs2; DSP4.view_yofs1 = DSP4.view_yofs2; //////////////////////////////////////////////////// // command check // scan next command DSP4.in_count = 2; DSP4_WAIT(2); resume2: // check for opcode termination DSP4.distance = DSP4_READ_WORD(); if (DSP4.distance == -0x8000) break; // already have 2 bytes in queue DSP4.in_count = 10; DSP4_WAIT(3); resume3: // inspect inputs DSP4.view_y2 = DSP4_READ_WORD(); DSP4.view_dy = DSP4_READ_WORD() * DSP4.distance >> 15; DSP4.view_x2 = DSP4_READ_WORD(); DSP4.view_dx = DSP4_READ_WORD() * DSP4.distance >> 15; } while (1); DSP4.waiting4command = TRUE; } static void DSP4_OP11 (int16 A, int16 B, int16 C, int16 D, int16 *M) { // 0x155 = 341 = Horizontal Width of the Screen *M = ((A * 0x0155 >> 2) & 0xf000) | ((B * 0x0155 >> 6) & 0x0f00) | ((C * 0x0155 >> 10) & 0x00f0) | ((D * 0x0155 >> 14) & 0x000f); } static void DSP4_SetByte (void) { // clear pending read if (DSP4.out_index < DSP4.out_count) { DSP4.out_index++; return; } if (DSP4.waiting4command) { if (DSP4.half_command) { DSP4.command |= (DSP4.byte << 8); DSP4.in_index = 0; DSP4.waiting4command = FALSE; DSP4.half_command = FALSE; DSP4.out_count = 0; DSP4.out_index = 0; DSP4.Logic = 0; switch (DSP4.command) { case 0x0000: DSP4.in_count = 4; break; case 0x0001: DSP4.in_count = 44; break; case 0x0003: DSP4.in_count = 0; break; case 0x0005: DSP4.in_count = 0; break; case 0x0006: DSP4.in_count = 0; break; case 0x0007: DSP4.in_count = 34; break; case 0x0008: DSP4.in_count = 90; break; case 0x0009: DSP4.in_count = 14; break; case 0x000a: DSP4.in_count = 6; break; case 0x000b: DSP4.in_count = 6; break; case 0x000d: DSP4.in_count = 42; break; case 0x000e: DSP4.in_count = 0; break; case 0x000f: DSP4.in_count = 46; break; case 0x0010: DSP4.in_count = 36; break; case 0x0011: DSP4.in_count = 8; break; default: DSP4.waiting4command = TRUE; break; } } else { DSP4.command = DSP4.byte; DSP4.half_command = TRUE; } } else { DSP4.parameters[DSP4.in_index] = DSP4.byte; DSP4.in_index++; } if (!DSP4.waiting4command && DSP4.in_count == DSP4.in_index) { // Actually execute the command DSP4.waiting4command = TRUE; DSP4.out_index = 0; DSP4.in_index = 0; switch (DSP4.command) { // 16-bit multiplication case 0x0000: { int16 multiplier, multiplicand; int32 product; multiplier = DSP4_READ_WORD(); multiplicand = DSP4_READ_WORD(); DSP4_Multiply(multiplicand, multiplier, &product); DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(product); DSP4_WRITE_WORD(product >> 16); break; } // single-player track projection case 0x0001: DSP4_OP01(); break; // single-player selection case 0x0003: DSP4_OP03(); break; // clear OAM case 0x0005: DSP4_OP05(); break; // transfer OAM case 0x0006: DSP4_OP06(); break; // single-player track turnoff projection case 0x0007: DSP4_OP07(); break; // solid polygon projection case 0x0008: DSP4_OP08(); break; // sprite projection case 0x0009: DSP4_OP09(); break; // unknown case 0x000A: { DSP4_READ_WORD(); int16 in2a = DSP4_READ_WORD(); DSP4_READ_WORD(); int16 out1a, out2a, out3a, out4a; DSP4_OP0A(in2a, &out2a, &out1a, &out4a, &out3a); DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(out1a); DSP4_WRITE_WORD(out2a); DSP4_WRITE_WORD(out3a); DSP4_WRITE_WORD(out4a); break; } // set OAM case 0x000B: { int16 sp_x = DSP4_READ_WORD(); int16 sp_y = DSP4_READ_WORD(); int16 sp_attr = DSP4_READ_WORD(); bool8 draw = TRUE; DSP4_CLEAR_OUT(); DSP4_OP0B(&draw, sp_x, sp_y, sp_attr, 0, 1); break; } // multi-player track projection case 0x000D: DSP4_OP0D(); break; // multi-player selection case 0x000E: DSP4_OP0E(); break; // single-player track projection with lighting case 0x000F: DSP4_OP0F(); break; // single-player track turnoff projection with lighting case 0x0010: DSP4_OP10(); break; // unknown: horizontal mapping command case 0x0011: { int16 a, b, c, d, m; d = DSP4_READ_WORD(); c = DSP4_READ_WORD(); b = DSP4_READ_WORD(); a = DSP4_READ_WORD(); DSP4_OP11(a, b, c, d, &m); DSP4_CLEAR_OUT(); DSP4_WRITE_WORD(m); break; } default: break; } } } static void DSP4_GetByte (void) { if (DSP4.out_count) { DSP4.byte = (uint8) DSP4.output[DSP4.out_index & 0x1FF]; DSP4.out_index++; if (DSP4.out_count == DSP4.out_index) DSP4.out_count = 0; } else DSP4.byte = 0xff; } void DSP4SetByte (uint8 byte, uint16 address) { if (address < DSP0.boundary) { DSP4.byte = byte; DSP4.address = address; DSP4_SetByte(); } } uint8 DSP4GetByte (uint16 address) { if (address < DSP0.boundary) { DSP4.address = address; DSP4_GetByte(); return (DSP4.byte); } return (0x80); }