/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ #ifndef _GETSET_H_ #define _GETSET_H_ #include "cpuexec.h" #include "dsp.h" #include "sa1.h" #include "spc7110.h" #include "c4.h" #include "obc1.h" #include "seta.h" #include "bsx.h" #include "msu1.h" #define addCyclesInMemoryAccess \ if (!CPU.InDMAorHDMA) \ { \ CPU.Cycles += speed; \ while (CPU.Cycles >= CPU.NextEvent) \ S9xDoHEventProcessing(); \ } #define addCyclesInMemoryAccess_x2 \ if (!CPU.InDMAorHDMA) \ { \ CPU.Cycles += speed << 1; \ while (CPU.Cycles >= CPU.NextEvent) \ S9xDoHEventProcessing(); \ } extern uint8 OpenBus; static inline int32 memory_speed (uint32 address) { if (address & 0x408000) { if (address & 0x800000) return (CPU.FastROMSpeed); return (SLOW_ONE_CYCLE); } if ((address + 0x6000) & 0x4000) return (SLOW_ONE_CYCLE); if ((address - 0x4000) & 0x7e00) return (ONE_CYCLE); return (TWO_CYCLES); } inline uint8 S9xGetByte (uint32 Address) { int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *GetAddress = Memory.Map[block]; int32 speed = memory_speed(Address); uint8 byte; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { byte = *(GetAddress + (Address & 0xffff)); addCyclesInMemoryAccess; return (byte); } switch ((pint) GetAddress) { case CMemory::MAP_CPU: byte = S9xGetCPU(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_PPU: if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100) return (OpenBus); byte = S9xGetPPU(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: // Address & 0x7fff : offset into bank // Address & 0xff0000 : bank // bank >> 1 | offset : SRAM address, unbound // unbound & SRAMMask : SRAM offset byte = *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_LOROM_SRAM_B: byte = *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_RONLY_SRAM: byte = *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_BWRAM: byte = *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_DSP: byte = S9xGetDSP(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SPC7110_ROM: byte = S9xGetSPC7110Byte(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SPC7110_DRAM: byte = S9xGetSPC7110(0x4800); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_C4: byte = S9xGetC4(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_OBC_RAM: byte = S9xGetOBC1(Address & 0xffff); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SETA_DSP: byte = S9xGetSetaDSP(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_SETA_RISC: byte = S9xGetST018(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_BSX: byte = S9xGetBSX(Address); addCyclesInMemoryAccess; return (byte); case CMemory::MAP_NONE: default: byte = OpenBus; addCyclesInMemoryAccess; return (byte); } } inline uint16 S9xGetWord (uint32 Address, enum s9xwrap_t w = WRAP_NONE) { uint16 word; uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff)); if ((Address & mask) == mask) { PC_t a; word = OpenBus = S9xGetByte(Address); switch (w) { case WRAP_PAGE: a.xPBPC = Address; a.B.xPCl++; return (word | (S9xGetByte(a.xPBPC) << 8)); case WRAP_BANK: a.xPBPC = Address; a.W.xPC++; return (word | (S9xGetByte(a.xPBPC) << 8)); case WRAP_NONE: default: return (word | (S9xGetByte(Address + 1) << 8)); } } int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *GetAddress = Memory.Map[block]; int32 speed = memory_speed(Address); if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { word = READ_WORD(GetAddress + (Address & 0xffff)); addCyclesInMemoryAccess_x2; return (word); } switch ((pint) GetAddress) { case CMemory::MAP_CPU: word = S9xGetCPU(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetCPU((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_PPU: if (CPU.InDMAorHDMA) { word = OpenBus = S9xGetByte(Address); return (word | (S9xGetByte(Address + 1) << 8)); } word = S9xGetPPU(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetPPU((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_SA1RAM: if (Memory.SRAMMask >= MEMMAP_MASK) word = READ_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); else word = (*(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask))) | ((*(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask))) << 8); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_LOROM_SRAM_B: if (Multi.sramMaskB >= MEMMAP_MASK) word = READ_WORD(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); else word = (*(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB))) | ((*(Multi.sramB + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Multi.sramMaskB))) << 8); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_RONLY_SRAM: if (Memory.SRAMMask >= MEMMAP_MASK) word = READ_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask)); else word = (*(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask)) | (*(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0x1f0000) >> 3)) & Memory.SRAMMask)) << 8)); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_BWRAM: word = READ_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)); addCyclesInMemoryAccess_x2; return (word); case CMemory::MAP_DSP: word = S9xGetDSP(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetDSP((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SPC7110_ROM: word = S9xGetSPC7110Byte(Address); addCyclesInMemoryAccess; word |= S9xGetSPC7110Byte(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SPC7110_DRAM: word = S9xGetSPC7110(0x4800); addCyclesInMemoryAccess; word |= S9xGetSPC7110(0x4800) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_C4: word = S9xGetC4(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetC4((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_OBC_RAM: word = S9xGetOBC1(Address & 0xffff); addCyclesInMemoryAccess; word |= S9xGetOBC1((Address + 1) & 0xffff) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SETA_DSP: word = S9xGetSetaDSP(Address); addCyclesInMemoryAccess; word |= S9xGetSetaDSP(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_SETA_RISC: word = S9xGetST018(Address); addCyclesInMemoryAccess; word |= S9xGetST018(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_BSX: word = S9xGetBSX(Address); addCyclesInMemoryAccess; word |= S9xGetBSX(Address + 1) << 8; addCyclesInMemoryAccess; return (word); case CMemory::MAP_NONE: default: word = OpenBus | (OpenBus << 8); addCyclesInMemoryAccess_x2; return (word); } } inline void S9xSetByte (uint8 Byte, uint32 Address) { int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *SetAddress = Memory.WriteMap[block]; int32 speed = memory_speed(Address); if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { *(SetAddress + (Address & 0xffff)) = Byte; addCyclesInMemoryAccess; return; } switch ((pint) SetAddress) { case CMemory::MAP_CPU: S9xSetCPU(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_PPU: if (CPU.InDMAorHDMA && (Address & 0xff00) == 0x2100) return; S9xSetPPU(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_LOROM_SRAM: if (Memory.SRAMMask) { *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = Byte; CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess; return; case CMemory::MAP_LOROM_SRAM_B: if (Multi.sramMaskB) { *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)) = Byte; CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess; return; case CMemory::MAP_HIROM_SRAM: if (Memory.SRAMMask) { *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask)) = Byte; CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess; return; case CMemory::MAP_BWRAM: *(Memory.BWRAM + ((Address & 0x7fff) - 0x6000)) = Byte; CPU.SRAMModified = TRUE; addCyclesInMemoryAccess; return; case CMemory::MAP_SA1RAM: *(Memory.SRAM + (Address & 0xffff)) = Byte; addCyclesInMemoryAccess; return; case CMemory::MAP_DSP: S9xSetDSP(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_C4: S9xSetC4(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_OBC_RAM: S9xSetOBC1(Byte, Address & 0xffff); addCyclesInMemoryAccess; return; case CMemory::MAP_SETA_DSP: S9xSetSetaDSP(Byte, Address); addCyclesInMemoryAccess; return; case CMemory::MAP_SETA_RISC: S9xSetST018(Byte, Address); addCyclesInMemoryAccess; return; case CMemory::MAP_BSX: S9xSetBSX(Byte, Address); addCyclesInMemoryAccess; return; case CMemory::MAP_NONE: default: addCyclesInMemoryAccess; return; } } inline void S9xSetWord (uint16 Word, uint32 Address, enum s9xwrap_t w = WRAP_NONE, enum s9xwriteorder_t o = WRITE_01) { uint32 mask = MEMMAP_MASK & (w == WRAP_PAGE ? 0xff : (w == WRAP_BANK ? 0xffff : 0xffffff)); if ((Address & mask) == mask) { PC_t a; if (!o) S9xSetByte((uint8) Word, Address); switch (w) { case WRAP_PAGE: a.xPBPC = Address; a.B.xPCl++; S9xSetByte(Word >> 8, a.xPBPC); break; case WRAP_BANK: a.xPBPC = Address; a.W.xPC++; S9xSetByte(Word >> 8, a.xPBPC); break; case WRAP_NONE: default: S9xSetByte(Word >> 8, Address + 1); break; } if (o) S9xSetByte((uint8) Word, Address); return; } int block = (Address & 0xffffff) >> MEMMAP_SHIFT; uint8 *SetAddress = Memory.WriteMap[block]; int32 speed = memory_speed(Address); if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { WRITE_WORD(SetAddress + (Address & 0xffff), Word); addCyclesInMemoryAccess_x2; return; } switch ((pint) SetAddress) { case CMemory::MAP_CPU: if (o) { S9xSetCPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetCPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetCPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetCPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_PPU: if (CPU.InDMAorHDMA) { if ((Address & 0xff00) != 0x2100) S9xSetPPU((uint8) Word, Address & 0xffff); if (((Address + 1) & 0xff00) != 0x2100) S9xSetPPU(Word >> 8, (Address + 1) & 0xffff); return; } if (o) { S9xSetPPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetPPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetPPU((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetPPU(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_LOROM_SRAM: if (Memory.SRAMMask) { if (Memory.SRAMMask >= MEMMAP_MASK) WRITE_WORD(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask), Word); else { *(Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)) = (uint8) Word; *(Memory.SRAM + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Memory.SRAMMask)) = Word >> 8; } CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess_x2; return; case CMemory::MAP_LOROM_SRAM_B: if (Multi.sramMaskB) { if (Multi.sramMaskB >= MEMMAP_MASK) WRITE_WORD(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB), Word); else { *(Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)) = (uint8) Word; *(Multi.sramB + (((((Address + 1) & 0xff0000) >> 1) | ((Address + 1) & 0x7fff)) & Multi.sramMaskB)) = Word >> 8; } CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess_x2; return; case CMemory::MAP_HIROM_SRAM: if (Memory.SRAMMask) { if (Memory.SRAMMask >= MEMMAP_MASK) WRITE_WORD(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask), Word); else { *(Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask)) = (uint8) Word; *(Memory.SRAM + ((((Address + 1) & 0x7fff) - 0x6000 + (((Address + 1) & 0x1f0000) >> 3)) & Memory.SRAMMask)) = Word >> 8; } CPU.SRAMModified = TRUE; } addCyclesInMemoryAccess_x2; return; case CMemory::MAP_BWRAM: WRITE_WORD(Memory.BWRAM + ((Address & 0x7fff) - 0x6000), Word); CPU.SRAMModified = TRUE; addCyclesInMemoryAccess_x2; return; case CMemory::MAP_SA1RAM: WRITE_WORD(Memory.SRAM + (Address & 0xffff), Word); addCyclesInMemoryAccess_x2; return; case CMemory::MAP_DSP: if (o) { S9xSetDSP(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetDSP((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetDSP((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetDSP(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_C4: if (o) { S9xSetC4(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetC4((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetC4((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetC4(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_OBC_RAM: if (o) { S9xSetOBC1(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; S9xSetOBC1((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; return; } else { S9xSetOBC1((uint8) Word, Address & 0xffff); addCyclesInMemoryAccess; S9xSetOBC1(Word >> 8, (Address + 1) & 0xffff); addCyclesInMemoryAccess; return; } case CMemory::MAP_SETA_DSP: if (o) { S9xSetSetaDSP(Word >> 8, Address + 1); addCyclesInMemoryAccess; S9xSetSetaDSP((uint8) Word, Address); addCyclesInMemoryAccess; return; } else { S9xSetSetaDSP((uint8) Word, Address); addCyclesInMemoryAccess; S9xSetSetaDSP(Word >> 8, Address + 1); addCyclesInMemoryAccess; return; } case CMemory::MAP_SETA_RISC: if (o) { S9xSetST018(Word >> 8, Address + 1); addCyclesInMemoryAccess; S9xSetST018((uint8) Word, Address); addCyclesInMemoryAccess; return; } else { S9xSetST018((uint8) Word, Address); addCyclesInMemoryAccess; S9xSetST018(Word >> 8, Address + 1); addCyclesInMemoryAccess; return; } case CMemory::MAP_BSX: if (o) { S9xSetBSX(Word >> 8, Address + 1); addCyclesInMemoryAccess; S9xSetBSX((uint8) Word, Address); addCyclesInMemoryAccess; return; } else { S9xSetBSX((uint8) Word, Address); addCyclesInMemoryAccess; S9xSetBSX(Word >> 8, Address + 1); addCyclesInMemoryAccess; return; } case CMemory::MAP_NONE: default: addCyclesInMemoryAccess_x2; return; } } inline void S9xSetPCBase (uint32 Address) { Registers.PBPC = Address & 0xffffff; ICPU.ShiftedPB = Address & 0xff0000; uint8 *GetAddress = Memory.Map[(int)((Address & 0xffffff) >> MEMMAP_SHIFT)]; CPU.MemSpeed = memory_speed(Address); CPU.MemSpeedx2 = CPU.MemSpeed << 1; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { CPU.PCBase = GetAddress; return; } switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) CPU.PCBase = NULL; else CPU.PCBase = Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff); return; case CMemory::MAP_LOROM_SRAM_B: if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK) CPU.PCBase = NULL; else CPU.PCBase = Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB) - (Address & 0xffff); return; case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) CPU.PCBase = NULL; else CPU.PCBase = Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff); return; case CMemory::MAP_BWRAM: CPU.PCBase = Memory.BWRAM - 0x6000 - (Address & 0x8000); return; case CMemory::MAP_SA1RAM: CPU.PCBase = Memory.SRAM; return; case CMemory::MAP_SPC7110_ROM: CPU.PCBase = S9xGetBasePointerSPC7110(Address); return; case CMemory::MAP_C4: CPU.PCBase = S9xGetBasePointerC4(Address & 0xffff); return; case CMemory::MAP_OBC_RAM: CPU.PCBase = S9xGetBasePointerOBC1(Address & 0xffff); return; case CMemory::MAP_BSX: CPU.PCBase = S9xGetBasePointerBSX(Address); return; case CMemory::MAP_NONE: default: CPU.PCBase = NULL; return; } } inline uint8 * S9xGetBasePointer (uint32 Address) { uint8 *GetAddress = Memory.Map[(Address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (GetAddress); switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask) - (Address & 0xffff)); case CMemory::MAP_LOROM_SRAM_B: if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB) - (Address & 0xffff)); case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask) - (Address & 0xffff)); case CMemory::MAP_BWRAM: return (Memory.BWRAM - 0x6000 - (Address & 0x8000)); case CMemory::MAP_SA1RAM: return (Memory.SRAM); case CMemory::MAP_SPC7110_ROM: return (S9xGetBasePointerSPC7110(Address)); case CMemory::MAP_C4: return (S9xGetBasePointerC4(Address & 0xffff)); case CMemory::MAP_OBC_RAM: return (S9xGetBasePointerOBC1(Address & 0xffff)); case CMemory::MAP_NONE: default: return (NULL); } } inline uint8 * S9xGetMemPointer (uint32 Address) { uint8 *GetAddress = Memory.Map[(Address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) return (GetAddress + (Address & 0xffff)); switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Memory.SRAMMask)); case CMemory::MAP_LOROM_SRAM_B: if ((Multi.sramMaskB & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Multi.sramB + ((((Address & 0xff0000) >> 1) | (Address & 0x7fff)) & Multi.sramMaskB)); case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) return (NULL); return (Memory.SRAM + (((Address & 0x7fff) - 0x6000 + ((Address & 0x1f0000) >> 3)) & Memory.SRAMMask)); case CMemory::MAP_BWRAM: return (Memory.BWRAM - 0x6000 + (Address & 0x7fff)); case CMemory::MAP_SA1RAM: return (Memory.SRAM + (Address & 0xffff)); case CMemory::MAP_SPC7110_ROM: return (S9xGetBasePointerSPC7110(Address) + (Address & 0xffff)); case CMemory::MAP_C4: return (S9xGetMemPointerC4(Address & 0xffff)); case CMemory::MAP_OBC_RAM: return (S9xGetMemPointerOBC1(Address & 0xffff)); case CMemory::MAP_NONE: default: return (NULL); } } #endif