/*****************************************************************************\ Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. This file is licensed under the Snes9x License. For further information, consult the LICENSE file in the root directory. \*****************************************************************************/ #include "snes9x.h" #include "memmap.h" uint8 SA1OpenBus; static void S9xSA1SetBWRAMMemMap (uint8); static void S9xSetSA1MemMap (uint32, uint8); static void S9xSA1CharConv2 (void); static void S9xSA1DMA (void); static void S9xSA1ReadVariableLengthData (bool8, bool8); void S9xSA1Init (void) { SA1.Cycles = 0; SA1.PrevCycles = 0; SA1.Flags = 0; SA1.WaitingForInterrupt = FALSE; memset(&Memory.FillRAM[0x2200], 0, 0x200); Memory.FillRAM[0x2200] = 0x20; Memory.FillRAM[0x2220] = 0x00; Memory.FillRAM[0x2221] = 0x01; Memory.FillRAM[0x2222] = 0x02; Memory.FillRAM[0x2223] = 0x03; Memory.FillRAM[0x2228] = 0x0f; SA1.in_char_dma = FALSE; SA1.TimerIRQLastState = FALSE; SA1.HTimerIRQPos = 0; SA1.VTimerIRQPos = 0; SA1.HCounter = 0; SA1.VCounter = 0; SA1.PrevHCounter = 0; SA1.arithmetic_op = 0; SA1.op1 = 0; SA1.op2 = 0; SA1.sum = 0; SA1.overflow = FALSE; SA1.VirtualBitmapFormat = 4; SA1.variable_bit_pos = 0; SA1Registers.PBPC = 0; SA1Registers.PB = 0; SA1Registers.PCw = 0; SA1Registers.D.W = 0; SA1Registers.DB = 0; SA1Registers.SH = 1; SA1Registers.SL = 0xFF; SA1Registers.XH = 0; SA1Registers.YH = 0; SA1Registers.P.W = 0; SA1.ShiftedPB = 0; SA1.ShiftedDB = 0; SA1SetFlags(MemoryFlag | IndexFlag | IRQ | Emulation); SA1ClearFlags(Decimal); SA1.MemSpeed = ONE_CYCLE; SA1.MemSpeedx2 = ONE_CYCLE * 2; SA1.S9xOpcodes = S9xSA1OpcodesM1X1; SA1.S9xOpLengths = S9xOpLengthsM1X1; S9xSA1SetPCBase(SA1Registers.PBPC); S9xSA1UnpackStatus(); S9xSA1FixCycles(); SA1.BWRAM = Memory.SRAM; CPU.IRQExternal = FALSE; } static void S9xSA1SetBWRAMMemMap (uint8 val) { if (val & 0x80) { for (int c = 0; c < 0x400; c += 16) { SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2; } SA1.BWRAM = Memory.SRAM + (val & 0x7f) * 0x2000 / 4; } else { for (int c = 0; c < 0x400; c += 16) { SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM; SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM; SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM; SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM; } SA1.BWRAM = Memory.SRAM + (val & 0x1f) * 0x2000; } } void S9xSA1PostLoadState (void) { SA1.ShiftedPB = (uint32) SA1Registers.PB << 16; SA1.ShiftedDB = (uint32) SA1Registers.DB << 16; S9xSA1SetPCBase(SA1Registers.PBPC); S9xSA1UnpackStatus(); S9xSA1FixCycles(); SA1.VirtualBitmapFormat = (Memory.FillRAM[0x223f] & 0x80) ? 2 : 4; Memory.BWRAM = Memory.SRAM + (Memory.FillRAM[0x2224] & 0x1f) * 0x2000; S9xSA1SetBWRAMMemMap(Memory.FillRAM[0x2225]); #if 0 S9xSetSA1(Memory.FillRAM[0x2220], 0x2220); S9xSetSA1(Memory.FillRAM[0x2221], 0x2221); S9xSetSA1(Memory.FillRAM[0x2222], 0x2222); S9xSetSA1(Memory.FillRAM[0x2223], 0x2223); #endif } static void S9xSetSA1MemMap (uint32 which1, uint8 map) { int start = which1 * 0x100 + 0xc00; int start2 = which1 * 0x200; if (which1 >= 2) start2 += 0x400; for (int c = 0; c < 0x100; c += 16) { uint8 *block; if (Multi.cartType != 5) block = &Memory.ROM[(map & 7) * 0x100000 + (c << 12)]; else { if ((map & 7) < 4) block = Memory.ROM + Multi.cartOffsetA + ((map & 7) * 0x100000 + (c << 12)); else block = Memory.ROM + Multi.cartOffsetB + (((map & 7) - 4) * 0x100000 + (c << 12)); } for (int i = c; i < c + 16; i++) Memory.Map[start + i] = SA1.Map[start + i] = block; } for (int c = 0; c < 0x200; c += 16) { // conversion to int is needed here - map is promoted but which1 is not int32 offset; uint8 *block; if (Multi.cartType != 5) { offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000; block = &Memory.ROM[offset]; } else { if ((map & 7) < 4) { offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000; block = Memory.ROM + Multi.cartOffsetA + offset; } else { offset = (((map & 0x80) ? (map - 4) : which1) & 7) * 0x100000 + (c << 11) - 0x8000; block = Memory.ROM + Multi.cartOffsetB + offset; } } for (int i = c + 8; i < c + 16; i++) Memory.Map[start2 + i] = SA1.Map[start2 + i] = block; } } uint8 S9xGetSA1 (uint32 address) { switch (address) { case 0x2300: // S-CPU flag return ((Memory.FillRAM[0x2209] & 0x5f) | (Memory.FillRAM[0x2300] & 0xa0)); case 0x2301: // SA-1 flag return ((Memory.FillRAM[0x2200] & 0x0f) | (Memory.FillRAM[0x2301] & 0xf0)); case 0x2302: // H counter (L) SA1.HTimerIRQPos = SA1.HCounter / ONE_DOT_CYCLE; SA1.VTimerIRQPos = SA1.VCounter; return ((uint8) SA1.HTimerIRQPos); case 0x2303: // H counter (H) return ((uint8) (SA1.HTimerIRQPos >> 8)); case 0x2304: // V counter (L) return ((uint8) SA1.VTimerIRQPos); case 0x2305: // V counter (H) return ((uint8) (SA1.VTimerIRQPos >> 8)); case 0x2306: // arithmetic result (LLL) return ((uint8) SA1.sum); case 0x2307: // arithmetic result (LLH) return ((uint8) (SA1.sum >> 8)); case 0x2308: // arithmetic result (LHL) return ((uint8) (SA1.sum >> 16)); case 0x2309: // arithmetic result (LLH) return ((uint8) (SA1.sum >> 24)); case 0x230a: // arithmetic result (HLL) return ((uint8) (SA1.sum >> 32)); case 0x230b: // arithmetic overflow return (SA1.overflow ? 0x80 : 0); case 0x230c: // variable-length data read port (L) return (Memory.FillRAM[0x230c]); case 0x230d: // variable-length data read port (H) { uint8 byte = Memory.FillRAM[0x230d]; if (Memory.FillRAM[0x2258] & 0x80) S9xSA1ReadVariableLengthData(TRUE, FALSE); return (byte); } case 0x230e: // version code register return (0x23); default: break; } return (Memory.FillRAM[address]); } void S9xSetSA1 (uint8 byte, uint32 address) { switch (address) { case 0x2200: // SA-1 control #ifdef DEBUGGER if (byte & 0x60) printf("SA-1 sleep\n"); #endif // SA-1 reset if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20)) { #ifdef DEBUGGER printf("SA-1 reset\n"); #endif SA1Registers.PBPC = 0; SA1Registers.PB = 0; SA1Registers.PCw = Memory.FillRAM[0x2203] | (Memory.FillRAM[0x2204] << 8); S9xSA1SetPCBase(SA1Registers.PBPC); } // SA-1 IRQ control if (byte & 0x80) { Memory.FillRAM[0x2301] |= 0x80; if (Memory.FillRAM[0x220a] & 0x80) Memory.FillRAM[0x220b] &= ~0x80; } // SA-1 NMI control if (byte & 0x10) { Memory.FillRAM[0x2301] |= 0x10; if (Memory.FillRAM[0x220a] & 0x10) Memory.FillRAM[0x220b] &= ~0x10; } break; case 0x2201: // S-CPU interrupt enable // S-CPU IRQ enable if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80)) { Memory.FillRAM[0x2202] &= ~0x80; CPU.IRQExternal = TRUE; } // S-CPU CHDMA IRQ enable if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20)) { Memory.FillRAM[0x2202] &= ~0x20; CPU.IRQExternal = TRUE; } break; case 0x2202: // S-CPU interrupt clear // S-CPU IRQ clear if (byte & 0x80) Memory.FillRAM[0x2300] &= ~0x80; // S-CPU CHDMA IRQ clear if (byte & 0x20) Memory.FillRAM[0x2300] &= ~0x20; if (!(Memory.FillRAM[0x2300] & 0xa0)) CPU.IRQExternal = FALSE; break; case 0x2203: // SA-1 reset vector (L) case 0x2204: // SA-1 reset vector (H) case 0x2205: // SA-1 NMI vector (L) case 0x2206: // SA-1 NMI vector (H) case 0x2207: // SA-1 IRQ vector (L) case 0x2208: // SA-1 IRQ vector (H) break; case 0x2209: // S-CPU control // 0x40: S-CPU IRQ overwrite // 0x20: S-CPU NMI overwrite // S-CPU IRQ control if (byte & 0x80) { Memory.FillRAM[0x2300] |= 0x80; if (Memory.FillRAM[0x2201] & 0x80) { Memory.FillRAM[0x2202] &= ~0x80; CPU.IRQExternal = TRUE; } } break; case 0x220a: // SA-1 interrupt enable // SA-1 IRQ enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80)) Memory.FillRAM[0x220b] &= ~0x80; // SA-1 timer IRQ enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40)) Memory.FillRAM[0x220b] &= ~0x40; // SA-1 DMA IRQ enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20)) Memory.FillRAM[0x220b] &= ~0x20; // SA-1 NMI enable if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10)) Memory.FillRAM[0x220b] &= ~0x10; break; case 0x220b: // SA-1 interrupt clear // SA-1 IRQ clear if (byte & 0x80) Memory.FillRAM[0x2301] &= ~0x80; // SA-1 timer IRQ clear if (byte & 0x40) Memory.FillRAM[0x2301] &= ~0x40; // SA-1 DMA IRQ clear if (byte & 0x20) Memory.FillRAM[0x2301] &= ~0x20; // SA-1 NMI clear if (byte & 0x10) Memory.FillRAM[0x2301] &= ~0x10; break; case 0x220c: // S-CPU NMI vector (L) case 0x220d: // S-CPU NMI vector (H) case 0x220e: // S-CPU IRQ vector (L) case 0x220f: // S-CPU IRQ vector (H) break; case 0x2210: // SA-1 timer control // 0x80: mode (linear / HV) // 0x02: V timer enable // 0x01: H timer enable #ifdef DEBUGGER printf("SA-1 timer control write:%02x\n", byte); #endif break; case 0x2211: // SA-1 timer reset SA1.HCounter = 0; SA1.VCounter = 0; break; case 0x2212: // SA-1 H-timer (L) SA1.HTimerIRQPos = byte | (Memory.FillRAM[0x2213] << 8); break; case 0x2213: // SA-1 H-timer (H) SA1.HTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2212]; break; case 0x2214: // SA-1 V-timer (L) SA1.VTimerIRQPos = byte | (Memory.FillRAM[0x2215] << 8); break; case 0x2215: // SA-1 V-timer (H) SA1.VTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2214]; break; case 0x2220: // MMC bank C case 0x2221: // MMC bank D case 0x2222: // MMC bank E case 0x2223: // MMC bank F S9xSetSA1MemMap(address - 0x2220, byte); break; case 0x2224: // S-CPU BW-RAM mapping Memory.BWRAM = Memory.SRAM + (byte & 0x1f) * 0x2000; break; case 0x2225: // SA-1 BW-RAM mapping if (byte != Memory.FillRAM[0x2225]) S9xSA1SetBWRAMMemMap(byte); break; case 0x2226: // S-CPU BW-RAM write enable case 0x2227: // SA-1 BW-RAM write enable case 0x2228: // BW-RAM write-protected area case 0x2229: // S-CPU I-RAM write protection case 0x222a: // SA-1 I-RAM write protection break; case 0x2230: // DMA control // 0x80: enable // 0x40: priority (DMA / SA-1) // 0x20: character conversion / normal // 0x10: BW-RAM -> I-RAM / SA-1 -> I-RAM // 0x04: destinatin (BW-RAM / I-RAM) // 0x03: source break; case 0x2231: // character conversion DMA parameters // 0x80: CHDEND (complete / incomplete) // 0x03: color mode // (byte >> 2) & 7: virtual VRAM width if (byte & 0x80) SA1.in_char_dma = FALSE; break; case 0x2232: // DMA source start address (LL) case 0x2233: // DMA source start address (LH) case 0x2234: // DMA source start address (HL) break; case 0x2235: // DMA destination start address (LL) break; case 0x2236: // DMA destination start address (LH) Memory.FillRAM[0x2236] = byte; if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) // Normal DMA to I-RAM S9xSA1DMA(); else if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) // CC1 { SA1.in_char_dma = TRUE; Memory.FillRAM[0x2300] |= 0x20; if (Memory.FillRAM[0x2201] & 0x20) { Memory.FillRAM[0x2202] &= ~0x20; CPU.IRQExternal = TRUE; } } break; case 0x2237: // DMA destination start address (HL) Memory.FillRAM[0x2237] = byte; if ((Memory.FillRAM[0x2230] & 0xa4) == 0x84) // Normal DMA to BW-RAM S9xSA1DMA(); break; case 0x2238: // DMA terminal counter (L) case 0x2239: // DMA terminal counter (H) break; case 0x223f: // BW-RAM bitmap format SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4; break; case 0x2240: // bitmap register 0 case 0x2241: // bitmap register 1 case 0x2242: // bitmap register 2 case 0x2243: // bitmap register 3 case 0x2244: // bitmap register 4 case 0x2245: // bitmap register 5 case 0x2246: // bitmap register 6 case 0x2247: // bitmap register 7 case 0x2248: // bitmap register 8 case 0x2249: // bitmap register 9 case 0x224a: // bitmap register A case 0x224b: // bitmap register B case 0x224c: // bitmap register C case 0x224d: // bitmap register D case 0x224e: // bitmap register E break; case 0x224f: // bitmap register F Memory.FillRAM[0x224f] = byte; if ((Memory.FillRAM[0x2230] & 0xb0) == 0xa0) // CC2 { memmove(&Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + SA1.in_char_dma * 16, &Memory.FillRAM[0x2240], 16); SA1.in_char_dma = (SA1.in_char_dma + 1) & 7; if ((SA1.in_char_dma & 3) == 0) S9xSA1CharConv2(); } break; case 0x2250: // arithmetic control if (byte & 2) SA1.sum = 0; SA1.arithmetic_op = byte & 3; break; case 0x2251: // multiplicand / dividend (L) SA1.op1 = (SA1.op1 & 0xff00) | byte; break; case 0x2252: // multiplicand / dividend (H) SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8); break; case 0x2253: // multiplier / divisor (L) SA1.op2 = (SA1.op2 & 0xff00) | byte; break; case 0x2254: // multiplier / divisor (H) SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8); switch (SA1.arithmetic_op) { case 0: // signed multiplication SA1.sum = (int16) SA1.op1 * (int16) SA1.op2; SA1.op2 = 0; break; case 1: // unsigned division if (SA1.op2 == 0) SA1.sum = 0; else { int16 dividend = (int16) SA1.op1; uint16 divisor = (uint16) SA1.op2; uint16 remainder = (dividend >= 0) ? dividend % divisor : (dividend % divisor) + divisor; uint16 quotient = (dividend - remainder) / divisor; SA1.sum = (remainder << 16) | quotient; } SA1.op1 = 0; SA1.op2 = 0; break; case 2: // cumulative sum default: SA1.sum += (int16) SA1.op1 * (int16) SA1.op2; SA1.overflow = (SA1.sum >= (1ULL << 40)); SA1.sum &= (1ULL << 40) - 1; SA1.op2 = 0; break; } break; case 0x2258: // variable bit-field length / auto inc / start Memory.FillRAM[0x2258] = byte; S9xSA1ReadVariableLengthData(TRUE, FALSE); return; case 0x2259: // variable bit-field start address (LL) case 0x225a: // variable bit-field start address (LH) case 0x225b: // variable bit-field start address (HL) Memory.FillRAM[address] = byte; // XXX: ??? SA1.variable_bit_pos = 0; S9xSA1ReadVariableLengthData(FALSE, TRUE); return; default: break; } if (address >= 0x2200 && address <= 0x22ff) Memory.FillRAM[address] = byte; } static void S9xSA1CharConv2 (void) { uint32 dest = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8); uint32 offset = (SA1.in_char_dma & 7) ? 0 : 1; int depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2; int bytes_per_char = 8 * depth; uint8 *p = &Memory.FillRAM[0x3000] + (dest & 0x7ff) + offset * bytes_per_char; uint8 *q = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + offset * 64; switch (depth) { case 2: for (int l = 0; l < 8; l++, q += 8) { for (int b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); } p += 2; } break; case 4: for (int l = 0; l < 8; l++, q += 8) { for (int b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); } p += 2; } break; case 8: for (int l = 0; l < 8; l++, q += 8) { for (int b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); *(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1); *(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1); *(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1); *(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1); } p += 2; } break; } } static void S9xSA1DMA (void) { uint32 src = Memory.FillRAM[0x2232] | (Memory.FillRAM[0x2233] << 8) | (Memory.FillRAM[0x2234] << 16); uint32 dst = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8) | (Memory.FillRAM[0x2237] << 16); uint32 len = Memory.FillRAM[0x2238] | (Memory.FillRAM[0x2239] << 8); uint8 *s, *d; switch (Memory.FillRAM[0x2230] & 3) { case 0: // ROM s = SA1.Map[((src & 0xffffff) >> MEMMAP_SHIFT)]; if (s >= (uint8 *) CMemory::MAP_LAST) s += (src & 0xffff); else s = Memory.ROM + (src & 0xffff); break; case 1: // BW-RAM src &= Memory.SRAMMask; len &= Memory.SRAMMask; s = Memory.SRAM + src; break; default: case 2: src &= 0x3ff; len &= 0x3ff; s = &Memory.FillRAM[0x3000] + src; break; } if (Memory.FillRAM[0x2230] & 4) { dst &= Memory.SRAMMask; len &= Memory.SRAMMask; d = Memory.SRAM + dst; } else { dst &= 0x3ff; len &= 0x3ff; d = &Memory.FillRAM[0x3000] + dst; } memmove(d, s, len); // SA-1 DMA IRQ control Memory.FillRAM[0x2301] |= 0x20; if (Memory.FillRAM[0x220a] & 0x20) Memory.FillRAM[0x220b] &= ~0x20; } static void S9xSA1ReadVariableLengthData (bool8 inc, bool8 no_shift) { uint32 addr = Memory.FillRAM[0x2259] | (Memory.FillRAM[0x225a] << 8) | (Memory.FillRAM[0x225b] << 16); uint8 shift = Memory.FillRAM[0x2258] & 15; if (no_shift) shift = 0; else if (shift == 0) shift = 16; uint8 s = shift + SA1.variable_bit_pos; if (s >= 16) { addr += (s >> 4) << 1; s &= 15; } uint32 data = S9xSA1GetWord(addr) | (S9xSA1GetWord(addr + 2) << 16); data >>= s; Memory.FillRAM[0x230c] = (uint8) data; Memory.FillRAM[0x230d] = (uint8) (data >> 8); if (inc) { SA1.variable_bit_pos = (SA1.variable_bit_pos + shift) & 15; Memory.FillRAM[0x2259] = (uint8) addr; Memory.FillRAM[0x225a] = (uint8) (addr >> 8); Memory.FillRAM[0x225b] = (uint8) (addr >> 16); } } uint8 S9xSA1GetByte (uint32 address) { uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *)CMemory::MAP_LAST) { SA1.Cycles += SA1.MemSpeed; return (*(GetAddress + (address & 0xffff))); } switch ((pint) GetAddress) { case CMemory::MAP_PPU: SA1.Cycles += ONE_CYCLE; return (S9xGetSA1(address & 0xffff)); case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_SA1RAM: SA1.Cycles += ONE_CYCLE * 2; return (*(Memory.SRAM + (address & 0x3ffff))); case CMemory::MAP_BWRAM: SA1.Cycles += ONE_CYCLE * 2; return (*(SA1.BWRAM + (address & 0x1fff))); case CMemory::MAP_BWRAM_BITMAP: SA1.Cycles += ONE_CYCLE * 2; address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) return ((Memory.SRAM[(address >> 2) & 0x3ffff] >> ((address & 3) << 1)) & 3); else return ((Memory.SRAM[(address >> 1) & 0x3ffff] >> ((address & 1) << 2)) & 15); case CMemory::MAP_BWRAM_BITMAP2: SA1.Cycles += ONE_CYCLE * 2; address = (address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) return ((SA1.BWRAM[(address >> 2) & 0x3ffff] >> ((address & 3) << 1)) & 3); else return ((SA1.BWRAM[(address >> 1) & 0x3ffff] >> ((address & 1) << 2)) & 15); default: SA1.Cycles += ONE_CYCLE; return (SA1OpenBus); } } uint16 S9xSA1GetWord (uint32 address, s9xwrap_t w) { PC_t a; SA1OpenBus = S9xSA1GetByte(address); switch (w) { case WRAP_PAGE: a.xPBPC = address; a.B.xPCl++; return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8)); case WRAP_BANK: a.xPBPC = address; a.W.xPC++; return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8)); case WRAP_NONE: default: return (SA1OpenBus | (S9xSA1GetByte(address + 1) << 8)); } } void S9xSA1SetByte (uint8 byte, uint32 address) { uint8 *SetAddress = SA1.WriteMap[(address & 0xffffff) >> MEMMAP_SHIFT]; if (SetAddress >= (uint8 *) CMemory::MAP_LAST) { *(SetAddress + (address & 0xffff)) = byte; return; } switch ((pint) SetAddress) { case CMemory::MAP_PPU: S9xSetSA1(byte, address & 0xffff); return; case CMemory::MAP_LOROM_SRAM: case CMemory::MAP_HIROM_SRAM: case CMemory::MAP_SA1RAM: *(Memory.SRAM + (address & 0x3ffff)) = byte; return; case CMemory::MAP_BWRAM: *(SA1.BWRAM + (address & 0x1fff)) = byte; return; case CMemory::MAP_BWRAM_BITMAP: address -= 0x600000; if (SA1.VirtualBitmapFormat == 2) { uint8 *ptr = &Memory.SRAM[(address >> 2) & 0x3ffff]; *ptr &= ~(3 << ((address & 3) << 1)); *ptr |= (byte & 3) << ((address & 3) << 1); } else { uint8 *ptr = &Memory.SRAM[(address >> 1) & 0x3ffff]; *ptr &= ~(15 << ((address & 1) << 2)); *ptr |= (byte & 15) << ((address & 1) << 2); } return; case CMemory::MAP_BWRAM_BITMAP2: address = (address & 0xffff) - 0x6000; if (SA1.VirtualBitmapFormat == 2) { uint8 *ptr = &SA1.BWRAM[(address >> 2) & 0x3ffff]; *ptr &= ~(3 << ((address & 3) << 1)); *ptr |= (byte & 3) << ((address & 3) << 1); } else { uint8 *ptr = &SA1.BWRAM[(address >> 1) & 0x3ffff]; *ptr &= ~(15 << ((address & 1) << 2)); *ptr |= (byte & 15) << ((address & 1) << 2); } return; default: return; } } void S9xSA1SetWord (uint16 Word, uint32 address, enum s9xwrap_t w, enum s9xwriteorder_t o) { PC_t a; if (!o) S9xSA1SetByte((uint8) Word, address); switch (w) { case WRAP_PAGE: a.xPBPC = address; a.B.xPCl++; S9xSA1SetByte(Word >> 8, a.xPBPC); break; case WRAP_BANK: a.xPBPC = address; a.W.xPC++; S9xSA1SetByte(Word >> 8, a.xPBPC); break; case WRAP_NONE: default: S9xSA1SetByte(Word >> 8, address + 1); break; } if (o) S9xSA1SetByte((uint8) Word, address); } void S9xSA1SetPCBase (uint32 address) { SA1Registers.PBPC = address & 0xffffff; SA1.ShiftedPB = address & 0xff0000; // FIXME SA1.MemSpeed = ONE_CYCLE; if ((address & 0xc00000) == 0x400000 || (address & 0x40e000) == 0x6000) { SA1.MemSpeed = TWO_CYCLES; } SA1.MemSpeedx2 = SA1.MemSpeed << 1; uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT]; if (GetAddress >= (uint8 *) CMemory::MAP_LAST) { SA1.PCBase = GetAddress; return; } switch ((pint) GetAddress) { case CMemory::MAP_LOROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) SA1.PCBase = NULL; else SA1.PCBase = (Memory.SRAM + ((((address & 0xff0000) >> 1) | (address & 0x7fff)) & Memory.SRAMMask)) - (address & 0xffff); return; case CMemory::MAP_HIROM_SRAM: if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK) SA1.PCBase = NULL; else SA1.PCBase = (Memory.SRAM + (((address & 0x7fff) - 0x6000 + ((address & 0xf0000) >> 3)) & Memory.SRAMMask)) - (address & 0xffff); return; case CMemory::MAP_BWRAM: SA1.PCBase = SA1.BWRAM - 0x6000 - (address & 0x8000); return; case CMemory::MAP_SA1RAM: SA1.PCBase = Memory.SRAM; return; default: SA1.PCBase = NULL; return; } }