You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

194 lines
5.1 KiB

2 years ago
/* In-software asymmetric public-key crypto subtype
*
* See Documentation/crypto/asymmetric-keys.txt
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
//#define pr_fmt(fmt) "PKEY: "fmt
//#include <linux/module.h>
//#include <linux/export.h>
//#include <linux/kernel.h>
//#include <linux/slab.h>
//#include <linux/seq_file.h>
//#include <linux/scatterlist.h>
//#include <keys/asymmetric-subtype.h>
//#include <crypto/public_key.h>
//#include <crypto/akcipher.h>
//
// MODULE_LICENSE("GPL");
#include "public_key.h"
#include "../rewrite/Lib.SoulExtraction.rewrite.h"
/*
* Provide a part of a description of the key for /proc/keys.
*/
// static void public_key_describe(const struct key *asymmetric_key,
// struct seq_file *m)
//{
// struct public_key *key = asymmetric_key->payload.data[asym_crypto];
//
// if (key)
// seq_printf(m, "%s.%s", key->id_type, key->pkey_algo);
// }
/*
* Destroy a public key algorithm key.
*/
void
public_key_free(struct public_key *key)
{
if (key)
{
kfree(key->key);
kfree(key);
}
}
// EXPORT_SYMBOL_GPL(public_key_free);
/*
* Destroy a public key algorithm key.
*/
// static void public_key_destroy(void *payload0, void *payload3)
//{
// public_key_free(payload0);
// public_key_signature_free(payload3);
// }
// struct public_key_completion {
// struct completion completion;
// int err;
// };
//
// static void public_key_verify_done(struct crypto_async_request *req, int err)
//{
// struct public_key_completion *compl = req->data;
//
// if (err == -EINPROGRESS)
// return;
//
// compl->err = err;
// complete(&compl->completion);
// }
/*
* Verify a signature using a public key.
*/
// int public_key_verify_signature(const struct public_key *pkey,
// const struct public_key_signature *sig)
//{
// struct public_key_completion compl;
// struct crypto_akcipher *tfm;
// struct akcipher_request *req;
// struct scatterlist sig_sg, digest_sg;
// const char *alg_name;
// char alg_name_buf[CRYPTO_MAX_ALG_NAME];
// void *output;
// unsigned int outlen;
// int ret = -ENOMEM;
//
// pr_devel("==>%s()\n", __func__);
//
// BUG_ON(!pkey);
// BUG_ON(!sig);
// BUG_ON(!sig->s);
//
// if (!sig->digest)
// return -ENOPKG;
//
// alg_name = sig->pkey_algo;
// if (strcmp(sig->pkey_algo, "rsa") == 0) {
// /* The data wangled by the RSA algorithm is typically padded
// * and encoded in some manner, such as EMSA-PKCS1-1_5 [RFC3447
// * sec 8.2].
// */
// if (snprintf(alg_name_buf, CRYPTO_MAX_ALG_NAME,
// "pkcs1pad(rsa,%s)", sig->hash_algo
// ) >= CRYPTO_MAX_ALG_NAME)
// return -EINVAL;
// alg_name = alg_name_buf;
// }
//
// tfm = crypto_alloc_akcipher(alg_name, 0, 0);
// if (IS_ERR(tfm))
// return PTR_ERR(tfm);
//
// req = akcipher_request_alloc(tfm, GFP_KERNEL);
// if (!req)
// goto error_free_tfm;
//
// ret = crypto_akcipher_set_pub_key(tfm, pkey->key, pkey->keylen);
// if (ret)
// goto error_free_req;
//
// ret = -ENOMEM;
// outlen = crypto_akcipher_maxsize(tfm);
// output = kmalloc(outlen, GFP_KERNEL);
// if (!output)
// goto error_free_req;
//
// sg_init_one(&sig_sg, sig->s, sig->s_size);
// sg_init_one(&digest_sg, output, outlen);
// akcipher_request_set_crypt(req, &sig_sg, &digest_sg, sig->s_size,
// outlen);
// init_completion(&compl.completion);
// akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG |
// CRYPTO_TFM_REQ_MAY_SLEEP,
// public_key_verify_done, &compl);
//
// /* Perform the verification calculation. This doesn't actually do the
// * verification, but rather calculates the hash expected by the
// * signature and returns that to us.
// */
// ret = crypto_akcipher_verify(req);
// if ((ret == -EINPROGRESS) || (ret == -EBUSY)) {
// wait_for_completion(&compl.completion);
// ret = compl.err;
// }
// if (ret < 0)
// goto out_free_output;
//
// /* Do the actual verification step. */
// if (req->dst_len != sig->digest_size ||
// memcmp(sig->digest, output, sig->digest_size) != 0)
// ret = -EKEYREJECTED;
//
// out_free_output:
// kfree(output);
// error_free_req:
// akcipher_request_free(req);
// error_free_tfm:
// crypto_free_akcipher(tfm);
// pr_devel("<==%s() = %d\n", __func__, ret);
// return ret;
// }
// EXPORT_SYMBOL_GPL(public_key_verify_signature);
//
// static int public_key_verify_signature_2(const struct key *key,
// const struct public_key_signature *sig)
//{
// const struct public_key *pk = key->payload.data[asym_crypto];
// return public_key_verify_signature(pk, sig);
// }
/*
* Public key algorithm asymmetric key subtype
*/
// struct asymmetric_key_subtype public_key_subtype = {
// .owner = THIS_MODULE,
// .name = "public_key",
// .name_len = sizeof("public_key") - 1,
// .describe = public_key_describe,
// .destroy = public_key_destroy,
// .verify_signature = public_key_verify_signature_2,
// };
// EXPORT_SYMBOL_GPL(public_key_subtype);