You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

576 lines
16 KiB

2 years ago
// SPDX-License-Identifier: GPL-2.0-or-later
/* Parse a signed PE binary
*
* Copyright (C) 2014 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
//#define pr_fmt(fmt) "PEFILE: "fmt
//#include <linux/module.h>
//#include <linux/kernel.h>
//#include <linux/slab.h>
//#include <linux/err.h>
//#include <linux/pe.h>
//#include <linux/asn1.h>
//#include <linux/verification.h>
//#include <crypto/hash.h>
//#include "verify_pefile.h"
#include "verify_pefile.h"
#include "errno.h"
#include "asn1.h"
#include "config.h"
#include "pe.h"
#include "../rewrite/Lib.SoulExtraction.rewrite.h"
//
// macro
//
#define GFP_ATOMIC /*(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)*/ 1
#define GFP_KERNEL /*(__GFP_RECLAIM | __GFP_IO | __GFP_FS)*/ 2
#define GFP_KERNEL_ACCOUNT /*(GFP_KERNEL | __GFP_ACCOUNT)*/ 3
#define GFP_NOWAIT /*(__GFP_KSWAPD_RECLAIM)*/ 4
#define GFP_NOIO /*(__GFP_RECLAIM)*/ 5
#define GFP_NOFS /*(__GFP_RECLAIM | __GFP_IO)*/ 6
#define GFP_USER /*(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)*/ 7
#define GFP_DMA /*__GFP_DMA*/ 8
#define GFP_DMA32 /*__GFP_DMA32*/ 9
#define GFP_HIGHUSER /*(GFP_USER | __GFP_HIGHMEM)*/ 10
#define GFP_HIGHUSER_MOVABLE /*(GFP_HIGHUSER | __GFP_MOVABLE)*/ 11
#define GFP_TRANSHUGE_LIGHT 12
#define GFP_TRANSHUGE /*(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)*/ 13
#define ERR_PTR(err) ((void *)((long)(err)))
#define PTR_ERR(ptr) ((long)(ptr))
#define IS_ERR(ptr) ((unsigned long)(ptr) > (unsigned long)(-1000))
///*
// * This looks more complex than it should be. But we need to
// * get the type for the ~ right in round_down (it needs to be
// * as wide as the result!), and we want to evaluate the macro
// * arguments just once each.
// */
//#define __round_mask(x, y) ((__typeof__(x))((y)-1))
//
///**
// * round_up - round up to next specified power of 2
// * @x: the value to round
// * @y: multiple to round up to (must be a power of 2)
// *
// * Rounds @x up to next multiple of @y (which must be a power of 2).
// * To perform arbitrary rounding up, use roundup() below.
// */
//#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
///**
//* round_up - round up to next specified power of 2
//* @x: the value to round
//* @y: multiple to round up to (must be a power of 2)
//*
//* Rounds @x up to next multiple of @y (which must be a power of 2).
//* To perform arbitrary rounding up, use roundup() below.
//*/
//#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
///**
//* round_down - round down to next specified power of 2
//* @x: the value to round
//* @y: multiple to round down to (must be a power of 2)
//*
//* Rounds @x down to next multiple of @y (which must be a power of 2).
//* To perform arbitrary rounding down, use rounddown() below.
//*/
//#define round_down(x, y) ((x) & ~__round_mask(x, y))
/* n must be power of 2 */
#define round_up(x, n) (((x) + (n)-1u) & ~((n)-1u))
/*
* Parse a PE binary.
*/
int
pefile_parse_binary(const void *pebuf, unsigned int pelen, struct pefile_context *ctx)
{
const struct mz_hdr *mz = pebuf;
const struct pe_hdr *pe;
const struct pe32_opt_hdr *pe32;
const struct pe32plus_opt_hdr *pe64;
const struct data_directory *ddir;
const struct data_dirent *dde;
const struct section_header *secs, *sec;
size_t cursor, datalen = pelen;
kenter("");
#define chkaddr(base, x, s) \
do \
{ \
if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \
return -ELIBBAD; \
} while (0)
// chkaddr(0, 0, sizeof(*mz));
if (sizeof(*mz) >= datalen)
return -ELIBBAD;
if (mz->magic != MZ_MAGIC)
return -ELIBBAD;
cursor = sizeof(*mz);
chkaddr(cursor, mz->peaddr, sizeof(*pe));
pe = (struct pe_hdr *)((unsigned char *)pebuf + mz->peaddr);
if (pe->magic != PE_MAGIC)
return -ELIBBAD;
cursor = mz->peaddr + sizeof(*pe);
// chkaddr(0, cursor, sizeof(pe32->magic));
if ((sizeof(pe32->magic)) >= datalen || cursor > datalen - sizeof(pe32->magic))
return -ELIBBAD;
pe32 = (struct pe32_opt_hdr *)((unsigned char *)pebuf + cursor);
pe64 = (struct pe32plus_opt_hdr *)((unsigned char *)pebuf + cursor);
switch (pe32->magic)
{
case PE_OPT_MAGIC_PE32:
// chkaddr(0, cursor, sizeof(*pe32));
if ((sizeof(*pe32)) >= datalen || cursor > datalen - sizeof(*pe32))
return -ELIBBAD;
ctx->image_checksum_offset = (unsigned)((unsigned char *)&pe32->csum - (unsigned char *)pebuf);
ctx->header_size = pe32->header_size;
cursor += sizeof(*pe32);
ctx->n_data_dirents = pe32->data_dirs;
break;
case PE_OPT_MAGIC_PE32PLUS:
// chkaddr(0, cursor, sizeof(*pe64));
if ((sizeof(*pe64)) >= datalen || cursor > datalen - sizeof(*pe64))
return -ELIBBAD;
ctx->image_checksum_offset = (unsigned)((unsigned char *)&pe64->csum - (unsigned char *)pebuf);
ctx->header_size = pe64->header_size;
cursor += sizeof(*pe64);
ctx->n_data_dirents = pe64->data_dirs;
break;
default:
pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic);
return -ELIBBAD;
}
pr_debug("checksum @ %x\n", ctx->image_checksum_offset);
pr_debug("header size = %x\n", ctx->header_size);
if (cursor >= ctx->header_size || ctx->header_size >= datalen)
return -ELIBBAD;
if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde))
return -ELIBBAD;
ddir = (struct data_directory *)((unsigned char *)pebuf + cursor);
cursor += sizeof(*dde) * ctx->n_data_dirents;
ctx->cert_dirent_offset = (unsigned)((unsigned char *)&ddir->certs - (unsigned char *)pebuf);
ctx->certs_size = ddir->certs.size;
if (!ddir->certs.virtual_address || !ddir->certs.size)
{
pr_debug("Unsigned PE binary\n");
return -EKEYREJECTED;
}
chkaddr(ctx->header_size, ddir->certs.virtual_address, ddir->certs.size);
ctx->sig_offset = ddir->certs.virtual_address;
ctx->sig_len = ddir->certs.size;
pr_debug(
"cert = %x @%x [%p]\n", ctx->sig_len, ctx->sig_offset, ctx->sig_len, (unsigned char *)pebuf + ctx->sig_offset);
ctx->n_sections = pe->sections;
if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec))
return -ELIBBAD;
ctx->secs = secs = (struct section_header *)((unsigned char *)pebuf + cursor);
return 0;
}
/*
* Check and strip the PE wrapper from around the signature and check that the
* remnant looks something like PKCS#7.
*/
int
pefile_strip_sig_wrapper(const void *pebuf, struct pefile_context *ctx)
{
struct win_certificate wrapper;
const unsigned char *pkcs7;
unsigned len;
unsigned char pkcs7_1;
if (ctx->sig_len < sizeof(wrapper))
{
pr_debug("Signature wrapper too short\n");
return -ELIBBAD;
}
memcpy(&wrapper, (void *)((unsigned char *)pebuf + ctx->sig_offset), sizeof(wrapper));
pr_debug("sig wrapper = { %x, %x, %x }\n", wrapper.length, wrapper.revision, wrapper.cert_type);
/* Both pesign and sbsign round up the length of certificate table
* (in optional header data directories) to 8 byte alignment.
*/
if (round_up(wrapper.length, 8) != ctx->sig_len)
{
pr_debug("Signature wrapper len wrong\n");
return -ELIBBAD;
}
if (wrapper.revision != WIN_CERT_REVISION_2_0)
{
pr_debug("Signature is not revision 2.0\n");
return -ENOTSUPP;
}
if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA)
{
pr_debug("Signature certificate type is not PKCS\n");
return -ENOTSUPP;
}
/* It looks like the pkcs signature length in wrapper->length and the
* size obtained from the data dir entries, which lists the total size
* of certificate table, are both aligned to an octaword boundary, so
* we may have to deal with some padding.
*/
ctx->sig_len = wrapper.length;
ctx->sig_offset += sizeof(wrapper);
ctx->sig_len -= sizeof(wrapper);
if (ctx->sig_len < 4)
{
pr_debug("Signature data missing\n");
return -EKEYREJECTED;
}
/* What's left should be a PKCS#7 cert */
pkcs7 = (unsigned char *)((unsigned char *)pebuf + ctx->sig_offset);
if (pkcs7[0] != (ASN1_CONS_BIT | ASN1_SEQ))
goto not_pkcs7;
pkcs7_1 = pkcs7[1];
if (pkcs7_1 >= 0 && pkcs7_1 <= 0x7f)
{
len = pkcs7[1] + 2;
goto check_len;
}
else if (pkcs7_1 == ASN1_INDEFINITE_LENGTH)
{
return 0;
}
else if (pkcs7_1 == 0x81)
{
len = pkcs7[2] + 3;
goto check_len;
}
else if (pkcs7_1 == 0x82)
{
len = ((pkcs7[2] << 8) | pkcs7[3]) + 4;
goto check_len;
}
else if (pkcs7_1 >= 0x83 && pkcs7_1 <= 0xff)
{
return -EMSGSIZE;
}
else
{
goto not_pkcs7;
}
/*switch (pkcs7[1]) {
case 0 ... 0x7f:
len = pkcs7[1] + 2;
goto check_len;
case ASN1_INDEFINITE_LENGTH:
return 0;
case 0x81:
len = pkcs7[2] + 3;
goto check_len;
case 0x82:
len = ((pkcs7[2] << 8) | pkcs7[3]) + 4;
goto check_len;
case 0x83 ... 0xff:
return -EMSGSIZE;
default:
goto not_pkcs7;
}*/
check_len:
if (len <= ctx->sig_len)
{
/* There may be padding */
ctx->sig_len = len;
return 0;
}
not_pkcs7:
pr_debug("Signature data not PKCS#7\n");
return -ELIBBAD;
}
/*
* Compare two sections for canonicalisation.
*/
// static int pefile_compare_shdrs(const void *a, const void *b)
//{
// const struct section_header *shdra = a;
// const struct section_header *shdrb = b;
// int rc;
//
// if (shdra->data_addr > shdrb->data_addr)
// return 1;
// if (shdrb->data_addr > shdra->data_addr)
// return -1;
//
// if (shdra->virtual_address > shdrb->virtual_address)
// return 1;
// if (shdrb->virtual_address > shdra->virtual_address)
// return -1;
//
// rc = strcmp(shdra->name, shdrb->name);
// if (rc != 0)
// return rc;
//
// if (shdra->virtual_size > shdrb->virtual_size)
// return 1;
// if (shdrb->virtual_size > shdra->virtual_size)
// return -1;
//
// if (shdra->raw_data_size > shdrb->raw_data_size)
// return 1;
// if (shdrb->raw_data_size > shdra->raw_data_size)
// return -1;
//
// return 0;
// }
/*
* Load the contents of the PE binary into the digest, leaving out the image
* checksum and the certificate data block.
*/
// static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen,
// struct pefile_context *ctx,
// struct shash_desc *desc)
//{
// unsigned *canon, tmp, loop, i, hashed_bytes;
// int ret;
//
// /* Digest the header and data directory, but leave out the image
// * checksum and the data dirent for the signature.
// */
// ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset);
// if (ret < 0)
// return ret;
//
// tmp = ctx->image_checksum_offset + sizeof(uint32_t);
// ret = crypto_shash_update(desc, pebuf + tmp,
// ctx->cert_dirent_offset - tmp);
// if (ret < 0)
// return ret;
//
// tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent);
// ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp);
// if (ret < 0)
// return ret;
//
// canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL);
// if (!canon)
// return -ENOMEM;
//
// /* We have to canonicalise the section table, so we perform an
// * insertion sort.
// */
// canon[0] = 0;
// for (loop = 1; loop < ctx->n_sections; loop++) {
// for (i = 0; i < loop; i++) {
// if (pefile_compare_shdrs(&ctx->secs[canon[i]],
// &ctx->secs[loop]) > 0) {
// memmove(&canon[i + 1], &canon[i],
// (loop - i) * sizeof(canon[0]));
// break;
// }
// }
// canon[i] = loop;
// }
//
// hashed_bytes = ctx->header_size;
// for (loop = 0; loop < ctx->n_sections; loop++) {
// i = canon[loop];
// if (ctx->secs[i].raw_data_size == 0)
// continue;
// ret = crypto_shash_update(desc,
// pebuf + ctx->secs[i].data_addr,
// ctx->secs[i].raw_data_size);
// if (ret < 0) {
// kfree(canon);
// return ret;
// }
// hashed_bytes += ctx->secs[i].raw_data_size;
// }
// kfree(canon);
//
// if (pelen > hashed_bytes) {
// tmp = hashed_bytes + ctx->certs_size;
// ret = crypto_shash_update(desc,
// pebuf + hashed_bytes,
// pelen - tmp);
// if (ret < 0)
// return ret;
// }
//
// return 0;
// }
/*
* Digest the contents of the PE binary, leaving out the image checksum and the
* certificate data block.
*/
// static int pefile_digest_pe(const void *pebuf, unsigned int pelen,
// struct pefile_context *ctx)
//{
// struct crypto_shash *tfm;
// struct shash_desc *desc;
// size_t digest_size, desc_size;
// void *digest;
// int ret;
//
// kenter(",%s", ctx->digest_algo);
//
// /* Allocate the hashing algorithm we're going to need and find out how
// * big the hash operational data will be.
// */
// tfm = crypto_alloc_shash(ctx->digest_algo, 0, 0);
// if (IS_ERR(tfm))
// return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
//
// desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
// digest_size = crypto_shash_digestsize(tfm);
//
// if (digest_size != ctx->digest_len) {
// pr_debug("Digest size mismatch (%zx != %x)\n",
// digest_size, ctx->digest_len);
// ret = -EBADMSG;
// goto error_no_desc;
// }
// pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size);
//
// ret = -ENOMEM;
// desc = kzalloc(desc_size + digest_size, GFP_KERNEL);
// if (!desc)
// goto error_no_desc;
//
// desc->tfm = tfm;
// ret = crypto_shash_init(desc);
// if (ret < 0)
// goto error;
//
// ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc);
// if (ret < 0)
// goto error;
//
// digest = (void *)desc + desc_size;
// ret = crypto_shash_final(desc, digest);
// if (ret < 0)
// goto error;
//
// pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest);
//
// /* Check that the PE file digest matches that in the MSCODE part of the
// * PKCS#7 certificate.
// */
// if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) {
// pr_debug("Digest mismatch\n");
// ret = -EKEYREJECTED;
// } else {
// pr_debug("The digests match!\n");
// }
//
// error:
// kzfree(desc);
// error_no_desc:
// crypto_free_shash(tfm);
// kleave(" = %d", ret);
// return ret;
// }
/**
* verify_pefile_signature - Verify the signature on a PE binary image
* @pebuf: Buffer containing the PE binary image
* @pelen: Length of the binary image
* @trust_keys: Signing certificate(s) to use as starting points
* @usage: The use to which the key is being put.
*
* Validate that the certificate chain inside the PKCS#7 message inside the PE
* binary image intersects keys we already know and trust.
*
* Returns, in order of descending priority:
*
* (*) -ELIBBAD if the image cannot be parsed, or:
*
* (*) -EKEYREJECTED if a signature failed to match for which we have a valid
* key, or:
*
* (*) 0 if at least one signature chain intersects with the keys in the trust
* keyring, or:
*
* (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
* chain.
*
* (*) -ENOKEY if we couldn't find a match for any of the signature chains in
* the message.
*
* May also return -ENOMEM.
*/
int
verify_pefile_signature(const void *pebuf, unsigned pelen, struct key *trusted_keys, enum key_being_used_for usage)
{
struct pefile_context ctx;
int ret;
kenter("");
memset(&ctx, 0, sizeof(ctx));
ret = pefile_parse_binary(pebuf, pelen, &ctx);
if (ret < 0)
return ret;
ret = pefile_strip_sig_wrapper(pebuf, &ctx);
if (ret < 0)
return ret;
// we dont need this (gmh said)
/*ret = verify_pkcs7_signature(NULL, 0,
pebuf + ctx.sig_offset, ctx.sig_len,
trusted_keys, usage,
mscode_parse, &ctx);
if (ret < 0)
goto error;
pr_debug("Digest: %u [%*ph]\n",
ctx.digest_len, ctx.digest_len, ctx.digest);
*/
/* Generate the digest and check against the PKCS7 certificate
* contents.
*/
// we dont need this (gmh said)
// ret = pefile_digest_pe(pebuf, pelen, &ctx);
// error:
if (ctx.digest)
{
kzfree(ctx.digest);
}
return ret;
}