You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1214 lines
32 KiB

// SPDX-License-Identifier: GPL-2.0-or-later
/* X.509 certificate parser
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#include <stdint.h>
#include "../rewrite/Lib.SoulExtraction.rewrite.h"
#include "oid_registry.h"
#include "x509_parser.h"
#include "errno-base.h"
#include "asn1_ber_bytecode.h"
#include "asn1.h"
#include "asn1_decoder.h"
#include "errno.h"
#include "x509_parser.h"
#include "config.h"
// shoudong tianjia...ca
typedef unsigned char u8;
typedef unsigned short u16;
//
// func decl
//
/*
* Extract the data for the public key algorithm
*/
int
x509_extract_key_data(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Note some of the name segments from which we'll fabricate a name.
*/
int
x509_extract_name_segment(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Note an OID when we find one for later processing when we know how
* to interpret it.
*/
int
x509_note_OID(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
int
x509_note_issuer(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
int
x509_note_not_after(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
int
x509_note_not_before(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Record the public key algorithm
*/
int
x509_note_pkey_algo(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Note the certificate serial number
*/
int
x509_note_serial(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Note the whereabouts and type of the signature.
*/
int
x509_note_signature(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
int
x509_note_subject(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
int
x509_note_tbs_certificate(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Process certificate extensions that are used to qualify the certificate.
*/
int
x509_process_extension(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Note a key identifier-based AuthorityKeyIdentifier
*/
int
x509_akid_note_kid(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
int
x509_akid_note_name(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
/*
* Note a serial number in an AuthorityKeyIdentifier
*/
int
x509_akid_note_serial(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen);
//
// macro
//
#define GFP_ATOMIC /*(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)*/ 1
#define GFP_KERNEL /*(__GFP_RECLAIM | __GFP_IO | __GFP_FS)*/ 2
#define GFP_KERNEL_ACCOUNT /*(GFP_KERNEL | __GFP_ACCOUNT)*/ 3
#define GFP_NOWAIT /*(__GFP_KSWAPD_RECLAIM)*/ 4
#define GFP_NOIO /*(__GFP_RECLAIM)*/ 5
#define GFP_NOFS /*(__GFP_RECLAIM | __GFP_IO)*/ 6
#define GFP_USER /*(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)*/ 7
#define GFP_DMA /*__GFP_DMA*/ 8
#define GFP_DMA32 /*__GFP_DMA32*/ 9
#define GFP_HIGHUSER /*(GFP_USER | __GFP_HIGHMEM)*/ 10
#define GFP_HIGHUSER_MOVABLE /*(GFP_HIGHUSER | __GFP_MOVABLE)*/ 11
#define GFP_TRANSHUGE_LIGHT 12
#define GFP_TRANSHUGE /*(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)*/ 13
#define ERR_PTR(err) ((void *)((LONG_PTR)(err)))
#define PTR_ERR(ptr) ((LONG_PTR)(ptr))
#define IS_ERR(ptr) ((ULONG_PTR)(ptr) > (ULONG_PTR)(-1000))
//
// enum
//
enum x509_actions
{
ACT_x509_extract_key_data = 0,
ACT_x509_extract_name_segment = 1,
ACT_x509_note_OID = 2,
ACT_x509_note_issuer = 3,
ACT_x509_note_not_after = 4,
ACT_x509_note_not_before = 5,
ACT_x509_note_pkey_algo = 6,
ACT_x509_note_serial = 7,
ACT_x509_note_signature = 8,
ACT_x509_note_subject = 9,
ACT_x509_note_tbs_certificate = 10,
ACT_x509_process_extension = 11,
NR__x509_actions = 12
};
enum x509_akid_actions
{
ACT_x509_akid_note_kid1 = 0,
ACT_x509_akid_note_name1 = 1,
ACT_x509_akid_note_serial1 = 2,
ACT_x509_extract_name_segment1 = 3,
ACT_x509_note_OID1 = 4,
NR__x509_akid_actions1 = 5
};
//
// global
//
static const unsigned char x509_machine[] = {
// Certificate
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
// TBSCertificate
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
ASN1_OP_MATCH_JUMP_OR_SKIP, // version
_tagn(CONT, CONS, 0),
_jump_target(70),
// CertificateSerialNumber
ASN1_OP_MATCH,
_tag(UNIV, PRIM, INT),
ASN1_OP_ACT,
_action(ACT_x509_note_serial),
// AlgorithmIdentifier
ASN1_OP_MATCH_JUMP,
_tag(UNIV, CONS, SEQ),
_jump_target(74), // --> AlgorithmIdentifier
ASN1_OP_ACT,
_action(ACT_x509_note_pkey_algo),
// Name
ASN1_OP_MATCH_JUMP,
_tag(UNIV, CONS, SEQ),
_jump_target(80), // --> Name
ASN1_OP_ACT,
_action(ACT_x509_note_issuer),
// Validity
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
// Time
ASN1_OP_MATCH_OR_SKIP, // utcTime
_tag(UNIV, PRIM, UNITIM),
ASN1_OP_COND_MATCH_OR_SKIP, // generalTime
_tag(UNIV, PRIM, GENTIM),
ASN1_OP_COND_FAIL,
ASN1_OP_ACT,
_action(ACT_x509_note_not_before),
// Time
ASN1_OP_MATCH_OR_SKIP, // utcTime
_tag(UNIV, PRIM, UNITIM),
ASN1_OP_COND_MATCH_OR_SKIP, // generalTime
_tag(UNIV, PRIM, GENTIM),
ASN1_OP_COND_FAIL,
ASN1_OP_ACT,
_action(ACT_x509_note_not_after),
ASN1_OP_END_SEQ,
// Name
ASN1_OP_MATCH_JUMP,
_tag(UNIV, CONS, SEQ),
_jump_target(80), // --> Name
ASN1_OP_ACT,
_action(ACT_x509_note_subject),
// SubjectPublicKeyInfo
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
// AlgorithmIdentifier
ASN1_OP_MATCH_JUMP,
_tag(UNIV, CONS, SEQ),
_jump_target(74), // --> AlgorithmIdentifier
ASN1_OP_MATCH_ACT, // subjectPublicKey
_tag(UNIV, PRIM, BTS),
_action(ACT_x509_extract_key_data),
ASN1_OP_END_SEQ,
+ // UniqueIdentifier
ASN1_OP_MATCH_OR_SKIP, // issuerUniqueID
_tagn(CONT, PRIM, 1),
// UniqueIdentifier
ASN1_OP_MATCH_OR_SKIP, // subjectUniqueID
_tagn(CONT, PRIM, 2),
ASN1_OP_MATCH_JUMP_OR_SKIP, // extensions
_tagn(CONT, CONS, 3),
_jump_target(95),
ASN1_OP_END_SEQ,
ASN1_OP_ACT,
_action(ACT_x509_note_tbs_certificate),
// AlgorithmIdentifier
ASN1_OP_MATCH_JUMP,
_tag(UNIV, CONS, SEQ),
_jump_target(74), // --> AlgorithmIdentifier
ASN1_OP_MATCH_ACT, // signature
_tag(UNIV, PRIM, BTS),
_action(ACT_x509_note_signature),
ASN1_OP_END_SEQ,
ASN1_OP_COMPLETE,
// Version
ASN1_OP_MATCH,
_tag(UNIV, PRIM, INT),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH_ACT, // algorithm
_tag(UNIV, PRIM, OID),
_action(ACT_x509_note_OID),
ASN1_OP_MATCH_ANY_OR_SKIP, // parameters
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
// RelativeDistinguishedName
ASN1_OP_MATCH,
_tag(UNIV, CONS, SET),
// AttributeValueAssertion
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
ASN1_OP_MATCH_ACT, // attributeType
_tag(UNIV, PRIM, OID),
_action(ACT_x509_note_OID),
ASN1_OP_MATCH_ANY_ACT, // attributeValue
_action(ACT_x509_extract_name_segment),
ASN1_OP_END_SEQ,
ASN1_OP_END_SET_OF,
_jump_target(82),
ASN1_OP_END_SEQ_OF,
_jump_target(80),
ASN1_OP_RETURN,
// Extensions
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
// Extension
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
ASN1_OP_MATCH_ACT, // extnid
_tag(UNIV, PRIM, OID),
_action(ACT_x509_note_OID),
ASN1_OP_MATCH_OR_SKIP, // critical
_tag(UNIV, PRIM, BOOL),
ASN1_OP_MATCH_ACT, // extnValue
_tag(UNIV, PRIM, OTS),
_action(ACT_x509_process_extension),
ASN1_OP_END_SEQ,
ASN1_OP_END_SEQ_OF,
_jump_target(97),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
};
static const asn1_action_t x509_action_table[NR__x509_actions] = {
x509_extract_key_data,
x509_extract_name_segment,
x509_note_OID,
x509_note_issuer,
x509_note_not_after,
x509_note_not_before,
x509_note_pkey_algo,
x509_note_serial,
x509_note_signature,
x509_note_subject,
x509_note_tbs_certificate,
x509_process_extension,
};
struct asn1_decoder x509_decoder = {
x509_machine,
sizeof(x509_machine),
x509_action_table,
};
static const asn1_action_t x509_akid_action_table[NR__x509_akid_actions1] = {
x509_akid_note_kid,
x509_akid_note_name,
x509_akid_note_serial,
x509_extract_name_segment,
x509_note_OID,
};
static const UCHAR x509_akid_machine[] = {
// AuthorityKeyIdentifier
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
// KeyIdentifier
ASN1_OP_MATCH_ACT_OR_SKIP, // keyIdentifier
_tagn(CONT, PRIM, 0),
_action(ACT_x509_akid_note_kid1),
// GeneralNames
ASN1_OP_MATCH_JUMP_OR_SKIP, // authorityCertIssuer
_tagn(CONT, CONS, 1),
_jump_target(13), // --> GeneralNames
// CertificateSerialNumber
ASN1_OP_MATCH_ACT_OR_SKIP, // authorityCertSerialNumber
_tagn(CONT, PRIM, 2),
_action(ACT_x509_akid_note_serial1),
ASN1_OP_END_SEQ,
ASN1_OP_COMPLETE,
// GeneralName
ASN1_OP_MATCH_JUMP_OR_SKIP, // otherName
_tagn(CONT, CONS, 0),
_jump_target(44),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // rfc822Name
_tagn(CONT, CONS, 1),
_jump_target(47),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // dNSName
_tagn(CONT, CONS, 2),
_jump_target(51),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // x400Address
_tagn(CONT, CONS, 3),
_jump_target(55),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // directoryName
_tagn(CONT, CONS, 4),
_jump_target(58),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // ediPartyName
_tagn(CONT, CONS, 5),
_jump_target(78),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // uniformResourceIdentifier
_tagn(CONT, CONS, 6),
_jump_target(81),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // iPAddress
_tagn(CONT, CONS, 7),
_jump_target(85),
ASN1_OP_COND_MATCH_JUMP_OR_SKIP, // registeredID
_tagn(CONT, CONS, 8),
_jump_target(89),
ASN1_OP_COND_FAIL,
ASN1_OP_END_SEQ_OF,
_jump_target(13),
ASN1_OP_RETURN,
ASN1_OP_MATCH_ANY, // otherName
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH, // rfc822Name
_tag(UNIV, PRIM, IA5STR),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH, // dNSName
_tag(UNIV, PRIM, IA5STR),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH_ANY, // x400Address
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
// Name
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
// RelativeDistinguishedName
ASN1_OP_MATCH,
_tag(UNIV, CONS, SET),
// AttributeValueAssertion
ASN1_OP_MATCH,
_tag(UNIV, CONS, SEQ),
ASN1_OP_MATCH_ACT, // attributeType
_tag(UNIV, PRIM, OID),
_action(ACT_x509_note_OID),
ASN1_OP_MATCH_ANY_ACT, // attributeValue
_action(ACT_x509_extract_name_segment),
ASN1_OP_END_SEQ,
ASN1_OP_END_SET_OF,
_jump_target(62),
ASN1_OP_END_SEQ_OF,
_jump_target(60),
ASN1_OP_ACT,
_action(ACT_x509_akid_note_name1),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH_ANY, // ediPartyName
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH, // uniformResourceIdentifier
_tag(UNIV, PRIM, IA5STR),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH, // iPAddress
_tag(UNIV, PRIM, OTS),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
ASN1_OP_MATCH, // registeredID
_tag(UNIV, PRIM, OID),
ASN1_OP_END_SEQ,
ASN1_OP_RETURN,
};
struct asn1_decoder x509_akid_decoder = {
x509_akid_machine,
sizeof(x509_akid_machine),
x509_akid_action_table,
};
/*
* Free an X.509 certificate
*/
void
x509_free_certificate(struct x509_certificate *cert)
{
if (cert)
{
public_key_free(cert->pub);
public_key_signature_free(cert->sig);
kfree(cert->issuer);
kfree(cert->subject);
kfree(cert->id);
kfree(cert->skid);
kfree(cert);
}
}
// EXPORT_SYMBOL_GPL(x509_free_certificate);
/*
* Parse an X.509 certificate
*/
struct x509_certificate *
x509_cert_parse(const void *data, size_t datalen)
{
struct x509_certificate *cert;
struct x509_parse_context *ctx;
struct asymmetric_key_id *kid;
/*long*/ LONG_PTR ret;
ret = -ENOMEM;
cert = kzalloc(sizeof(struct x509_certificate), GFP_KERNEL);
if (!cert)
goto error_no_cert;
cert->pub = kzalloc(sizeof(struct public_key), GFP_KERNEL);
if (!cert->pub)
goto error_no_ctx;
cert->sig = kzalloc(sizeof(struct public_key_signature), GFP_KERNEL);
if (!cert->sig)
goto error_no_ctx;
ctx = kzalloc(sizeof(struct x509_parse_context), GFP_KERNEL);
if (!ctx)
goto error_no_ctx;
ctx->cert = cert;
/*ctx->data = (unsigned long)data;*/
ctx->data = (void *)data;
/* Attempt to decode the certificate */
ret = asn1_ber_decoder(&x509_decoder, ctx, data, datalen);
if (ret < 0)
goto error_decode;
/* Decode the AuthorityKeyIdentifier */
if (ctx->raw_akid)
{
cert->raw_akid_size = ctx->raw_akid_size;
pr_devel("AKID: raw_akid_size=%u raw_akid=%p\n", ctx->raw_akid_size, ctx->raw_akid);
ret = asn1_ber_decoder(&x509_akid_decoder, ctx, ctx->raw_akid, ctx->raw_akid_size);
if (ret < 0)
{
pr_warn("Couldn't decode AuthKeyIdentifier\n");
goto error_decode;
}
}
ret = -ENOMEM;
cert->pub->key = kmemdup(ctx->key, ctx->key_size, GFP_KERNEL);
if (!cert->pub->key)
goto error_decode;
cert->pub->keylen = ctx->key_size;
/*cert->pub->params = (const void *)kmemdup(ctx->params, ctx->params_size, GFP_KERNEL);
if (!cert->pub->params)
goto error_decode;
cert->pub->paramlen = ctx->params_size;
cert->pub->algo = ctx->key_algo;*/
/* Grab the signature bits */
/*ret = x509_get_sig_params(cert);
if (ret < 0)
goto error_decode;*/
/* Generate cert issuer + serial number key ID */
kid = asymmetric_key_generate_id(cert->raw_serial, cert->raw_serial_size, cert->raw_issuer, cert->raw_issuer_size);
if (IS_ERR(kid))
{
ret = PTR_ERR(kid);
goto error_decode;
}
cert->id = kid;
/* Detect self-signed certificates */
/*ret = x509_check_for_self_signed(cert);
if (ret < 0)
goto error_decode;*/
kfree(ctx);
return cert;
error_decode:
kfree(ctx);
error_no_ctx:
x509_free_certificate(cert);
error_no_cert:
return ERR_PTR(ret);
}
// EXPORT_SYMBOL_GPL(x509_cert_parse);
/*
* Note an OID when we find one for later processing when we know how
* to interpret it.
*/
int
x509_note_OID(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->last_oid = look_up_OID(value, vlen);
if (ctx->last_oid == OID__NR)
{
char buffer[50];
sprint_oid(value, vlen, buffer, sizeof(buffer));
pr_debug("Unknown OID: [%lu] %s\n", (ULONG_PTR)value - (ULONG_PTR)ctx->data, buffer);
}
return 0;
}
/*
* Save the position of the TBS data so that we can check the signature over it
* later.
*/
int
x509_note_tbs_certificate(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
pr_debug(
"x509_note_tbs_certificate(,%u,%02x,%ld,%u)!\n", hdrlen, tag, (ULONG_PTR)value - (ULONG_PTR)ctx->data, vlen);
ctx->cert->tbs = (const void *)((unsigned char *)value - hdrlen);
ctx->cert->tbs_size = vlen + hdrlen;
return 0;
}
/*
* Record the public key algorithm
*/
int
x509_note_pkey_algo(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
char tmp1[] = {// md4
'm',
'd',
'4',
0};
char tmp2[] = {// rsa
'r',
's',
'a',
0};
char tmp3[] = {// sha1
's',
'h',
'a',
'1',
0};
char tmp4[] = {// sha256
's',
'h',
'a',
'2',
'5',
'6',
0};
char tmp5[] = {// sha384
's',
'h',
'a',
'3',
'8',
'4',
0};
char tmp6[] = {// sha512
's',
'h',
'a',
'5',
'1',
'2',
0};
char tmp7[] = {// sha224
's',
'h',
'a',
'2',
'2',
'4',
0};
struct x509_parse_context *ctx = context;
pr_debug("PubKey Algo: %u\n", ctx->last_oid);
switch (ctx->last_oid)
{
case OID_md2WithRSAEncryption:
case OID_md3WithRSAEncryption:
default:
return -ENOPKG; /* Unsupported combination */
case OID_md4WithRSAEncryption:
ctx->cert->sig->hash_algo = tmp1;
ctx->cert->sig->pkey_algo = "sar";
break;
case OID_sha1WithRSAEncryption:
ctx->cert->sig->hash_algo = tmp3;
ctx->cert->sig->pkey_algo = "sar";
break;
case OID_sha256WithRSAEncryption:
ctx->cert->sig->hash_algo = tmp4;
ctx->cert->sig->pkey_algo = "sar";
break;
case OID_sha384WithRSAEncryption:
ctx->cert->sig->hash_algo = tmp5;
ctx->cert->sig->pkey_algo = "sar";
break;
case OID_sha512WithRSAEncryption:
ctx->cert->sig->hash_algo = tmp6;
ctx->cert->sig->pkey_algo = "sar";
break;
case OID_sha224WithRSAEncryption:
ctx->cert->sig->hash_algo = tmp7;
ctx->cert->sig->pkey_algo = "sar";
break;
}
ctx->algo_oid = ctx->last_oid;
return 0;
}
/*
* Note the whereabouts and type of the signature.
*/
int
x509_note_signature(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
// char tmp1[] = {//rsa
// 'r','s','a',0
// };
char tmp1[] = {// rsa
's',
'a',
'r',
0};
struct x509_parse_context *ctx = context;
pr_debug("Signature type: %u size %zu\n", ctx->last_oid, vlen);
if (ctx->last_oid != ctx->algo_oid)
{
pr_warn("Got cert with pkey (%u) and sig (%u) algorithm OIDs\n", ctx->algo_oid, ctx->last_oid);
return -EINVAL;
}
if (strcmp(ctx->cert->sig->pkey_algo, tmp1) == 0)
{
/* Discard the BIT STRING metadata */
if (vlen < 1 || *(const u8 *)value != 0)
return -EBADMSG;
value = (void *)((unsigned char *)value + 1);
vlen--;
}
ctx->cert->raw_sig = value;
ctx->cert->raw_sig_size = vlen;
return 0;
}
/*
* Note the certificate serial number
*/
int
x509_note_serial(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->cert->raw_serial = value;
ctx->cert->raw_serial_size = vlen;
return 0;
}
/*
* Note some of the name segments from which we'll fabricate a name.
*/
int
x509_extract_name_segment(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
switch (ctx->last_oid)
{
case OID_commonName:
ctx->cn_size = vlen;
ctx->cn_offset = (u16)((ULONG_PTR)value - (ULONG_PTR)ctx->data);
break;
case OID_organizationName:
ctx->o_size = vlen;
ctx->o_offset = (u16)((ULONG_PTR)value - (ULONG_PTR)ctx->data);
break;
case OID_email_address:
ctx->email_size = vlen;
ctx->email_offset = (u16)((ULONG_PTR)value - (ULONG_PTR)ctx->data);
break;
default:
break;
}
return 0;
}
/*
* Fabricate and save the issuer and subject names
*/
static int
x509_fabricate_name(struct x509_parse_context *ctx, size_t hdrlen, unsigned char tag, char **_name, size_t vlen)
{
const void *name, *data = (const void *)ctx->data;
size_t namesize;
char *buffer;
if (*_name)
return -EINVAL;
/* Empty name string if no material */
if (!ctx->cn_size && !ctx->o_size && !ctx->email_size)
{
buffer = kmalloc(1, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
buffer[0] = 0;
goto done;
}
if (ctx->cn_size && ctx->o_size)
{
/* Consider combining O and CN, but use only the CN if it is
* prefixed by the O, or a significant portion thereof.
*/
namesize = ctx->cn_size;
name = (void *)((unsigned char *)data + ctx->cn_offset);
if (ctx->cn_size >= ctx->o_size && memcmp(
(void *)((unsigned char *)data + ctx->cn_offset),
(void *)((unsigned char *)data + ctx->o_offset),
ctx->o_size) == 0)
goto single_component;
if (ctx->cn_size >= 7 && ctx->o_size >= 7 &&
memcmp(
(void *)((unsigned char *)data + ctx->cn_offset), (void *)((unsigned char *)data + ctx->o_offset), 7) ==
0)
goto single_component;
buffer = kmalloc(ctx->o_size + 2 + ctx->cn_size + 1, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
memcpy(buffer, (void *)((unsigned char *)data + ctx->o_offset), ctx->o_size);
buffer[ctx->o_size + 0] = ':';
buffer[ctx->o_size + 1] = ' ';
memcpy(buffer + ctx->o_size + 2, (void *)((unsigned char *)data + ctx->cn_offset), ctx->cn_size);
buffer[ctx->o_size + 2 + ctx->cn_size] = 0;
goto done;
}
else if (ctx->cn_size)
{
namesize = ctx->cn_size;
name = (void *)((unsigned char *)data + ctx->cn_offset);
}
else if (ctx->o_size)
{
namesize = ctx->o_size;
name = (void *)((unsigned char *)data + ctx->o_offset);
}
else
{
namesize = ctx->email_size;
name = (void *)((unsigned char *)data + ctx->email_offset);
}
single_component:
buffer = kmalloc(namesize + 1, GFP_KERNEL);
if (!buffer)
return -ENOMEM;
memcpy(buffer, name, namesize);
buffer[namesize] = 0;
done:
*_name = buffer;
pr_debug("x509_fabricate_name:name=%s,tag=%d\n", buffer, tag);
ctx->cn_size = 0;
ctx->o_size = 0;
ctx->email_size = 0;
return 0;
}
int
x509_note_issuer(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->cert->raw_issuer = value;
ctx->cert->raw_issuer_size = vlen;
ctx->cert->issuer_tag = tag;
pr_debug("x509_note_issuer:tag=%d,raw_issuer=%p\n", tag, value);
return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->issuer, vlen);
}
int
x509_note_subject(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
ctx->cert->raw_subject = value;
ctx->cert->raw_subject_size = vlen;
ctx->cert->subject_tag = tag;
pr_debug("x509_note_subject:tag=%d,raw_subject=%p\n", tag, value);
return x509_fabricate_name(ctx, hdrlen, tag, &ctx->cert->subject, vlen);
}
/*
* Extract the parameters for the public key
*/
// int x509_note_params(void *context, size_t hdrlen,
// unsigned char tag,
// const void *value, size_t vlen)
//{
// struct x509_parse_context *ctx = context;
//
// /*
// * AlgorithmIdentifier is used three times in the x509, we should skip
// * first and ignore third, using second one which is after subject and
// * before subjectPublicKey.
// */
// if (!ctx->cert->raw_subject || ctx->key)
// return 0;
// ctx->params = (void*)((unsigned char*)value - hdrlen);
// ctx->params_size = vlen + hdrlen;
// return 0;
// }
/*
* Extract the data for the public key algorithm
*/
int
x509_extract_key_data(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
char tmp1[] = {'s', 'a', 'r', 0};
struct x509_parse_context *ctx = (struct x509_parse_context *)context;
if (ctx->last_oid != OID_rsaEncryption)
return -EBADMSG;
ctx->cert->pub->pkey_algo = tmp1;
/* Discard the BIT STRING metadata */
if (vlen < 1 || *(const UCHAR *)value != 0)
return -EBADMSG;
ctx->key = (void *)((unsigned char *)value + 1);
ctx->key_size = vlen - 1;
return 0;
}
/* The keyIdentifier in AuthorityKeyIdentifier SEQUENCE is tag(CONT,PRIM,0) */
#define SEQ_TAG_KEYID (ASN1_CONT << 6)
/*
* Process certificate extensions that are used to qualify the certificate.
*/
int
x509_process_extension(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
struct asymmetric_key_id *kid;
const unsigned char *v = value;
pr_debug("Extension: %u\n", ctx->last_oid);
if (ctx->last_oid == OID_subjectKeyIdentifier)
{
/* Get hold of the key fingerprint */
if (ctx->cert->skid || vlen < 3)
return -EBADMSG;
if (v[0] != ASN1_OTS || v[1] != vlen - 2)
return -EBADMSG;
v += 2;
vlen -= 2;
ctx->cert->raw_skid_size = vlen;
ctx->cert->raw_skid = v;
pr_debug("subjkeyid raw_skid_size=%d,raw_skid=%p\n", vlen, v);
kid = asymmetric_key_generate_id(v, vlen, "", 0);
if (IS_ERR(PtrToUlong(kid)))
return PTR_ERR(PtrToUlong(kid));
ctx->cert->skid = kid;
pr_debug("subjkeyid %p\n", kid->len, kid->data);
return 0;
}
if (ctx->last_oid == OID_authorityKeyIdentifier)
{
/* Get hold of the CA key fingerprint */
ctx->raw_akid = v;
ctx->raw_akid_size = vlen;
return 0;
}
return 0;
}
/**
* x509_decode_time - Decode an X.509 time ASN.1 object
* @_t: The time to fill in
* @hdrlen: The length of the object header
* @tag: The object tag
* @value: The object value
* @vlen: The size of the object value
*
* Decode an ASN.1 universal time or generalised time field into a struct the
* kernel can handle and check it for validity. The time is decoded thus:
*
* [RFC5280 <20><>4.1.2.5]
* CAs conforming to this profile MUST always encode certificate validity
* dates through the year 2049 as UTCTime; certificate validity dates in
* 2050 or later MUST be encoded as GeneralizedTime. Conforming
* applications MUST be able to process validity dates that are encoded in
* either UTCTime or GeneralizedTime.
*/
int
x509_decode_time(
struct x509_certificate *cert,
unsigned char isfrom,
unsigned char issign,
/*time64_t*/ long long *_t,
size_t hdrlen,
unsigned char tag,
const unsigned char *value,
size_t vlen)
{
static const unsigned char month_lengths[] = {31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
unsigned char *p = (unsigned char *)value;
unsigned year, mon, day, hour, min, sec, mon_len;
//#define dec2bin(X) ({ unsigned char y = (X) - '0'; if (y > 9) goto invalid_time;})
//#define DD2bin(P) ({ unsigned x = dec2bin(P[0]) * 10 + dec2bin(P[1]); P += 2;})
if (tag == ASN1_UNITIM)
{
/* UTCTime: YYMMDDHHMMSSZ */
if (vlen != 13)
goto unsupported_time;
year = DD2bin(&p);
if (year == -1)
goto invalid_time;
if (year >= 50)
year += 1900;
else
year += 2000;
}
else if (tag == ASN1_GENTIM)
{
/* GenTime: YYYYMMDDHHMMSSZ */
if (vlen != 15)
goto unsupported_time;
year = DD2bin(&p) * 100 + DD2bin(&p);
if (year == -1)
goto invalid_time;
if (year >= 1950 && year <= 2049)
goto invalid_time;
}
else
{
goto unsupported_time;
}
mon = DD2bin(&p);
if (mon == -1)
goto invalid_time;
day = DD2bin(&p);
if (day == -1)
goto invalid_time;
hour = DD2bin(&p);
if (hour == -1)
goto invalid_time;
min = DD2bin(&p);
if (min == -1)
goto invalid_time;
sec = DD2bin(&p);
if (sec == -1)
goto invalid_time;
if (*p != 'Z')
goto unsupported_time;
if (year < 1970 || mon < 1 || mon > 12)
goto invalid_time;
mon_len = month_lengths[mon - 1];
if (mon == 2)
{
if (year % 4 == 0)
{
mon_len = 29;
if (year % 100 == 0)
{
mon_len = 28;
if (year % 400 == 0)
mon_len = 29;
}
}
}
if (day < 1 || day > mon_len || hour > 24 || /* ISO 8601 permits 24:00:00 as midnight tomorrow */
min > 59 || sec > 60) /* ISO 8601 permits leap seconds [X.680 46.3] */
goto invalid_time;
*_t = mktime64(year, mon, day, hour, min, sec);
if (cert)
{
if (isfrom)
{
cert->valid_from_year = year;
cert->valid_from_mon = mon;
cert->valid_from_day = day;
cert->valid_from_hour = hour;
cert->valid_from_min = min;
}
else
{
cert->valid_to_year = year;
cert->valid_to_mon = mon;
cert->valid_to_day = day;
cert->valid_to_hour = hour;
cert->valid_to_min = min;
}
if (issign)
{
cert->sign_time = *_t;
cert->sign_time_year = year;
cert->sign_time_mon = mon;
cert->sign_time_day = day;
cert->sign_time_hour = hour;
cert->sign_time_min = min;
}
}
pr_debug("x509_decode_time:yead=%d,mon=%d,day=%d,hour=%d,min=%d,sec=%d\n", year, mon, day, hour, min, sec);
return 0;
unsupported_time:
pr_debug("Got unsupported time [tag %02x]: '%p'\n", tag, (int)vlen, value);
return -EBADMSG;
invalid_time:
pr_debug("Got invalid time [tag %02x]: '%p'\n", tag, (int)vlen, value);
return -EBADMSG;
}
// EXPORT_SYMBOL_GPL(x509_decode_time);
int
x509_note_not_before(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
return x509_decode_time(ctx->cert, TRUE, FALSE, &ctx->cert->valid_from, hdrlen, tag, value, vlen);
}
int
x509_note_not_after(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
return x509_decode_time(ctx->cert, FALSE, FALSE, &ctx->cert->valid_to, hdrlen, tag, value, vlen);
}
/*
* Note a key identifier-based AuthorityKeyIdentifier
*/
int
x509_akid_note_kid(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
struct asymmetric_key_id *kid;
pr_debug("AKID: vlen:%d,keyid: %p\n", (int)vlen, value);
if (ctx->cert->sig->auth_ids[1])
return 0;
kid = asymmetric_key_generate_id(value, vlen, "", 0);
if (IS_ERR(PtrToUlong(kid)))
return PTR_ERR(PtrToUlong(kid));
pr_debug("len=%d,authkeyid %p\n", kid->len, kid->data);
ctx->cert->sig->auth_ids[1] = kid;
return 0;
}
/*
* Note a directoryName in an AuthorityKeyIdentifier
*/
int
x509_akid_note_name(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
pr_debug("AKID: name: %p\n", (int)vlen, value);
ctx->akid_raw_issuer = value;
ctx->akid_raw_issuer_size = vlen;
return 0;
}
/*
* Note a serial number in an AuthorityKeyIdentifier
*/
int
x509_akid_note_serial(void *context, size_t hdrlen, unsigned char tag, const void *value, size_t vlen)
{
struct x509_parse_context *ctx = context;
struct asymmetric_key_id *kid;
pr_debug("AKID: vlen=%d,serial: %p\n", (int)vlen, value);
if (!ctx->akid_raw_issuer || ctx->cert->sig->auth_ids[0])
return 0;
kid = asymmetric_key_generate_id(value, vlen, ctx->akid_raw_issuer, ctx->akid_raw_issuer_size);
if (IS_ERR(PtrToUlong(kid)))
return PTR_ERR(PtrToUlong(kid));
pr_debug("authkeyid len:%d,data=%p\n", kid->len, kid->data);
ctx->cert->sig->auth_ids[0] = kid;
return 0;
}