You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
576 lines
16 KiB
576 lines
16 KiB
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* Parse a signed PE binary
|
|
*
|
|
* Copyright (C) 2014 Red Hat, Inc. All Rights Reserved.
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
*/
|
|
|
|
//#define pr_fmt(fmt) "PEFILE: "fmt
|
|
//#include <linux/module.h>
|
|
//#include <linux/kernel.h>
|
|
//#include <linux/slab.h>
|
|
//#include <linux/err.h>
|
|
//#include <linux/pe.h>
|
|
//#include <linux/asn1.h>
|
|
//#include <linux/verification.h>
|
|
//#include <crypto/hash.h>
|
|
//#include "verify_pefile.h"
|
|
|
|
#include "verify_pefile.h"
|
|
#include "errno.h"
|
|
#include "asn1.h"
|
|
|
|
#include "config.h"
|
|
|
|
#include "pe.h"
|
|
|
|
#include "../rewrite/Lib.SoulExtraction.rewrite.h"
|
|
|
|
//
|
|
// macro
|
|
//
|
|
|
|
#define GFP_ATOMIC /*(__GFP_HIGH|__GFP_ATOMIC|__GFP_KSWAPD_RECLAIM)*/ 1
|
|
#define GFP_KERNEL /*(__GFP_RECLAIM | __GFP_IO | __GFP_FS)*/ 2
|
|
#define GFP_KERNEL_ACCOUNT /*(GFP_KERNEL | __GFP_ACCOUNT)*/ 3
|
|
#define GFP_NOWAIT /*(__GFP_KSWAPD_RECLAIM)*/ 4
|
|
#define GFP_NOIO /*(__GFP_RECLAIM)*/ 5
|
|
#define GFP_NOFS /*(__GFP_RECLAIM | __GFP_IO)*/ 6
|
|
#define GFP_USER /*(__GFP_RECLAIM | __GFP_IO | __GFP_FS | __GFP_HARDWALL)*/ 7
|
|
#define GFP_DMA /*__GFP_DMA*/ 8
|
|
#define GFP_DMA32 /*__GFP_DMA32*/ 9
|
|
#define GFP_HIGHUSER /*(GFP_USER | __GFP_HIGHMEM)*/ 10
|
|
#define GFP_HIGHUSER_MOVABLE /*(GFP_HIGHUSER | __GFP_MOVABLE)*/ 11
|
|
#define GFP_TRANSHUGE_LIGHT 12
|
|
#define GFP_TRANSHUGE /*(GFP_TRANSHUGE_LIGHT | __GFP_DIRECT_RECLAIM)*/ 13
|
|
|
|
#define ERR_PTR(err) ((void *)((long)(err)))
|
|
#define PTR_ERR(ptr) ((long)(ptr))
|
|
#define IS_ERR(ptr) ((unsigned long)(ptr) > (unsigned long)(-1000))
|
|
|
|
///*
|
|
// * This looks more complex than it should be. But we need to
|
|
// * get the type for the ~ right in round_down (it needs to be
|
|
// * as wide as the result!), and we want to evaluate the macro
|
|
// * arguments just once each.
|
|
// */
|
|
//#define __round_mask(x, y) ((__typeof__(x))((y)-1))
|
|
//
|
|
///**
|
|
// * round_up - round up to next specified power of 2
|
|
// * @x: the value to round
|
|
// * @y: multiple to round up to (must be a power of 2)
|
|
// *
|
|
// * Rounds @x up to next multiple of @y (which must be a power of 2).
|
|
// * To perform arbitrary rounding up, use roundup() below.
|
|
// */
|
|
//#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
|
|
///**
|
|
//* round_up - round up to next specified power of 2
|
|
//* @x: the value to round
|
|
//* @y: multiple to round up to (must be a power of 2)
|
|
//*
|
|
//* Rounds @x up to next multiple of @y (which must be a power of 2).
|
|
//* To perform arbitrary rounding up, use roundup() below.
|
|
//*/
|
|
//#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
|
|
///**
|
|
//* round_down - round down to next specified power of 2
|
|
//* @x: the value to round
|
|
//* @y: multiple to round down to (must be a power of 2)
|
|
//*
|
|
//* Rounds @x down to next multiple of @y (which must be a power of 2).
|
|
//* To perform arbitrary rounding down, use rounddown() below.
|
|
//*/
|
|
//#define round_down(x, y) ((x) & ~__round_mask(x, y))
|
|
|
|
/* n must be power of 2 */
|
|
#define round_up(x, n) (((x) + (n)-1u) & ~((n)-1u))
|
|
|
|
/*
|
|
* Parse a PE binary.
|
|
*/
|
|
int
|
|
pefile_parse_binary(const void *pebuf, unsigned int pelen, struct pefile_context *ctx)
|
|
{
|
|
const struct mz_hdr *mz = pebuf;
|
|
const struct pe_hdr *pe;
|
|
const struct pe32_opt_hdr *pe32;
|
|
const struct pe32plus_opt_hdr *pe64;
|
|
const struct data_directory *ddir;
|
|
const struct data_dirent *dde;
|
|
const struct section_header *secs, *sec;
|
|
size_t cursor, datalen = pelen;
|
|
|
|
kenter("");
|
|
|
|
#define chkaddr(base, x, s) \
|
|
do \
|
|
{ \
|
|
if ((x) < base || (s) >= datalen || (x) > datalen - (s)) \
|
|
return -ELIBBAD; \
|
|
} while (0)
|
|
|
|
// chkaddr(0, 0, sizeof(*mz));
|
|
|
|
if (sizeof(*mz) >= datalen)
|
|
return -ELIBBAD;
|
|
|
|
if (mz->magic != MZ_MAGIC)
|
|
return -ELIBBAD;
|
|
cursor = sizeof(*mz);
|
|
|
|
chkaddr(cursor, mz->peaddr, sizeof(*pe));
|
|
pe = (struct pe_hdr *)((unsigned char *)pebuf + mz->peaddr);
|
|
if (pe->magic != PE_MAGIC)
|
|
return -ELIBBAD;
|
|
cursor = mz->peaddr + sizeof(*pe);
|
|
|
|
// chkaddr(0, cursor, sizeof(pe32->magic));
|
|
|
|
if ((sizeof(pe32->magic)) >= datalen || cursor > datalen - sizeof(pe32->magic))
|
|
return -ELIBBAD;
|
|
|
|
pe32 = (struct pe32_opt_hdr *)((unsigned char *)pebuf + cursor);
|
|
pe64 = (struct pe32plus_opt_hdr *)((unsigned char *)pebuf + cursor);
|
|
|
|
switch (pe32->magic)
|
|
{
|
|
case PE_OPT_MAGIC_PE32:
|
|
// chkaddr(0, cursor, sizeof(*pe32));
|
|
if ((sizeof(*pe32)) >= datalen || cursor > datalen - sizeof(*pe32))
|
|
return -ELIBBAD;
|
|
|
|
ctx->image_checksum_offset = (unsigned)((unsigned char *)&pe32->csum - (unsigned char *)pebuf);
|
|
ctx->header_size = pe32->header_size;
|
|
cursor += sizeof(*pe32);
|
|
ctx->n_data_dirents = pe32->data_dirs;
|
|
break;
|
|
|
|
case PE_OPT_MAGIC_PE32PLUS:
|
|
// chkaddr(0, cursor, sizeof(*pe64));
|
|
if ((sizeof(*pe64)) >= datalen || cursor > datalen - sizeof(*pe64))
|
|
return -ELIBBAD;
|
|
ctx->image_checksum_offset = (unsigned)((unsigned char *)&pe64->csum - (unsigned char *)pebuf);
|
|
ctx->header_size = pe64->header_size;
|
|
cursor += sizeof(*pe64);
|
|
ctx->n_data_dirents = pe64->data_dirs;
|
|
break;
|
|
|
|
default:
|
|
pr_debug("Unknown PEOPT magic = %04hx\n", pe32->magic);
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
pr_debug("checksum @ %x\n", ctx->image_checksum_offset);
|
|
pr_debug("header size = %x\n", ctx->header_size);
|
|
|
|
if (cursor >= ctx->header_size || ctx->header_size >= datalen)
|
|
return -ELIBBAD;
|
|
|
|
if (ctx->n_data_dirents > (ctx->header_size - cursor) / sizeof(*dde))
|
|
return -ELIBBAD;
|
|
|
|
ddir = (struct data_directory *)((unsigned char *)pebuf + cursor);
|
|
cursor += sizeof(*dde) * ctx->n_data_dirents;
|
|
|
|
ctx->cert_dirent_offset = (unsigned)((unsigned char *)&ddir->certs - (unsigned char *)pebuf);
|
|
ctx->certs_size = ddir->certs.size;
|
|
|
|
if (!ddir->certs.virtual_address || !ddir->certs.size)
|
|
{
|
|
pr_debug("Unsigned PE binary\n");
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
chkaddr(ctx->header_size, ddir->certs.virtual_address, ddir->certs.size);
|
|
ctx->sig_offset = ddir->certs.virtual_address;
|
|
ctx->sig_len = ddir->certs.size;
|
|
pr_debug(
|
|
"cert = %x @%x [%p]\n", ctx->sig_len, ctx->sig_offset, ctx->sig_len, (unsigned char *)pebuf + ctx->sig_offset);
|
|
|
|
ctx->n_sections = pe->sections;
|
|
if (ctx->n_sections > (ctx->header_size - cursor) / sizeof(*sec))
|
|
return -ELIBBAD;
|
|
ctx->secs = secs = (struct section_header *)((unsigned char *)pebuf + cursor);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Check and strip the PE wrapper from around the signature and check that the
|
|
* remnant looks something like PKCS#7.
|
|
*/
|
|
int
|
|
pefile_strip_sig_wrapper(const void *pebuf, struct pefile_context *ctx)
|
|
{
|
|
struct win_certificate wrapper;
|
|
const unsigned char *pkcs7;
|
|
unsigned len;
|
|
unsigned char pkcs7_1;
|
|
|
|
if (ctx->sig_len < sizeof(wrapper))
|
|
{
|
|
pr_debug("Signature wrapper too short\n");
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
memcpy(&wrapper, (void *)((unsigned char *)pebuf + ctx->sig_offset), sizeof(wrapper));
|
|
pr_debug("sig wrapper = { %x, %x, %x }\n", wrapper.length, wrapper.revision, wrapper.cert_type);
|
|
|
|
/* Both pesign and sbsign round up the length of certificate table
|
|
* (in optional header data directories) to 8 byte alignment.
|
|
*/
|
|
if (round_up(wrapper.length, 8) != ctx->sig_len)
|
|
{
|
|
pr_debug("Signature wrapper len wrong\n");
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
if (wrapper.revision != WIN_CERT_REVISION_2_0)
|
|
{
|
|
pr_debug("Signature is not revision 2.0\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
if (wrapper.cert_type != WIN_CERT_TYPE_PKCS_SIGNED_DATA)
|
|
{
|
|
pr_debug("Signature certificate type is not PKCS\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/* It looks like the pkcs signature length in wrapper->length and the
|
|
* size obtained from the data dir entries, which lists the total size
|
|
* of certificate table, are both aligned to an octaword boundary, so
|
|
* we may have to deal with some padding.
|
|
*/
|
|
ctx->sig_len = wrapper.length;
|
|
ctx->sig_offset += sizeof(wrapper);
|
|
ctx->sig_len -= sizeof(wrapper);
|
|
if (ctx->sig_len < 4)
|
|
{
|
|
pr_debug("Signature data missing\n");
|
|
return -EKEYREJECTED;
|
|
}
|
|
|
|
/* What's left should be a PKCS#7 cert */
|
|
pkcs7 = (unsigned char *)((unsigned char *)pebuf + ctx->sig_offset);
|
|
if (pkcs7[0] != (ASN1_CONS_BIT | ASN1_SEQ))
|
|
goto not_pkcs7;
|
|
|
|
pkcs7_1 = pkcs7[1];
|
|
if (pkcs7_1 >= 0 && pkcs7_1 <= 0x7f)
|
|
{
|
|
len = pkcs7[1] + 2;
|
|
goto check_len;
|
|
}
|
|
else if (pkcs7_1 == ASN1_INDEFINITE_LENGTH)
|
|
{
|
|
return 0;
|
|
}
|
|
else if (pkcs7_1 == 0x81)
|
|
{
|
|
len = pkcs7[2] + 3;
|
|
goto check_len;
|
|
}
|
|
else if (pkcs7_1 == 0x82)
|
|
{
|
|
len = ((pkcs7[2] << 8) | pkcs7[3]) + 4;
|
|
goto check_len;
|
|
}
|
|
else if (pkcs7_1 >= 0x83 && pkcs7_1 <= 0xff)
|
|
{
|
|
return -EMSGSIZE;
|
|
}
|
|
else
|
|
{
|
|
goto not_pkcs7;
|
|
}
|
|
|
|
/*switch (pkcs7[1]) {
|
|
case 0 ... 0x7f:
|
|
len = pkcs7[1] + 2;
|
|
goto check_len;
|
|
case ASN1_INDEFINITE_LENGTH:
|
|
return 0;
|
|
case 0x81:
|
|
len = pkcs7[2] + 3;
|
|
goto check_len;
|
|
case 0x82:
|
|
len = ((pkcs7[2] << 8) | pkcs7[3]) + 4;
|
|
goto check_len;
|
|
case 0x83 ... 0xff:
|
|
return -EMSGSIZE;
|
|
default:
|
|
goto not_pkcs7;
|
|
}*/
|
|
|
|
check_len:
|
|
if (len <= ctx->sig_len)
|
|
{
|
|
/* There may be padding */
|
|
ctx->sig_len = len;
|
|
return 0;
|
|
}
|
|
not_pkcs7:
|
|
pr_debug("Signature data not PKCS#7\n");
|
|
return -ELIBBAD;
|
|
}
|
|
|
|
/*
|
|
* Compare two sections for canonicalisation.
|
|
*/
|
|
// static int pefile_compare_shdrs(const void *a, const void *b)
|
|
//{
|
|
// const struct section_header *shdra = a;
|
|
// const struct section_header *shdrb = b;
|
|
// int rc;
|
|
//
|
|
// if (shdra->data_addr > shdrb->data_addr)
|
|
// return 1;
|
|
// if (shdrb->data_addr > shdra->data_addr)
|
|
// return -1;
|
|
//
|
|
// if (shdra->virtual_address > shdrb->virtual_address)
|
|
// return 1;
|
|
// if (shdrb->virtual_address > shdra->virtual_address)
|
|
// return -1;
|
|
//
|
|
// rc = strcmp(shdra->name, shdrb->name);
|
|
// if (rc != 0)
|
|
// return rc;
|
|
//
|
|
// if (shdra->virtual_size > shdrb->virtual_size)
|
|
// return 1;
|
|
// if (shdrb->virtual_size > shdra->virtual_size)
|
|
// return -1;
|
|
//
|
|
// if (shdra->raw_data_size > shdrb->raw_data_size)
|
|
// return 1;
|
|
// if (shdrb->raw_data_size > shdra->raw_data_size)
|
|
// return -1;
|
|
//
|
|
// return 0;
|
|
// }
|
|
|
|
/*
|
|
* Load the contents of the PE binary into the digest, leaving out the image
|
|
* checksum and the certificate data block.
|
|
*/
|
|
// static int pefile_digest_pe_contents(const void *pebuf, unsigned int pelen,
|
|
// struct pefile_context *ctx,
|
|
// struct shash_desc *desc)
|
|
//{
|
|
// unsigned *canon, tmp, loop, i, hashed_bytes;
|
|
// int ret;
|
|
//
|
|
// /* Digest the header and data directory, but leave out the image
|
|
// * checksum and the data dirent for the signature.
|
|
// */
|
|
// ret = crypto_shash_update(desc, pebuf, ctx->image_checksum_offset);
|
|
// if (ret < 0)
|
|
// return ret;
|
|
//
|
|
// tmp = ctx->image_checksum_offset + sizeof(uint32_t);
|
|
// ret = crypto_shash_update(desc, pebuf + tmp,
|
|
// ctx->cert_dirent_offset - tmp);
|
|
// if (ret < 0)
|
|
// return ret;
|
|
//
|
|
// tmp = ctx->cert_dirent_offset + sizeof(struct data_dirent);
|
|
// ret = crypto_shash_update(desc, pebuf + tmp, ctx->header_size - tmp);
|
|
// if (ret < 0)
|
|
// return ret;
|
|
//
|
|
// canon = kcalloc(ctx->n_sections, sizeof(unsigned), GFP_KERNEL);
|
|
// if (!canon)
|
|
// return -ENOMEM;
|
|
//
|
|
// /* We have to canonicalise the section table, so we perform an
|
|
// * insertion sort.
|
|
// */
|
|
// canon[0] = 0;
|
|
// for (loop = 1; loop < ctx->n_sections; loop++) {
|
|
// for (i = 0; i < loop; i++) {
|
|
// if (pefile_compare_shdrs(&ctx->secs[canon[i]],
|
|
// &ctx->secs[loop]) > 0) {
|
|
// memmove(&canon[i + 1], &canon[i],
|
|
// (loop - i) * sizeof(canon[0]));
|
|
// break;
|
|
// }
|
|
// }
|
|
// canon[i] = loop;
|
|
// }
|
|
//
|
|
// hashed_bytes = ctx->header_size;
|
|
// for (loop = 0; loop < ctx->n_sections; loop++) {
|
|
// i = canon[loop];
|
|
// if (ctx->secs[i].raw_data_size == 0)
|
|
// continue;
|
|
// ret = crypto_shash_update(desc,
|
|
// pebuf + ctx->secs[i].data_addr,
|
|
// ctx->secs[i].raw_data_size);
|
|
// if (ret < 0) {
|
|
// kfree(canon);
|
|
// return ret;
|
|
// }
|
|
// hashed_bytes += ctx->secs[i].raw_data_size;
|
|
// }
|
|
// kfree(canon);
|
|
//
|
|
// if (pelen > hashed_bytes) {
|
|
// tmp = hashed_bytes + ctx->certs_size;
|
|
// ret = crypto_shash_update(desc,
|
|
// pebuf + hashed_bytes,
|
|
// pelen - tmp);
|
|
// if (ret < 0)
|
|
// return ret;
|
|
// }
|
|
//
|
|
// return 0;
|
|
// }
|
|
|
|
/*
|
|
* Digest the contents of the PE binary, leaving out the image checksum and the
|
|
* certificate data block.
|
|
*/
|
|
// static int pefile_digest_pe(const void *pebuf, unsigned int pelen,
|
|
// struct pefile_context *ctx)
|
|
//{
|
|
// struct crypto_shash *tfm;
|
|
// struct shash_desc *desc;
|
|
// size_t digest_size, desc_size;
|
|
// void *digest;
|
|
// int ret;
|
|
//
|
|
// kenter(",%s", ctx->digest_algo);
|
|
//
|
|
// /* Allocate the hashing algorithm we're going to need and find out how
|
|
// * big the hash operational data will be.
|
|
// */
|
|
// tfm = crypto_alloc_shash(ctx->digest_algo, 0, 0);
|
|
// if (IS_ERR(tfm))
|
|
// return (PTR_ERR(tfm) == -ENOENT) ? -ENOPKG : PTR_ERR(tfm);
|
|
//
|
|
// desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
|
|
// digest_size = crypto_shash_digestsize(tfm);
|
|
//
|
|
// if (digest_size != ctx->digest_len) {
|
|
// pr_debug("Digest size mismatch (%zx != %x)\n",
|
|
// digest_size, ctx->digest_len);
|
|
// ret = -EBADMSG;
|
|
// goto error_no_desc;
|
|
// }
|
|
// pr_debug("Digest: desc=%zu size=%zu\n", desc_size, digest_size);
|
|
//
|
|
// ret = -ENOMEM;
|
|
// desc = kzalloc(desc_size + digest_size, GFP_KERNEL);
|
|
// if (!desc)
|
|
// goto error_no_desc;
|
|
//
|
|
// desc->tfm = tfm;
|
|
// ret = crypto_shash_init(desc);
|
|
// if (ret < 0)
|
|
// goto error;
|
|
//
|
|
// ret = pefile_digest_pe_contents(pebuf, pelen, ctx, desc);
|
|
// if (ret < 0)
|
|
// goto error;
|
|
//
|
|
// digest = (void *)desc + desc_size;
|
|
// ret = crypto_shash_final(desc, digest);
|
|
// if (ret < 0)
|
|
// goto error;
|
|
//
|
|
// pr_debug("Digest calc = [%*ph]\n", ctx->digest_len, digest);
|
|
//
|
|
// /* Check that the PE file digest matches that in the MSCODE part of the
|
|
// * PKCS#7 certificate.
|
|
// */
|
|
// if (memcmp(digest, ctx->digest, ctx->digest_len) != 0) {
|
|
// pr_debug("Digest mismatch\n");
|
|
// ret = -EKEYREJECTED;
|
|
// } else {
|
|
// pr_debug("The digests match!\n");
|
|
// }
|
|
//
|
|
// error:
|
|
// kzfree(desc);
|
|
// error_no_desc:
|
|
// crypto_free_shash(tfm);
|
|
// kleave(" = %d", ret);
|
|
// return ret;
|
|
// }
|
|
|
|
/**
|
|
* verify_pefile_signature - Verify the signature on a PE binary image
|
|
* @pebuf: Buffer containing the PE binary image
|
|
* @pelen: Length of the binary image
|
|
* @trust_keys: Signing certificate(s) to use as starting points
|
|
* @usage: The use to which the key is being put.
|
|
*
|
|
* Validate that the certificate chain inside the PKCS#7 message inside the PE
|
|
* binary image intersects keys we already know and trust.
|
|
*
|
|
* Returns, in order of descending priority:
|
|
*
|
|
* (*) -ELIBBAD if the image cannot be parsed, or:
|
|
*
|
|
* (*) -EKEYREJECTED if a signature failed to match for which we have a valid
|
|
* key, or:
|
|
*
|
|
* (*) 0 if at least one signature chain intersects with the keys in the trust
|
|
* keyring, or:
|
|
*
|
|
* (*) -ENOPKG if a suitable crypto module couldn't be found for a check on a
|
|
* chain.
|
|
*
|
|
* (*) -ENOKEY if we couldn't find a match for any of the signature chains in
|
|
* the message.
|
|
*
|
|
* May also return -ENOMEM.
|
|
*/
|
|
int
|
|
verify_pefile_signature(const void *pebuf, unsigned pelen, struct key *trusted_keys, enum key_being_used_for usage)
|
|
{
|
|
struct pefile_context ctx;
|
|
int ret;
|
|
|
|
kenter("");
|
|
|
|
memset(&ctx, 0, sizeof(ctx));
|
|
ret = pefile_parse_binary(pebuf, pelen, &ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = pefile_strip_sig_wrapper(pebuf, &ctx);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
// we dont need this (gmh said)
|
|
/*ret = verify_pkcs7_signature(NULL, 0,
|
|
pebuf + ctx.sig_offset, ctx.sig_len,
|
|
trusted_keys, usage,
|
|
mscode_parse, &ctx);
|
|
if (ret < 0)
|
|
goto error;
|
|
|
|
pr_debug("Digest: %u [%*ph]\n",
|
|
ctx.digest_len, ctx.digest_len, ctx.digest);
|
|
*/
|
|
|
|
/* Generate the digest and check against the PKCS7 certificate
|
|
* contents.
|
|
*/
|
|
|
|
// we dont need this (gmh said)
|
|
// ret = pefile_digest_pe(pebuf, pelen, &ctx);
|
|
|
|
// error:
|
|
if (ctx.digest)
|
|
{
|
|
kzfree(ctx.digest);
|
|
}
|
|
|
|
return ret;
|
|
}
|