#include namespace vm { emu_t::emu_t(vm::vmctx_t* vm_ctx) : m_vm(vm_ctx), vip(vm_ctx->get_vip()), vsp(vm_ctx->get_vsp()) {} emu_t::~emu_t() { if (uc) uc_close(uc); } bool emu_t::init() { uc_err err; if ((err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc))) { std::printf("> uc_open err = %d\n", err); return false; } if ((err = uc_mem_map(uc, STACK_BASE, STACK_SIZE, UC_PROT_ALL))) { std::printf("> uc_mem_map stack err, reason = %d\n", err); return false; } if ((err = uc_mem_map(uc, m_vm->m_module_base, m_vm->m_image_size, UC_PROT_ALL))) { std::printf("> map memory failed, reason = %d\n", err); return false; } if ((err = uc_mem_write(uc, m_vm->m_module_base, reinterpret_cast(m_vm->m_module_base), m_vm->m_image_size))) { std::printf("> failed to write memory... reason = %d\n", err); return false; } if ((err = uc_hook_add(uc, &code_exec_hook, UC_HOOK_CODE, (void*)&vm::emu_t::code_exec_callback, this, m_vm->m_module_base, m_vm->m_module_base + m_vm->m_image_size))) { std::printf("> uc_hook_add error, reason = %d\n", err); return false; } if ((err = uc_hook_add(uc, &int_hook, UC_HOOK_INTR, (void*)&vm::emu_t::int_callback, this, 0ull, 0ull))) { std::printf("> uc_hook_add error, reason = %d\n", err); return false; } if ((err = uc_hook_add(uc, &invalid_mem_hook, UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_FETCH_UNMAPPED, (void*)&vm::emu_t::invalid_mem, this, true, false))) { std::printf("> uc_hook_add error, reason = %d\n", err); return false; } return true; } bool emu_t::emulate(std::uint32_t vmenter_rva, vm::instrs::vrtn_t& vrtn) { uc_err err; std::uintptr_t rip = vmenter_rva + m_vm->m_module_base, rsp = STACK_BASE + STACK_SIZE - PAGE_4KB; if ((err = uc_reg_write(uc, UC_X86_REG_RSP, &rsp))) { std::printf("> uc_reg_write error, reason = %d\n", err); return false; } if ((err = uc_reg_write(uc, UC_X86_REG_RIP, &rip))) { std::printf("> uc_reg_write error, reason = %d\n", err); return false; } cc_trace.m_uc = uc; cc_trace.m_vip = vip; cc_trace.m_vsp = vsp; vrtn.m_rva = vmenter_rva; m_vm_enter = true; vm::instrs::vblk_t blk; blk.m_vip = {0ull, 0ull}; blk.m_cpu = {nullptr, nullptr}; cc_blk = &blk; std::printf("> beginning execution at = %p\n", rip); if ((err = uc_emu_start(uc, rip, 0ull, 0ull, 0ull))) { std::printf("> error starting emu... reason = %d\n", err); return false; } std::printf("> blk address = %p\n", blk.m_vip.img_base); const auto jcc_result = has_jcc(blk.m_vinstrs); std::printf("> jcc result = %d\n", jcc_result.has_value()); return true; } void emu_t::int_callback(uc_engine* uc, std::uint32_t intno, emu_t* obj) { uc_err err; std::uintptr_t rip = 0ull; static thread_local zydis_decoded_instr_t instr; if ((err = uc_reg_read(uc, UC_X86_REG_RIP, &rip))) { std::printf("> failed to read rip... reason = %d\n", err); return; } if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(vm::utils::g_decoder.get(), reinterpret_cast(rip), PAGE_4KB, &instr))) { std::printf("> failed to decode instruction at = 0x%p\n", rip); if ((err = uc_emu_stop(uc))) { std::printf("> failed to stop emulation, exiting... reason = %d\n", err); exit(0); } return; } // advance rip over the instruction that caused the exception... this is // usually a division by 0... rip += instr.length; if ((err = uc_reg_write(uc, UC_X86_REG_RIP, &rip))) { std::printf("> failed to write rip... reason = %d\n", err); return; } } bool emu_t::code_exec_callback(uc_engine* uc, uint64_t address, uint32_t size, emu_t* obj) { uc_err err; static thread_local zydis_decoded_instr_t instr; if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(vm::utils::g_decoder.get(), reinterpret_cast(address), PAGE_4KB, &instr))) { std::printf("> failed to decode instruction at = 0x%p\n", address); if ((err = uc_emu_stop(uc))) { std::printf("> failed to stop emulation, exiting... reason = %d\n", err); exit(0); } return false; } if (instr.mnemonic == ZYDIS_MNEMONIC_INVALID) return false; // save the current cpu's context (all register values and such)... // create a new emu_instr_t with this information... this info will be used by // profiles to grab decrypted values and such... uc_context* cpu_ctx; uc_context_alloc(obj->uc, &cpu_ctx); uc_context_save(obj->uc, cpu_ctx); std::uint8_t* stack = reinterpret_cast(malloc(STACK_SIZE)); uc_mem_read(uc, STACK_BASE, stack, STACK_SIZE); vm::instrs::emu_instr_t emu_instr{instr, cpu_ctx, stack}; obj->cc_trace.m_instrs.push_back(emu_instr); // RET or JMP REG means the end of a vm handler... if (instr.mnemonic == ZYDIS_MNEMONIC_RET || (instr.mnemonic == ZYDIS_MNEMONIC_JMP && instr.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER)) { // deobfuscate the instruction stream before profiling... // makes it easier for profiles to be correct... vm::instrs::deobfuscate(obj->cc_trace); // find the last MOV REG, DWORD PTR [VIP] in the instruction stream, then // remove any instructions from this instruction to the JMP/RET... const auto rva_fetch = std::find_if( obj->cc_trace.m_instrs.rbegin(), obj->cc_trace.m_instrs.rend(), [&vip = obj->vip](const vm::instrs::emu_instr_t& instr) -> bool { const auto& i = instr.m_instr; return i.mnemonic == ZYDIS_MNEMONIC_MOV && i.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER && i.operands[1].type == ZYDIS_OPERAND_TYPE_MEMORY && i.operands[1].mem.base == vip && i.operands[1].size == 32; }); if (rva_fetch != obj->cc_trace.m_instrs.rend()) obj->cc_trace.m_instrs.erase((rva_fetch + 1).base(), obj->cc_trace.m_instrs.end()); // extract vip address out of the vm enter trace... if (obj->m_vm_enter) { auto vip_addr_set = std::find_if( obj->cc_trace.m_instrs.rbegin(), obj->cc_trace.m_instrs.rend(), [&vip = obj->vip](vm::instrs::emu_instr_t& emu_instr) -> bool { const auto& i = emu_instr.m_instr; return i.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER && i.operands[0].reg.value == vip; }); // get the cpu context from the instruction after the instruction that // writes to vip... --vip_addr_set; uc_context* backup; uc_context_alloc(uc, &backup); uc_context_save(uc, backup); uc_context_restore(uc, vip_addr_set->m_cpu); std::uintptr_t vip_addr = 0ull; uc_reg_read(uc, vm::instrs::reg_map[obj->vip], &vip_addr); obj->cc_blk->m_vip.rva = vip_addr -= obj->m_vm->m_module_base; obj->cc_blk->m_vip.img_base = vip_addr += obj->m_vm->m_image_base; uc_context_restore(uc, backup); uc_context_free(backup); obj->m_vm_enter = false; } else { const auto vinstr = vm::instrs::determine(obj->vip, obj->vsp, obj->cc_trace); if (vinstr.mnemonic != vm::instrs::mnemonic_t::unknown) { if (vinstr.imm.has_imm) std::printf("> %s %p\n", vm::instrs::get_profile(vinstr.mnemonic)->name.c_str(), vinstr.imm.val); else std::printf("> %s\n", vm::instrs::get_profile(vinstr.mnemonic)->name.c_str()); } else { zydis_rtn_t inst_stream; std::for_each(obj->cc_trace.m_instrs.begin(), obj->cc_trace.m_instrs.end(), [&](vm::instrs::emu_instr_t& instr) { inst_stream.push_back({instr.m_instr}); }); vm::utils::print(inst_stream); std::getchar(); } obj->cc_trace.m_vip = obj->vip; obj->cc_trace.m_vsp = obj->vsp; obj->cc_blk->m_vinstrs.push_back(vinstr); if (vinstr.mnemonic == vm::instrs::mnemonic_t::jmp) { uc_context *b1, *b2; uc_context_alloc(uc, &b1); uc_context_alloc(uc, &b2); uc_context_save(uc, b1); uc_context_restore(uc, obj->cc_trace.m_instrs.begin()->m_cpu); uc_context_save(uc, b2); uc_context_restore(uc, b1); std::uint8_t* stack = reinterpret_cast(malloc(STACK_SIZE)); std::memcpy(stack, obj->cc_trace.m_instrs.begin()->stack, STACK_SIZE); obj->cc_blk->m_cpu.ctx = b2; obj->cc_blk->m_cpu.stack = stack; } if (vinstr.mnemonic == vm::instrs::mnemonic_t::jmp || vinstr.mnemonic == vm::instrs::mnemonic_t::vmexit) uc_emu_stop(obj->uc); } // -- free the trace since we will start a new one... std::for_each(obj->cc_trace.m_instrs.begin(), obj->cc_trace.m_instrs.end(), [&](const vm::instrs::emu_instr_t& instr) { uc_context_free(instr.m_cpu); free(instr.stack); }); obj->cc_trace.m_instrs.clear(); } return true; } void emu_t::invalid_mem(uc_engine* uc, uc_mem_type type, uint64_t address, int size, int64_t value, emu_t* obj) { switch (type) { case UC_MEM_READ_UNMAPPED: { uc_mem_map(uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL); std::printf(">>> reading invalid memory at address = %p, size = 0x%x\n", address, size); break; } case UC_MEM_WRITE_UNMAPPED: { uc_mem_map(uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL); std::printf( ">>> writing invalid memory at address = %p, size = 0x%x, val = " "0x%x\n", address, size, value); break; } case UC_MEM_FETCH_UNMAPPED: { std::printf(">>> fetching invalid instructions at address = %p\n", address); std::uintptr_t rip, rsp; uc_reg_read(uc, UC_X86_REG_RSP, &rsp); uc_mem_read(uc, rsp, &rip, sizeof rip); rsp += 8; uc_reg_write(uc, UC_X86_REG_RSP, &rsp); uc_reg_write(uc, UC_X86_REG_RIP, &rip); std::printf(">>> injecting return to try and recover... rip = %p\n", rip); break; } default: break; } } std::optional> emu_t::has_jcc( std::vector& vinstrs) { if (vinstrs.back().mnemonic == vm::instrs::mnemonic_t::vmexit) return {}; // number of LCONST virtual instructions which load 64bit imm's... const std::uint32_t lconst_num = std::accumulate( vinstrs.begin(), vinstrs.end(), 0, [&](std::uint32_t val, vm::instrs::vinstr_t& v) -> std::uint32_t { return v.mnemonic == vm::instrs::mnemonic_t::lconst && v.imm.size == 64 ? ++val : val; }); if (lconst_num < 3) return {}; const auto lconst1 = std::find_if( vinstrs.rbegin(), vinstrs.rend(), [&](vm::instrs::vinstr_t& v) -> bool { return v.mnemonic == vm::instrs::mnemonic_t::lconst && v.imm.size == 64; }); const auto lconst2 = std::find_if( lconst1 + 1, vinstrs.rend(), [&](vm::instrs::vinstr_t& v) -> bool { return v.mnemonic == vm::instrs::mnemonic_t::lconst && v.imm.size == 64; }); static const auto exec_callbk = [&](uc_engine* uc, uint64_t address, uint32_t size, emu_t* obj) {}; uc_context *backup, *br1, *br2; uc_context_alloc(uc, &backup); uc_context_alloc(uc, &br1); uc_context_alloc(uc, &br2); uc_context_save(uc, backup); uc_context_restore(uc, cc_blk->m_cpu.ctx); uc_mem_write(uc, STACK_BASE, cc_blk->m_cpu.stack, STACK_SIZE); uc_context_restore(uc, backup); uc_context_free(backup); uc_context_free(br1); uc_context_free(br2); return {}; } } // namespace vm