Merge pull request #6 from MoAlyousef/develop

Ongoing development
toml-checker archive_7b7b2603
Mohammed Alyousef 4 years ago committed by GitHub
commit 7b7b260379
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -42,7 +42,7 @@ BreakBeforeTernaryOperators: true
BreakConstructorInitializersBeforeComma: false
BreakConstructorInitializers: BeforeColon
BreakStringLiterals: true
ColumnLimit: 100
ColumnLimit: 150
CommentPragmas: '^ IWYU pragma:'
CompactNamespaces: false
ConstructorInitializerAllOnOneLineOrOnePerLine: false

@ -2,18 +2,23 @@ name: CMake
on: [push, pull_request]
env:
# Customize the CMake build type here (Release, Debug, RelWithDebInfo, etc.)
BUILD_TYPE: Release
jobs:
build:
runs-on: ${{ matrix.os }}
strategy:
fail-fast: false
matrix:
os: [windows-latest, macos-10.15, ubuntu-18.04]
os: [windows-2016, windows-2019, macos-10.15, ubuntu-16.04, ubuntu-18.04, ubuntu-20.04]
env:
BUILD_TYPE: Release
steps:
- uses: actions/checkout@v2
- name: Checkout
uses: actions/checkout@v2
- name: Build
run: cmake -S. -Bbin -DCMAKE_BUILD_TYPE=$BUILD_TYPE && cmake --build bin --parallel --config $BUILD_TYPE
run: |
cmake -S. -Bbuild -DCMAKE_BUILD_TYPE=${{ env.BUILD_TYPE }}
cmake --build build --config ${{ env.BUILD_TYPE }} --parallel
- name: Test
run: |
cd build/tests
ctest -C ${{ env.BUILD_TYPE }}

5
.gitignore vendored

@ -5,4 +5,7 @@ compile_commands.json
temp.*
.vs
.cache
build*/
build*/
.idea/
cmake-build*/
CMakeLists.txt.user

@ -1,87 +1,125 @@
# This file was generated automatically by cmkr.
# Regenerate CMakeLists.txt file when necessary
include(cmkr.cmake OPTIONAL RESULT_VARIABLE CMKR_INCLUDE_RESULT)
cmake_minimum_required(VERSION 2.8...3.8)
if(CMKR_INCLUDE_RESULT)
cmkr()
endif()
cmake_minimum_required(VERSION 3.15)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
project(cmkr
VERSION 0.1.4
LANGUAGES C CXX
DESCRIPTION "CMakeLists generator from TOML"
)
include(FetchContent)
FetchContent_Declare(
filesystem
GIT_REPOSITORY https://github.com/gulrak/filesystem
GIT_SHALLOW ON
)
# Regenerate CMakeLists.txt automatically in the root project
set(CMKR_ROOT_PROJECT OFF)
if(CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(CMKR_ROOT_PROJECT ON)
FetchContent_MakeAvailable(filesystem)
# Bootstrap cmkr
include(cmkr.cmake OPTIONAL RESULT_VARIABLE CMKR_INCLUDE_RESULT)
if(CMKR_INCLUDE_RESULT)
cmkr()
endif()
FetchContent_Declare(
mpark_variant
URL https://github.com/mpark/variant/archive/v1.4.0.tar.gz
)
# Enable folder support
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
endif()
FetchContent_MakeAvailable(mpark_variant)
# Create a configure-time dependency on cmake.toml to improve IDE support
if(CMKR_ROOT_PROJECT)
configure_file(cmake.toml cmake.toml COPYONLY)
endif()
FetchContent_Declare(
toml11
GIT_REPOSITORY https://github.com/ToruNiina/toml11
GIT_SHALLOW ON
)
# Hack to hide a warning during cmkr bootstrapping on Windows
if(CMAKE_BUILD_TYPE)
endif()
FetchContent_MakeAvailable(toml11)
set(CMKRLIB_SOURCES
src/cmake.cpp
src/gen.cpp
src/help.cpp
src/build.cpp
src/error.cpp
)
project(cmkr
LANGUAGES
CXX
VERSION
0.1.3
DESCRIPTION
"CMakeLists generator from TOML"
)
# third_party
set(CMKR_CMAKE_FOLDER ${CMAKE_FOLDER})
if(CMAKE_FOLDER)
set(CMAKE_FOLDER "${CMAKE_FOLDER}/third_party")
else()
set(CMAKE_FOLDER third_party)
endif()
add_subdirectory(third_party)
set(CMAKE_FOLDER ${CMKR_CMAKE_FOLDER})
# tests
set(CMKR_CMAKE_FOLDER ${CMAKE_FOLDER})
if(CMAKE_FOLDER)
set(CMAKE_FOLDER "${CMAKE_FOLDER}/tests")
else()
set(CMAKE_FOLDER tests)
endif()
add_subdirectory(tests)
set(CMAKE_FOLDER ${CMKR_CMAKE_FOLDER})
# Target cmkrlib
set(cmkrlib_SOURCES
"src/cmkrlib/args.cpp"
"src/cmkrlib/build.cpp"
"src/cmkrlib/cmake.cpp"
"src/cmkrlib/error.cpp"
"src/cmkrlib/gen.cpp"
"src/cmkrlib/help.cpp"
"src/cmkrlib/cmake.hpp"
"src/cmkrlib/enum_helper.hpp"
"src/cmkrlib/fs.hpp"
"include/args.h"
"include/build.h"
"include/error.h"
"include/gen.h"
"include/help.h"
"include/literals.h"
cmake.toml
)
add_library(cmkrlib STATIC ${cmkrlib_SOURCES})
source_group(TREE ${CMAKE_CURRENT_SOURCE_DIR} FILES ${cmkrlib_SOURCES})
add_library(cmkrlib STATIC ${CMKRLIB_SOURCES})
target_compile_features(cmkrlib PUBLIC
cxx_std_11
)
target_include_directories(cmkrlib PUBLIC
include
)
)
target_link_libraries(cmkrlib PUBLIC
toml11::toml11
toml11
ghc_filesystem
mpark_variant
)
ordered_map
)
target_compile_features(cmkrlib PUBLIC
cxx_std_11
)
# Target cmkr
set(cmkr_SOURCES
"src/main.cpp"
cmake.toml
)
add_executable(cmkr ${cmkr_SOURCES})
set(CMKR_SOURCES
src/main.cpp
src/args.cpp
)
get_directory_property(CMKR_VS_STARTUP_PROJECT DIRECTORY ${PROJECT_SOURCE_DIR} DEFINITION VS_STARTUP_PROJECT)
if(NOT CMKR_VS_STARTUP_PROJECT)
set_property(DIRECTORY ${PROJECT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT cmkr)
endif()
add_executable(cmkr ${CMKR_SOURCES})
source_group(TREE ${CMAKE_CURRENT_SOURCE_DIR} FILES ${cmkr_SOURCES})
target_link_libraries(cmkr PUBLIC
target_link_libraries(cmkr PRIVATE
cmkrlib
)
)
install(
TARGETS cmkr
DESTINATION ${CMAKE_INSTALL_PREFIX}/bin
COMPONENT cmkr
)
TARGETS
cmkr
DESTINATION
"${CMAKE_INSTALL_PREFIX}/bin"
COMPONENT
cmkr
)

@ -22,9 +22,9 @@ minimum = "3.15"
name = "app"
version = "0.1.0"
[[bin]]
[[target]]
name = "app"
type = "exe"
type = "executable"
sources = ["src/main.cpp"]
```
@ -43,19 +43,19 @@ toml11 = { git = "https://github.com/ToruNiina/toml11" }
filesystem = { git = "https://github.com/gulrak/filesystem" }
mpark_variant = { url = "https://github.com/mpark/variant/archive/v1.4.0.tar.gz" }
[[bin]]
[[target]]
name = "cmkrlib"
type = "static"
sources = ["src/cmake.cpp", "src/gen.cpp", "src/help.cpp", "src/build.cpp", "src/error.cpp"]
include-dirs = ["include"]
features = ["cxx_std_11"]
link-libs = ["toml11::toml11", "ghc_filesystem"]
include-directories = ["include"]
compile-features = ["cxx_std_11"]
link-libraries = ["toml11::toml11", "ghc_filesystem"]
[[bin]]
[[target]]
name = "cmkr"
type = "exe"
type = "executable"
sources = ["src/main.cpp", "src/args.cpp"]
link-libs = ["cmkrlib"]
link-libraries = ["cmkrlib"]
[[install]]
targets = ["cmkr"]
@ -68,7 +68,7 @@ Currently supported fields:
minimum = "3.15" # required
description = "" # optional
subdirs = [] # optional
bin-dir = "bin" # optional
build-dir = "build" # optional
cpp-flags = [] # optional
c-flags = [] # optional
link-flags = [] # optional
@ -97,15 +97,15 @@ toml11 = { git = "https://github.com/ToruNiina/toml11", tag = "v3.5.0" } # optio
APP_BUILD_STUFF = false # optional
APP_OTHER_STUFF = { comment = "does other stuff", value = false } # optional
[[bin]] # required, can define several binaries
[[target]] # required, can define several binaries
name = "app" # required
type = "exe" # required (exe || lib || shared || static || interface)
type = "executable" # required (executable || library || shared || static || interface)
sources = ["src/*.cpp"] # required, supports globbing
include-dirs = ["include"] # optional
include-directories = ["include"] # optional
alias = "" # optional
features = [] # optional
definitions = [] # optional
link-libs = [] # optional
compile-features = [] # optional
compile-definitions = [] # optional
link-libraries = [] # optional
properties = { PROPERTY1 = "property1", ... } # optional
[[test]] # optional, can define several
@ -125,13 +125,13 @@ The cmkr executable can be run from the command-line:
```
Usage: cmkr [arguments]
arguments:
init [exe|lib|shared|static|interface] Starts a new project in the same directory.
gen Generates CMakeLists.txt file.
build <extra cmake args> Run cmake and build.
install Run cmake --install. Needs admin privileges.
clean Clean the build directory.
help Show help.
version Current cmkr version.
init [executable|library|shared|static|interface] Starts a new project in the same directory.
gen Generates CMakeLists.txt file.
build <extra cmake args> Run cmake and build.
install Run cmake --install. Needs admin privileges.
clean Clean the build directory.
help Show help.
version Current cmkr version.
```
The build command invokes cmake and the default build-system on your platform (unless a generator is specified), it also accepts extra cmake build arguments:
```
@ -140,20 +140,20 @@ cmkr build --config Release
## Binary types
### exe
Executable binary.
### executable
Executable binary. Equivalent to [add_executable(name)](https://cmake.org/cmake/help/latest/command/add_executable.html).
### lib
Library, can be static or shared depending on the BUILD_SHARED_LIBS variable.
### library
Library, can be static or shared depending on the BUILD_SHARED_LIBS variable. Equivalent to [add_library()](https://cmake.org/cmake/help/latest/command/add_library.html).
### static
Static library/archive.
Static library/archive. Equivalent to [add_library(name STATIC)](https://cmake.org/cmake/help/latest/command/add_library.html).
### shared
Shared/dynamic library.
Shared/dynamic library. Equivalent to [add_library(name SHARED)](https://cmake.org/cmake/help/latest/command/add_library.html).
### interface
Header-only library.
Header-only library. Equivalent to [add_library(name INTERFACE)](https://cmake.org/cmake/help/latest/command/add_library.html).
## Roadmap
- Support more cmake fields.

@ -1,29 +1,29 @@
[cmake]
minimum = "3.15"
description = "CMakeLists generator from TOML"
version = "2.8...3.8"
[project]
cmake-before = """
# Hack to hide a warning during cmkr bootstrapping on Windows
if(CMAKE_BUILD_TYPE)
endif()
"""
name = "cmkr"
version = "0.1.4"
description = "CMakeLists generator from TOML"
languages = ["CXX"]
subdirs = ["third_party", "tests"]
[fetch-content]
toml11 = { git = "https://github.com/ToruNiina/toml11" }
filesystem = { git = "https://github.com/gulrak/filesystem" }
mpark_variant = { url = "https://github.com/mpark/variant/archive/v1.4.0.tar.gz" }
[[bin]]
name = "cmkrlib"
[target.cmkrlib]
type = "static"
sources = ["src/cmake.cpp", "src/gen.cpp", "src/help.cpp", "src/build.cpp", "src/error.cpp"]
include-dirs = ["include"]
features = ["cxx_std_11"]
link-libs = ["toml11::toml11", "ghc_filesystem", "mpark_variant"]
sources = ["src/cmkrlib/*.cpp", "src/cmkrlib/*.hpp", "include/*.h"]
include-directories = ["include"]
compile-features = ["cxx_std_11"]
link-libraries = ["toml11", "ghc_filesystem", "mpark_variant", "ordered_map"]
[[bin]]
name = "cmkr"
type = "exe"
sources = ["src/main.cpp", "src/args.cpp"]
link-libs = ["cmkrlib"]
[target.cmkr]
type = "executable"
sources = ["src/main.cpp"]
link-libraries = ["cmkrlib"]
[[install]]
targets = ["cmkr"]

@ -1,24 +1,27 @@
# This file was generated automatically by cmkr.
# Regenerate CMakeLists.txt file when necessary
include(cmkr.cmake OPTIONAL RESULT_VARIABLE CMKR_INCLUDE_RESULT)
if(CMKR_INCLUDE_RESULT)
cmkr()
endif()
cmake_minimum_required(VERSION 3.15)
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
set(example_PROJECT_VERSION 0.1.0)
project(example VERSION ${example_PROJECT_VERSION})
set(EXAMPLE_SOURCES
src/example.cpp
)
add_executable(example ${EXAMPLE_SOURCES})
# This file was generated automatically by cmkr.
# Regenerate CMakeLists.txt file when necessary
include(cmkr.cmake OPTIONAL RESULT_VARIABLE CMKR_INCLUDE_RESULT)
if(CMKR_INCLUDE_RESULT)
cmkr()
endif()
cmake_minimum_required(VERSION 3.15)
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
set(example_PROJECT_VERSION 0.1.0)
project(example VERSION ${example_PROJECT_VERSION})
set(EXAMPLE_SOURCES
src/example.cpp
cmake.toml
)
add_executable(example ${EXAMPLE_SOURCES})
source_group(TREE ${PROJECT_SOURCE_DIR} FILES ${EXAMPLE_SOURCES})

@ -7,7 +7,7 @@ minimum = "3.15"
name = "example"
version = "0.1.0"
[[bin]]
[[target]]
name = "example"
type = "exe"
type = "executable"
sources = ["src/example.cpp"]

@ -1,23 +1,41 @@
include_guard()
# Change these defaults to point to your infrastructure if desired
set(CMKR_REPO "https://github.com/MoAlyousef/cmkr" CACHE STRING "cmkr git repository")
set(CMKR_TAG "archive_84f6b39f" CACHE STRING "cmkr git tag (this needs to be available forever)")
set(CMKR_EXECUTABLE "" CACHE FILEPATH "cmkr executable")
set(CMKR_SKIP_GENERATION OFF CACHE BOOL "skip automatic cmkr generation")
# Disable cmkr if generation is disabled
if(CMKR_SKIP_GENERATION)
message(STATUS "[cmkr] Skipping automatic cmkr generation")
macro(cmkr)
endmacro()
return()
endif()
# Disable cmkr if no cmake.toml file is found
if(NOT EXISTS ${CMAKE_CURRENT_LIST_DIR}/cmake.toml)
message(STATUS "[cmkr] Not found: ${CMAKE_CURRENT_LIST_DIR}/cmake.toml")
if(NOT EXISTS "${CMAKE_CURRENT_SOURCE_DIR}/cmake.toml")
message(AUTHOR_WARNING "[cmkr] Not found: ${CMAKE_CURRENT_SOURCE_DIR}/cmake.toml")
macro(cmkr)
endmacro()
return()
endif()
# Add a build-time dependency on the contents of cmake.toml to regenerate the CMakeLists.txt when modified
configure_file(${CMAKE_CURRENT_LIST_DIR}/cmake.toml ${CMAKE_CURRENT_BINARY_DIR}/cmake.toml COPYONLY)
# Convert a Windows native path to CMake path
if(CMKR_EXECUTABLE MATCHES "\\\\")
string(REPLACE "\\" "/" CMKR_EXECUTABLE_CMAKE "${CMKR_EXECUTABLE}")
set(CMKR_EXECUTABLE "${CMKR_EXECUTABLE_CMAKE}" CACHE FILEPATH "" FORCE)
unset(CMKR_EXECUTABLE_CMAKE)
endif()
# Helper macro to execute a process (COMMAND_ERROR_IS_FATAL ANY is 3.19 and higher)
macro(cmkr_exec)
function(cmkr_exec)
execute_process(COMMAND ${ARGV} RESULT_VARIABLE CMKR_EXEC_RESULT)
if(NOT CMKR_EXEC_RESULT EQUAL 0)
message(FATAL_ERROR "cmkr_exec(${ARGV}) failed (exit code ${CMKR_EXEC_RESULT})")
endif()
endmacro()
endfunction()
# Windows-specific hack (CMAKE_EXECUTABLE_PREFIX is not set at the moment)
if(WIN32)
@ -27,86 +45,103 @@ else()
endif()
# Use cached cmkr if found
if(DEFINED CACHE{CMKR_EXECUTABLE} AND EXISTS ${CMKR_EXECUTABLE})
set(CMKR_CACHED_EXECUTABLE "${CMAKE_CURRENT_BINARY_DIR}/_cmkr/bin/${CMKR_EXECUTABLE_NAME}")
if(CMKR_EXECUTABLE AND EXISTS "${CMKR_EXECUTABLE}")
message(VERBOSE "[cmkr] Found cmkr: '${CMKR_EXECUTABLE}'")
elseif(CMKR_EXECUTABLE AND NOT CMKR_EXECUTABLE STREQUAL CMKR_CACHED_EXECUTABLE)
message(FATAL_ERROR "[cmkr] '${CMKR_EXECUTABLE}' not found")
else()
if(DEFINED CACHE{CMKR_EXECUTABLE})
message(VERBOSE "[cmkr] '${CMKR_EXECUTABLE}' not found")
set(CMKR_EXECUTABLE "${CMKR_CACHED_EXECUTABLE}" CACHE FILEPATH "Full path to cmkr executable" FORCE)
message(VERBOSE "[cmkr] Bootstrapping '${CMKR_EXECUTABLE}'")
message(STATUS "[cmkr] Fetching cmkr...")
set(CMKR_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/_cmkr")
if(EXISTS "${CMKR_DIRECTORY}")
cmkr_exec("${CMAKE_COMMAND}" -E rm -rf "${CMKR_DIRECTORY}")
endif()
set(CMKR_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}/_cmkr)
set(CMKR_EXECUTABLE ${CMAKE_CURRENT_BINARY_DIR}/_cmkr/bin/${CMKR_EXECUTABLE_NAME} CACHE INTERNAL "Full path to cmkr executable")
find_package(Git QUIET REQUIRED)
cmkr_exec("${GIT_EXECUTABLE}"
clone
--config advice.detachedHead=false
--branch ${CMKR_TAG}
--depth 1
${CMKR_REPO}
"${CMKR_DIRECTORY}"
)
message(STATUS "[cmkr] Building cmkr...")
cmkr_exec("${CMAKE_COMMAND}"
"${CMKR_DIRECTORY}"
"-B${CMKR_DIRECTORY}/build"
"-DCMAKE_BUILD_TYPE=Release"
"-DCMAKE_INSTALL_PREFIX=${CMKR_DIRECTORY}"
)
cmkr_exec("${CMAKE_COMMAND}"
--build "${CMKR_DIRECTORY}/build"
--config Release
--parallel
)
cmkr_exec("${CMAKE_COMMAND}"
--install "${CMKR_DIRECTORY}/build"
--config Release
--prefix "${CMKR_DIRECTORY}"
--component cmkr
)
if(NOT EXISTS ${CMKR_EXECUTABLE})
message(VERBOSE "[cmkr] Bootstrapping '${CMKR_EXECUTABLE}'")
message(STATUS "[cmkr] Fetching cmkr...")
if(EXISTS ${CMKR_DIRECTORY})
cmkr_exec(${CMAKE_COMMAND} -E rm -rf ${CMKR_DIRECTORY})
endif()
find_package(Git QUIET REQUIRED)
set(CMKR_REPO "https://github.com/moalyousef/cmkr")
cmkr_exec(${GIT_EXECUTABLE} clone ${CMKR_REPO} ${CMKR_DIRECTORY})
cmkr_exec(${CMAKE_COMMAND} ${CMKR_DIRECTORY} -B${CMKR_DIRECTORY}/build -DCMAKE_BUILD_TYPE=Release -DCMAKE_INSTALL_PREFIX=${CMKR_DIRECTORY})
cmkr_exec(${CMAKE_COMMAND} --build ${CMKR_DIRECTORY}/build --parallel --config Release)
cmkr_exec(${CMAKE_COMMAND} --install ${CMKR_DIRECTORY}/build --config Release --prefix ${CMKR_DIRECTORY} --component cmkr)
if(NOT EXISTS ${CMKR_EXECUTABLE})
message(FATAL_ERROR "[cmkr] Failed to bootstrap '${CMKR_EXECUTABLE}'")
endif()
cmkr_exec(${CMKR_EXECUTABLE} version OUTPUT_VARIABLE CMKR_VERSION)
string(STRIP ${CMKR_VERSION} CMKR_VERSION)
message(STATUS "[cmkr] Bootstrapped ${CMKR_EXECUTABLE}")
else()
message(VERBOSE "[cmkr] Found cmkr: '${CMKR_EXECUTABLE}'")
message(FATAL_ERROR "[cmkr] Failed to bootstrap '${CMKR_EXECUTABLE}'")
endif()
cmkr_exec("${CMKR_EXECUTABLE}" version)
message(STATUS "[cmkr] Bootstrapped ${CMKR_EXECUTABLE}")
endif()
execute_process(COMMAND ${CMKR_EXECUTABLE} version
OUTPUT_VARIABLE CMKR_VERSION
execute_process(COMMAND "${CMKR_EXECUTABLE}" version
RESULT_VARIABLE CMKR_EXEC_RESULT
)
if(NOT CMKR_EXEC_RESULT EQUAL 0)
unset(CMKR_EXECUTABLE CACHE)
message(FATAL_ERROR "[cmkr] Failed to get version, try clearing the cache and rebuilding")
endif()
string(STRIP ${CMKR_VERSION} CMKR_VERSION)
message(STATUS "[cmkr] Using ${CMKR_VERSION}")
# This is the macro that contains black magic
macro(cmkr)
# When this macro is called from the generated file, fake some internal CMake variables
get_source_file_property(CMKR_CURRENT_LIST_FILE ${CMAKE_CURRENT_LIST_FILE} CMKR_CURRENT_LIST_FILE)
get_source_file_property(CMKR_CURRENT_LIST_FILE "${CMAKE_CURRENT_LIST_FILE}" CMKR_CURRENT_LIST_FILE)
if(CMKR_CURRENT_LIST_FILE)
set(CMAKE_CURRENT_LIST_FILE ${CMKR_CURRENT_LIST_FILE})
get_filename_component(CMAKE_CURRENT_LIST_DIR ${CMAKE_CURRENT_LIST_FILE} DIRECTORY)
set(CMAKE_CURRENT_LIST_FILE "${CMKR_CURRENT_LIST_FILE}")
get_filename_component(CMAKE_CURRENT_LIST_DIR "${CMAKE_CURRENT_LIST_FILE}" DIRECTORY)
endif()
# File-based include guard (include_guard is not documented to work)
get_source_file_property(CMKR_INCLUDE_GUARD ${CMAKE_CURRENT_LIST_FILE} CMKR_INCLUDE_GUARD)
get_source_file_property(CMKR_INCLUDE_GUARD "${CMAKE_CURRENT_LIST_FILE}" CMKR_INCLUDE_GUARD)
if(NOT CMKR_INCLUDE_GUARD)
set_source_files_properties(${CMAKE_CURRENT_LIST_FILE} PROPERTIES CMKR_INCLUDE_GUARD TRUE)
set_source_files_properties("${CMAKE_CURRENT_LIST_FILE}" PROPERTIES CMKR_INCLUDE_GUARD TRUE)
file(SHA256 "${CMAKE_CURRENT_LIST_FILE}" CMKR_LIST_FILE_SHA256_PRE)
# Generate CMakeLists.txt
cmkr_exec(${CMKR_EXECUTABLE} gen -y
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
OUTPUT_VARIABLE CMKR_GEN_OUTPUT
cmkr_exec("${CMKR_EXECUTABLE}" gen
WORKING_DIRECTORY "${CMAKE_CURRENT_SOURCE_DIR}"
)
string(STRIP ${CMKR_GEN_OUTPUT} CMKR_GEN_OUTPUT)
message(STATUS "[cmkr] ${CMKR_GEN_OUTPUT}")
# Copy the now-generated CMakeLists.txt to CMakerLists.txt
# This is done because you cannot include() a file you are currently in
set(CMKR_TEMP_FILE ${CMAKE_CURRENT_LIST_DIR}/CMakerLists.txt)
configure_file(CMakeLists.txt ${CMKR_TEMP_FILE} COPYONLY)
# Add the macro required for the hack at the start of the cmkr macro
set_source_files_properties(${CMKR_TEMP_FILE} PROPERTIES
CMKR_CURRENT_LIST_FILE ${CMAKE_CURRENT_LIST_FILE}
)
# 'Execute' the newly-generated CMakeLists.txt
include(${CMKR_TEMP_FILE})
# Delete the generated file
file(REMOVE ${CMKR_TEMP_FILE})
# Do not execute the rest of the original CMakeLists.txt
return()
file(SHA256 "${CMAKE_CURRENT_LIST_FILE}" CMKR_LIST_FILE_SHA256_POST)
if(NOT CMKR_LIST_FILE_SHA256_PRE STREQUAL CMKR_LIST_FILE_SHA256_POST)
# Copy the now-generated CMakeLists.txt to CMakerLists.txt
# This is done because you cannot include() a file you are currently in
set(CMKR_TEMP_FILE "${CMAKE_CURRENT_SOURCE_DIR}/CMakerLists.txt")
configure_file(CMakeLists.txt "${CMKR_TEMP_FILE}" COPYONLY)
# Add the macro required for the hack at the start of the cmkr macro
set_source_files_properties("${CMKR_TEMP_FILE}" PROPERTIES
CMKR_CURRENT_LIST_FILE "${CMAKE_CURRENT_LIST_FILE}"
)
# 'Execute' the newly-generated CMakeLists.txt
include("${CMKR_TEMP_FILE}")
# Delete the generated file
file(REMOVE "${CMKR_TEMP_FILE}")
# Do not execute the rest of the original CMakeLists.txt
return()
endif()
# Resume executing the unmodified CMakeLists.txt
endif()
endmacro()

@ -6,7 +6,7 @@ namespace gen {
int generate_project(const char *typ);
int generate_cmake(const char *path);
int generate_cmake(const char *path, bool root = true);
} // namespace gen
} // namespace cmkr

@ -1,20 +1,19 @@
#pragma once
const char *hello_world = R"lit(
static const char *hello_world = &R"lit(
#include <iostream>
int %s() {
std::cout << "Hello World!\n";
return 0;
}
)lit"[1]; // skip initial newline
)lit";
const char *cmake_toml = R"lit(
static const char *cmake_toml = &R"lit(
[cmake]
minimum = "3.15"
version = "3.15"
# subdirs = []
# bin-dir = ""
# build-dir = ""
# cpp-flags = []
# c-flags = []
# link-flags = []
@ -31,18 +30,17 @@ version = "0.1.0"
# [options]
[[bin]]
[[target]]
name = "%s"
type = "%s"
sources = ["src/*.cpp"]
include-dirs = ["include"]
include-directories = ["include"]
# alias = ""
# features = []
# definitions = []
# link-libs = []
# compile-features = []
# compile-definitions = []
# link-libraries = []
[[install]]
%s = ["%s"]
destination = "${CMAKE_INSTALL_PREFIX}/%s"
)lit";
)lit"[1]; // skip initial newline

@ -1,242 +0,0 @@
#include "cmake.hpp"
#include "fs.hpp"
#include <stdexcept>
#include <toml.hpp>
namespace cmkr {
namespace cmake {
namespace detail {
std::vector<std::string> to_string_vec(
const std::vector<toml::basic_value<toml::discard_comments, std::unordered_map, std::vector>>
&vals) {
std::vector<std::string> temp;
for (const auto &val : vals)
temp.push_back(val.as_string());
return temp;
}
} // namespace detail
CMake::CMake(const std::string &path, bool build) {
if (!fs::exists(fs::path(path) / "cmake.toml")) {
throw std::runtime_error("[cmkr] error: No cmake.toml was found!");
}
const auto toml = toml::parse((fs::path(path) / "cmake.toml").string());
if (build) {
if (toml.contains("cmake")) {
const auto &cmake = toml::find(toml, "cmake");
if (cmake.contains("bin-dir")) {
bin_dir = toml::find(cmake, "bin-dir").as_string();
}
if (cmake.contains("generator")) {
generator = toml::find(cmake, "generator").as_string();
}
if (cmake.contains("config")) {
config = toml::find(cmake, "config").as_string();
}
if (cmake.contains("arguments")) {
gen_args = detail::to_string_vec(toml::find(cmake, "arguments").as_array());
}
}
} else {
if (toml.contains("cmake")) {
const auto &cmake = toml::find(toml, "cmake");
cmake_version = toml::find(cmake, "minimum").as_string();
if (cmake.contains("description")) {
desc = toml::find(cmake, "description").as_string();
}
if (cmake.contains("cpp-flags")) {
cppflags = detail::to_string_vec(toml::find(cmake, "cpp-flags").as_array());
}
if (cmake.contains("c-flags")) {
cflags = detail::to_string_vec(toml::find(cmake, "c-flags").as_array());
}
if (cmake.contains("link-flags")) {
linkflags = detail::to_string_vec(toml::find(cmake, "link-flags").as_array());
}
if (cmake.contains("subdirs")) {
subdirs = detail::to_string_vec(toml::find(cmake, "subdirs").as_array());
}
}
if (toml.contains("project")) {
const auto &project = toml::find(toml, "project");
proj_name = toml::find(project, "name").as_string();
proj_version = toml::find(project, "version").as_string();
}
if (toml.contains("settings")) {
using set_map =
std::map<std::string, toml::basic_value<toml::discard_comments, std::unordered_map,
std::vector>>;
const auto &sets = toml::find<set_map>(toml, "settings");
for (const auto set : sets) {
Setting s;
s.name = set.first;
if (set.second.is_boolean()) {
s.val = set.second.as_boolean();
} else if (set.second.is_string()) {
s.val = set.second.as_string();
} else {
if (set.second.contains("comment")) {
s.comment = toml::find(set.second, "comment").as_string();
}
if (set.second.contains("value")) {
auto v = toml::find(set.second, "value");
if (v.is_boolean()) {
s.val = v.as_boolean();
} else {
s.val = v.as_string();
}
}
if (set.second.contains("cache")) {
s.cache = toml::find(set.second, "cache").as_boolean();
}
if (set.second.contains("force")) {
s.force = toml::find(set.second, "force").as_boolean();
}
}
settings.push_back(s);
}
}
if (toml.contains("options")) {
using opts_map =
std::map<std::string, toml::basic_value<toml::discard_comments, std::unordered_map,
std::vector>>;
const auto &opts = toml::find<opts_map>(toml, "options");
for (const auto opt : opts) {
Option o;
o.name = opt.first;
if (opt.second.is_boolean()) {
o.val = opt.second.as_boolean();
} else {
if (opt.second.contains("comment")) {
o.comment = toml::find(opt.second, "comment").as_string();
}
if (opt.second.contains("value")) {
o.val = toml::find(opt.second, "value").as_boolean();
}
}
options.push_back(o);
}
}
if (toml.contains("find-package")) {
using pkg_map =
std::map<std::string, toml::basic_value<toml::discard_comments, std::unordered_map,
std::vector>>;
const auto &pkgs = toml::find<pkg_map>(toml, "find-package");
for (const auto &pkg : pkgs) {
Package p;
p.name = pkg.first;
if (pkg.second.is_string()) {
p.version = pkg.second.as_string();
} else {
if (pkg.second.contains("version")) {
p.version = toml::find(pkg.second, "version").as_string();
}
if (pkg.second.contains("required")) {
p.required = toml::find(pkg.second, "required").as_boolean();
}
if (pkg.second.contains("components")) {
p.components =
detail::to_string_vec(toml::find(pkg.second, "components").as_array());
}
}
packages.push_back(p);
}
}
if (toml.contains("fetch-content")) {
using content_map = std::map<std::string, std::map<std::string, std::string>>;
contents = toml::find<content_map>(toml, "fetch-content");
}
if (toml.contains("bin")) {
const auto &bins = toml::find(toml, "bin").as_array();
for (const auto &bin : bins) {
Bin b;
b.name = toml::find(bin, "name").as_string();
b.type = toml::find(bin, "type").as_string();
b.sources = detail::to_string_vec(toml::find(bin, "sources").as_array());
if (bin.contains("include-dirs")) {
b.include_dirs =
detail::to_string_vec(toml::find(bin, "include-dirs").as_array());
}
if (bin.contains("link-libs")) {
b.link_libs = detail::to_string_vec(toml::find(bin, "link-libs").as_array());
}
if (bin.contains("features")) {
b.features = detail::to_string_vec(toml::find(bin, "features").as_array());
}
if (bin.contains("definitions")) {
b.defines = detail::to_string_vec(toml::find(bin, "definitions").as_array());
}
if (bin.contains("alias")) {
b.alias = toml::find(bin, "alias").as_string();
}
if (bin.contains("properties")) {
using prop_map = std::map<std::string, std::string>;
b.properties = toml::find<prop_map>(bin, "properties");
}
binaries.push_back(b);
}
}
if (toml.contains("test")) {
const auto &ts = toml::find(toml, "test").as_array();
for (const auto &t : ts) {
Test test;
test.name = toml::find(t, "name").as_string();
test.cmd = toml::find(t, "type").as_string();
if (t.contains("arguments")) {
test.args = detail::to_string_vec(toml::find(t, "arguments").as_array());
}
tests.push_back(test);
}
}
if (toml.contains("install")) {
const auto &ts = toml::find(toml, "install").as_array();
for (const auto &t : ts) {
Install inst;
if (t.contains("targets")) {
inst.targets = detail::to_string_vec(toml::find(t, "targets").as_array());
}
if (t.contains("files")) {
inst.files = detail::to_string_vec(toml::find(t, "files").as_array());
}
if (t.contains("dirs")) {
inst.dirs = detail::to_string_vec(toml::find(t, "dirs").as_array());
}
if (t.contains("configs")) {
inst.configs = detail::to_string_vec(toml::find(t, "configs").as_array());
}
inst.destination = toml::find(t, "destination").as_string();
installs.push_back(inst);
}
}
}
}
} // namespace cmake
} // namespace cmkr

@ -1,84 +0,0 @@
#pragma once
#include <map>
#include <stdexcept>
#include <string>
#include <vector>
#include <mpark/variant.hpp>
namespace cmkr {
namespace cmake {
struct Setting {
std::string name;
std::string comment;
mpark::variant<bool, std::string> val;
bool cache = false;
bool force = false;
};
struct Option {
std::string name;
std::string comment;
bool val;
};
struct Package {
std::string name;
std::string version;
bool required = true;
std::vector<std::string> components;
};
struct Bin {
std::string name;
std::string type;
std::vector<std::string> sources;
std::vector<std::string> include_dirs;
std::vector<std::string> features;
std::vector<std::string> defines;
std::vector<std::string> link_libs;
std::string alias;
std::map<std::string, std::string> properties;
};
struct Test {
std::string name;
std::string cmd;
std::vector<std::string> args;
};
struct Install {
std::vector<std::string> targets;
std::vector<std::string> files;
std::vector<std::string> dirs;
std::vector<std::string> configs;
std::string destination;
};
struct CMake {
std::string cmake_version = "3.15";
std::string desc;
std::string bin_dir = "bin";
std::string generator;
std::string config;
std::vector<std::string> subdirs;
std::vector<std::string> cppflags;
std::vector<std::string> cflags;
std::vector<std::string> linkflags;
std::vector<std::string> gen_args;
std::vector<std::string> build_args;
std::string proj_name;
std::string proj_version;
std::vector<Setting> settings;
std::vector<Option> options;
std::vector<Package> packages;
std::map<std::string, std::map<std::string, std::string>> contents;
std::vector<Bin> binaries;
std::vector<Test> tests;
std::vector<Install> installs;
CMake(const std::string &path, bool build);
};
} // namespace cmake
} // namespace cmkr

@ -18,24 +18,10 @@ const char *handle_args(int argc, char **argv) {
args.push_back(argv[i]);
if (args.size() < 2)
return "Please provide command line arguments!";
throw std::runtime_error(cmkr::help::message());
std::string main_arg = args[1];
if (main_arg == "gen") {
bool cont = false;
if (args.size() > 2 && args[2] == "-y")
cont = true;
auto current_path = fs::current_path();
if (fs::exists(current_path / "CMakeLists.txt") && cont == false) {
std::cout
<< "A CMakeLists.txt file already exists in the current directory.\nWould you "
"like to overwrite it?[y/n]"
<< std::endl;
std::string resp;
std::cin >> resp;
if (resp != "y")
return "CMake generation aborted!";
}
auto ret = cmkr::gen::generate_cmake(current_path.string().c_str());
auto ret = cmkr::gen::generate_cmake(fs::current_path().string().c_str());
if (ret)
return "CMake generation error!";
return "CMake generation successful!";
@ -44,10 +30,10 @@ const char *handle_args(int argc, char **argv) {
} else if (main_arg == "version") {
return cmkr::help::version();
} else if (main_arg == "init") {
std::string typ = "exe";
std::string type = "executable";
if (args.size() > 2)
typ = args[2];
auto ret = cmkr::gen::generate_project(typ.c_str());
type = args[2];
auto ret = cmkr::gen::generate_project(type.c_str());
if (ret)
return "Initialization failure!";
return "Directory initialized!";
@ -67,7 +53,7 @@ const char *handle_args(int argc, char **argv) {
return "CMake clean error!";
return "Cleaned build directory!";
} else {
return "Unknown argument!";
throw std::runtime_error(cmkr::help::message());
}
}
} // namespace args

@ -22,11 +22,10 @@ int run(int argc, char **argv) {
}
std::stringstream ss;
if (!fs::exists("CMakeLists.txt"))
if (gen::generate_cmake("."))
throw std::runtime_error("[cmkr] error: CMake generation failure!");
if (gen::generate_cmake(fs::current_path().string().c_str()))
throw std::runtime_error("CMake generation failure!");
ss << "cmake -S. -B" << cmake.bin_dir << " ";
ss << "cmake -S. -B" << cmake.build_dir << " ";
if (!cmake.generator.empty()) {
ss << "-G \"" << cmake.generator << "\" ";
@ -39,7 +38,7 @@ int run(int argc, char **argv) {
ss << "-D" << arg << " ";
}
}
ss << "&& cmake --build " << cmake.bin_dir << " --parallel";
ss << "&& cmake --build " << cmake.build_dir << " --parallel";
if (argc > 2) {
for (const auto &arg : cmake.build_args) {
ss << " " << arg;
@ -52,16 +51,16 @@ int run(int argc, char **argv) {
int clean() {
bool ret = false;
cmake::CMake cmake(".", true);
if (fs::exists(cmake.bin_dir)) {
ret = fs::remove_all(cmake.bin_dir);
fs::create_directory(cmake.bin_dir);
if (fs::exists(cmake.build_dir)) {
ret = fs::remove_all(cmake.build_dir);
fs::create_directory(cmake.build_dir);
}
return !ret;
}
int install() {
cmake::CMake cmake(".", false);
auto cmd = "cmake --install " + cmake.bin_dir;
auto cmd = "cmake --install " + cmake.build_dir;
return ::system(cmd.c_str());
}
} // namespace build

@ -0,0 +1,243 @@
#include "cmake.hpp"
#include "enum_helper.hpp"
#include "fs.hpp"
#include <stdexcept>
#include <toml.hpp>
#include <tsl/ordered_map.h>
template <>
const char *enumStrings<cmkr::cmake::TargetType>::data[] = {"executable", "library", "shared", "static", "interface", "custom"};
namespace cmkr {
namespace cmake {
using TomlBasicValue = toml::basic_value<toml::preserve_comments, tsl::ordered_map, std::vector>;
template <typename EnumType>
static EnumType to_enum(const std::string &str, const std::string &help_name) {
EnumType value;
try {
std::stringstream ss(str);
ss >> enumFromString(value);
} catch (std::invalid_argument &) {
std::string supported;
for (const auto &s : enumStrings<EnumType>::data) {
if (!supported.empty()) {
supported += ", ";
}
supported += s;
}
throw std::runtime_error("Unknown " + help_name + "'" + str + "'! Supported types are: " + supported);
}
return value;
}
template <typename T>
static void get_optional(const TomlBasicValue &v, const toml::key &ky, T &destination) {
if (v.contains(ky)) {
destination = toml::find<T>(v, ky);
}
}
CMake::CMake(const std::string &path, bool build) {
if (!fs::exists(fs::path(path) / "cmake.toml")) {
throw std::runtime_error("No cmake.toml was found!");
}
const auto toml = toml::parse<toml::preserve_comments, tsl::ordered_map, std::vector>((fs::path(path) / "cmake.toml").string());
if (build) {
if (toml.contains("cmake")) {
const auto &cmake = toml::find(toml, "cmake");
if (cmake.contains("bin-dir")) {
throw std::runtime_error("bin-dir has been renamed to build-dir");
}
get_optional(cmake, "build-dir", build_dir);
get_optional(cmake, "generator", generator);
get_optional(cmake, "config", config);
get_optional(cmake, "arguments", gen_args);
}
} else {
if (toml.contains("cmake")) {
const auto &cmake = toml::find(toml, "cmake");
cmake_version = toml::find(cmake, "version").as_string();
get_optional(cmake, "cmkr-include", cmkr_include);
get_optional(cmake, "cpp-flags", cppflags);
get_optional(cmake, "c-flags", cflags);
get_optional(cmake, "link-flags", linkflags);
}
if (toml.contains("project")) {
const auto &project = toml::find(toml, "project");
project_name = toml::find(project, "name").as_string();
get_optional(project, "version", project_version);
get_optional(project, "description", project_description);
get_optional(project, "languages", project_languages);
get_optional(project, "cmake-before", cmake_before);
get_optional(project, "cmake-after", cmake_after);
get_optional(project, "include-before", include_before);
get_optional(project, "include-after", include_after);
get_optional(project, "subdirs", subdirs);
}
if (toml.contains("settings")) {
using set_map = std::map<std::string, TomlBasicValue>;
const auto &sets = toml::find<set_map>(toml, "settings");
for (const auto &set : sets) {
Setting s;
s.name = set.first;
if (set.second.is_boolean()) {
s.val = set.second.as_boolean();
} else if (set.second.is_string()) {
s.val = set.second.as_string();
} else {
get_optional(set.second, "comment", s.comment);
if (set.second.contains("value")) {
auto v = toml::find(set.second, "value");
if (v.is_boolean()) {
s.val = v.as_boolean();
} else {
s.val = v.as_string();
}
}
get_optional(set.second, "cache", s.cache);
get_optional(set.second, "force", s.force);
}
settings.push_back(s);
}
}
if (toml.contains("options")) {
using opts_map = tsl::ordered_map<std::string, TomlBasicValue>;
const auto &opts = toml::find<opts_map>(toml, "options");
for (const auto &opt : opts) {
Option o;
o.name = opt.first;
if (opt.second.is_boolean()) {
o.val = opt.second.as_boolean();
} else {
get_optional(opt.second, "comment", o.comment);
get_optional(opt.second, "value", o.val);
}
options.push_back(o);
}
}
if (toml.contains("find-package")) {
using pkg_map = tsl::ordered_map<std::string, TomlBasicValue>;
const auto &pkgs = toml::find<pkg_map>(toml, "find-package");
for (const auto &pkg : pkgs) {
Package p;
p.name = pkg.first;
if (pkg.second.is_string()) {
p.version = pkg.second.as_string();
} else {
get_optional(pkg.second, "version", p.version);
get_optional(pkg.second, "required", p.required);
get_optional(pkg.second, "config", p.config);
get_optional(pkg.second, "components", p.components);
}
packages.push_back(p);
}
}
// TODO: refactor to std::vector<Content> instead of this hacky thing?
get_optional(toml, "fetch-content", contents);
if (toml.contains("bin")) {
throw std::runtime_error("[[bin]] has been renamed to [[target]]");
}
if (toml.contains("target")) {
const auto &ts = toml::find(toml, "target").as_table();
for (const auto &itr : ts) {
const auto &t = itr.second;
Target target;
target.name = itr.first;
target.type = to_enum<TargetType>(toml::find(t, "type").as_string(), "target type");
get_optional(t, "sources", target.sources);
#define renamed(from, to) \
if (t.contains(from)) { \
throw std::runtime_error(from "has been renamed to " to); \
}
renamed("include-dirs", "include-directories");
renamed("link-libs", "link-libraries");
renamed("defines", "compile-definitions");
renamed("features", "compile-features");
#undef renamed
get_optional(t, "compile-definitions", target.compile_definitions);
get_optional(t, "compile-features", target.compile_features);
get_optional(t, "compile-options", target.compile_options);
get_optional(t, "include-directories", target.include_directories);
get_optional(t, "link-directories", target.link_directories);
get_optional(t, "link-libraries", target.link_libraries);
get_optional(t, "link-options", target.link_options);
get_optional(t, "precompile-headers", target.precompile_headers);
if (t.contains("alias")) {
target.alias = toml::find(t, "alias").as_string();
}
if (t.contains("properties")) {
using prop_map = tsl::ordered_map<std::string, std::string>;
target.properties = toml::find<prop_map>(t, "properties");
}
get_optional(t, "cmake-before", target.cmake_before);
get_optional(t, "cmake-after", target.cmake_after);
get_optional(t, "include-before", target.include_before);
get_optional(t, "include-after", target.include_after);
targets.push_back(target);
}
}
if (toml.contains("test")) {
const auto &ts = toml::find(toml, "test").as_array();
for (const auto &t : ts) {
Test test;
test.name = toml::find(t, "name").as_string();
get_optional(t, "configurations", test.configurations);
get_optional(t, "working-directory", test.working_directory);
test.command = toml::find(t, "command").as_string();
get_optional(t, "arguments", test.arguments);
tests.push_back(test);
}
}
if (toml.contains("install")) {
const auto &ts = toml::find(toml, "install").as_array();
for (const auto &t : ts) {
Install inst;
get_optional(t, "targets", inst.targets);
get_optional(t, "files", inst.files);
get_optional(t, "dirs", inst.dirs);
get_optional(t, "configs", inst.configs);
inst.destination = toml::find(t, "destination").as_string();
installs.push_back(inst);
}
}
if (toml.contains("vcpkg")) {
const auto &v = toml::find(toml, "vcpkg");
vcpkg.version = toml::find(v, "version").as_string();
vcpkg.packages = toml::find<decltype(vcpkg.packages)>(v, "packages");
// This allows the user to use a custom pmm version if desired
if (contents.count("pmm") == 0) {
contents["pmm"]["url"] = "https://github.com/vector-of-bool/pmm/archive/refs/tags/1.5.1.tar.gz";
// Hack to not execute pmm's example CMakeLists.txt
contents["pmm"]["SOURCE_SUBDIR"] = "pmm";
}
}
}
}
} // namespace cmake
} // namespace cmkr

@ -0,0 +1,122 @@
#pragma once
#include <map>
#include <mpark/variant.hpp>
#include <stdexcept>
#include <string>
#include <tsl/ordered_map.h>
#include <vector>
namespace cmkr {
namespace cmake {
struct Setting {
std::string name;
std::string comment;
mpark::variant<bool, std::string> val;
bool cache = false;
bool force = false;
};
struct Option {
std::string name;
std::string comment;
bool val = false;
};
struct Package {
std::string name;
std::string version;
bool required = true;
bool config = true;
std::vector<std::string> components;
};
struct Vcpkg {
std::string version;
std::vector<std::string> packages;
};
enum TargetType {
target_executable,
target_library,
target_shared,
target_static,
target_interface,
target_custom,
};
struct Target {
std::string name;
TargetType type = {};
// https://cmake.org/cmake/help/latest/manual/cmake-commands.7.html#project-commands
std::vector<std::string> compile_definitions;
std::vector<std::string> compile_features;
std::vector<std::string> compile_options;
std::vector<std::string> include_directories;
std::vector<std::string> link_directories;
std::vector<std::string> link_libraries;
std::vector<std::string> link_options;
std::vector<std::string> precompile_headers;
std::vector<std::string> sources;
std::string alias;
tsl::ordered_map<std::string, std::string> properties;
std::string cmake_before;
std::string cmake_after;
std::vector<std::string> include_before;
std::vector<std::string> include_after;
};
struct Test {
std::string name;
std::vector<std::string> configurations;
std::string working_directory;
std::string command;
std::vector<std::string> arguments;
};
struct Install {
std::vector<std::string> targets;
std::vector<std::string> files;
std::vector<std::string> dirs;
std::vector<std::string> configs;
std::string destination;
};
struct CMake {
// This is the CMake version required to use all cmkr versions.
std::string cmake_version = "3.15";
std::string cmkr_include = "cmkr.cmake";
std::string build_dir = "build";
std::string generator;
std::string config;
std::vector<std::string> subdirs;
std::vector<std::string> cppflags;
std::vector<std::string> cflags;
std::vector<std::string> linkflags;
std::vector<std::string> gen_args;
std::vector<std::string> build_args;
std::string project_name;
std::string project_version;
std::string project_description;
std::vector<std::string> project_languages;
std::string cmake_before;
std::string cmake_after;
std::vector<std::string> include_before;
std::vector<std::string> include_after;
std::vector<Setting> settings;
std::vector<Option> options;
std::vector<Package> packages;
Vcpkg vcpkg;
tsl::ordered_map<std::string, std::map<std::string, std::string>> contents;
std::vector<Target> targets;
std::vector<Test> tests;
std::vector<Install> installs;
CMake(const std::string &path, bool build);
};
} // namespace cmake
} // namespace cmkr

@ -0,0 +1,69 @@
// https://codereview.stackexchange.com/a/14315
#include <algorithm>
#include <iostream>
#include <sstream>
#include <string>
// This is the type that will hold all the strings.
// Each enumeration type will declare its own specialization.
// Any enum that does not have a specialization will generate a compiler error
// indicating that there is no definition of this variable (as there should be
// be no definition of a generic version).
template <typename T>
struct enumStrings {
static char const *data[];
};
// This is a utility type.
// Created automatically. Should not be used directly.
template <typename T>
struct enumRefHolder {
T &enumVal;
enumRefHolder(T &enumVal) : enumVal(enumVal) {}
};
template <typename T>
struct enumConstRefHolder {
T const &enumVal;
enumConstRefHolder(T const &enumVal) : enumVal(enumVal) {}
};
// The next two functions do the actual work of reading/writing an
// enum as a string.
template <typename T>
std::ostream &operator<<(std::ostream &str, enumConstRefHolder<T> const &data) {
return str << enumStrings<T>::data[data.enumVal];
}
template <typename T>
std::istream &operator>>(std::istream &str, enumRefHolder<T> const &data) {
std::string value;
str >> value;
// These two can be made easier to read in C++11
// using std::begin() and std::end()
//
static auto begin = std::begin(enumStrings<T>::data);
static auto end = std::end(enumStrings<T>::data);
auto find = std::find(begin, end, value);
if (find != end) {
data.enumVal = static_cast<T>(std::distance(begin, find));
} else {
throw std::invalid_argument("");
}
return str;
}
// This is the public interface:
// use the ability of function to deduce their template type without
// being explicitly told to create the correct type of enumRefHolder<T>
template <typename T>
enumConstRefHolder<T> enumToString(T const &e) {
return enumConstRefHolder<T>(e);
}
template <typename T>
enumRefHolder<T> enumFromString(T &e) {
return enumRefHolder<T>(e);
}

@ -0,0 +1,698 @@
#include "gen.h"
#include "cmake.hpp"
#include "error.h"
#include "literals.h"
#include "fs.hpp"
#include <cassert>
#include <cstdio>
#include <cstring>
#include <fstream>
#include <new>
#include <sstream>
#include <stdexcept>
#include <string>
namespace cmkr {
namespace gen {
inline std::string to_upper(const std::string &str) {
std::string temp;
temp.reserve(str.size());
for (auto c : str) {
temp.push_back(::toupper(c));
}
return temp;
}
template <typename... Args>
std::string format(const char *fmt, Args... args) {
auto sz = snprintf(nullptr, 0, fmt, args...) + 1;
char *buf = new char[sz];
int ret = snprintf(buf, sz, fmt, args...);
if (ret != sz - 1)
throw std::runtime_error("Error formatting string!");
std::string temp(buf, buf + sz - 1);
delete[] buf;
return temp;
}
static std::vector<std::string> expand_cmake_path(const fs::path &name, const fs::path &toml_dir) {
std::vector<std::string> temp;
auto extract_suffix = [](const fs::path &base, const fs::path &full) {
// TODO: delet this
auto fullpath = full.string();
auto base_len = base.string().length();
auto delet = fullpath.substr(base_len + 1, fullpath.length() - base_len);
return delet;
};
auto stem = name.filename().stem().string();
auto ext = name.extension();
if (stem == "*") {
for (const auto &f : fs::directory_iterator(toml_dir / name.parent_path(), fs::directory_options::follow_directory_symlink)) {
if (!f.is_directory() && f.path().extension() == ext) {
temp.push_back(extract_suffix(toml_dir, f));
}
}
} else if (stem == "**") {
for (const auto &f : fs::recursive_directory_iterator(toml_dir / name.parent_path(), fs::directory_options::follow_directory_symlink)) {
if (!f.is_directory() && f.path().extension() == ext) {
temp.push_back(extract_suffix(toml_dir, f.path()));
}
}
} else {
temp.push_back(name.string());
}
// Normalize all paths to work with CMake (it needs a / on Windows as well)
for (auto &path : temp) {
std::replace(path.begin(), path.end(), '\\', '/');
}
// Sort paths alphabetically for consistent cross-OS generation
std::sort(temp.begin(), temp.end());
return temp;
}
static std::vector<std::string> expand_cmake_paths(const std::vector<std::string> &sources, const fs::path &toml_dir) {
// TODO: add duplicate checking
std::vector<std::string> result;
for (const auto &src : sources) {
auto expanded = expand_cmake_path(src, toml_dir);
for (const auto &f : expanded) {
result.push_back(f);
}
}
return result;
}
int generate_project(const char *str) {
fs::create_directory("src");
fs::create_directory("include");
const auto dir_name = fs::current_path().stem().string();
std::string mainbuf;
std::string installed;
std::string target;
std::string dest;
if (!strcmp(str, "executable")) {
mainbuf = format(hello_world, "main");
installed = "targets";
target = dir_name;
dest = "bin";
} else if (!strcmp(str, "static") || !strcmp(str, "shared") || !strcmp(str, "library")) {
mainbuf = format(hello_world, "test");
installed = "targets";
target = dir_name;
dest = "lib";
} else if (!strcmp(str, "interface")) {
installed = "files";
target = "include/*.h";
dest = "include/" + dir_name;
} else {
throw std::runtime_error("Unknown project type " + std::string(str) +
"! Supported types are: executable, library, shared, static, interface");
}
const auto tomlbuf = format(cmake_toml, dir_name.c_str(), dir_name.c_str(), str, installed.c_str(), target.c_str(), dest.c_str());
if (strcmp(str, "interface")) {
std::ofstream ofs("src/main.cpp");
if (ofs.is_open()) {
ofs << mainbuf;
}
ofs.flush();
ofs.close();
}
std::ofstream ofs2("cmake.toml");
if (ofs2.is_open()) {
ofs2 << tomlbuf;
}
ofs2.flush();
ofs2.close();
return 0;
}
struct CommandEndl {
std::stringstream &ss;
CommandEndl(std::stringstream &ss) : ss(ss) {}
void endl() { ss << '\n'; }
};
// Credit: JustMagic
struct Command {
std::stringstream &ss;
int depth = 0;
std::string command;
bool first_arg = true;
bool had_newline = false;
bool generated = false;
Command(std::stringstream &ss, int depth, const std::string &command) : ss(ss), depth(depth), command(command) {}
~Command() {
if (!generated) {
assert(false && "Incorrect usage of cmd()");
}
}
std::string quote(const std::string &str) {
// Don't quote arguments that don't need quoting
if (str.find(' ') == std::string::npos && str.find('\"') == std::string::npos && str.find('/') == std::string::npos) {
return str;
}
std::string result;
result += "\"";
for (char ch : str) {
switch (ch) {
case '\\':
case '\"':
result += '\\';
default:
result += ch;
break;
}
}
result += "\"";
return result;
}
static std::string indent(int n) {
std::string result;
for (int i = 0; i < n; i++) {
result += '\t';
}
return result;
}
template <class T>
bool print_arg(const std::vector<T> &vec) {
if (vec.empty()) {
return true;
}
had_newline = true;
for (const auto &value : vec) {
print_arg(value);
}
return true;
}
template <class Key, class Value>
bool print_arg(const tsl::ordered_map<Key, Value> &map) {
if (map.empty()) {
return true;
}
for (const auto &itr : map) {
print_arg(itr);
}
return true;
}
template <class K>
bool print_arg(const std::pair<K, std::vector<std::string>> &kv) {
if (kv.second.empty()) {
return true;
}
had_newline = true;
print_arg(kv.first);
depth++;
for (const auto &s : kv.second) {
print_arg(s);
}
depth--;
return true;
}
template <class K, class V>
bool print_arg(const std::pair<K, V> &kv) {
if (kv.second.empty()) {
return true;
}
had_newline = true;
print_arg(kv.first);
depth++;
print_arg(kv.second);
depth--;
return true;
}
template <class T>
bool print_arg(const T &value, bool indentation = true) {
std::stringstream tmp;
tmp << value;
auto str = tmp.str();
if (str.empty()) {
return true;
}
if (indentation) {
if (had_newline) {
first_arg = false;
ss << '\n' << indent(depth + 1);
} else if (first_arg) {
first_arg = false;
} else {
ss << ' ';
}
}
ss << quote(str);
return true;
}
template <class... Ts>
CommandEndl operator()(Ts &&...values) {
generated = true;
ss << indent(depth) << command << '(';
(void)std::initializer_list<bool>{print_arg(values)...};
if (had_newline)
ss << '\n';
ss << ")\n";
return CommandEndl(ss);
}
};
int generate_cmake(const char *path, bool root) {
if (!fs::exists(fs::path(path) / "cmake.toml")) {
throw std::runtime_error("No cmake.toml found!");
}
// Helper lambdas for more convenient CMake generation
std::stringstream ss;
int indent = 0;
auto cmd = [&ss, &indent](const std::string &command) {
if (command.empty())
throw std::invalid_argument("command cannot be empty");
if (command == "if") {
indent++;
return Command(ss, indent - 1, command);
} else if (command == "else" || command == "elseif") {
return Command(ss, indent - 1, command);
} else if (command == "endif") {
indent--;
}
return Command(ss, indent, command);
};
auto comment = [&ss, &indent](const std::string &comment) {
ss << Command::indent(indent) << "# " << comment << '\n';
return CommandEndl(ss);
};
auto endl = [&ss]() { ss << '\n'; };
auto tolf = [](const std::string &str) {
std::string result;
for (char ch : str) {
if (ch != '\r') {
result += ch;
}
}
return result;
};
auto inject_includes = [&cmd, &endl](const std::vector<std::string> &includes) {
if (!includes.empty()) {
for (const auto &file : includes) {
// TODO: warn/error if file doesn't exist?
cmd("include")(file);
}
endl();
}
};
auto inject_cmake = [&ss, &tolf](const std::string &cmake) {
if (!cmake.empty()) {
if (cmake.back() == '\"') {
throw std::runtime_error("Detected additional \" at the end of cmake block");
}
ss << tolf(cmake) << "\n\n";
}
};
// TODO: add link with proper documentation
comment("This file was generated automatically by cmkr.").endl();
cmake::CMake cmake(path, false);
if (root) {
cmd("cmake_minimum_required")("VERSION", cmake.cmake_version).endl();
comment("Regenerate CMakeLists.txt automatically in the root project");
cmd("set")("CMKR_ROOT_PROJECT", "OFF");
// clang-format off
cmd("if")("CMAKE_CURRENT_SOURCE_DIR", "STREQUAL", "CMAKE_SOURCE_DIR");
cmd("set")("CMKR_ROOT_PROJECT", "ON").endl();
comment("Bootstrap cmkr");
cmd("include")(cmake.cmkr_include, "OPTIONAL", "RESULT_VARIABLE", "CMKR_INCLUDE_RESULT");
cmd("if")("CMKR_INCLUDE_RESULT");
cmd("cmkr")();
cmd("endif")().endl();
comment("Enable folder support");
cmd("set_property")("GLOBAL", "PROPERTY", "USE_FOLDERS", "ON");
cmd("endif")().endl();
// clang-format on
}
// clang-format off
comment("Create a configure-time dependency on cmake.toml to improve IDE support");
cmd("if")("CMKR_ROOT_PROJECT");
cmd("configure_file")("cmake.toml", "cmake.toml", "COPYONLY");
cmd("endif")().endl();
// clang-format on
// TODO: remove support and replace with global compile-features
if (!cmake.cppflags.empty()) {
ss << "set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} \"";
for (const auto &flag : cmake.cppflags) {
ss << flag << " ";
}
ss << "\")\n\n";
}
// TODO: remove support and replace with global compile-features
if (!cmake.cflags.empty()) {
ss << "set(CMAKE_C_FLAGS ${CMAKE_C_FLAGS} \"";
for (const auto &flag : cmake.cflags) {
ss << flag << " ";
}
ss << "\")\n\n";
}
// TODO: remove support and replace with global linker-flags
if (!cmake.linkflags.empty()) {
ss << "set(CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS} \"";
for (const auto &flag : cmake.linkflags) {
ss << flag << " ";
}
ss << "\")\n\n";
}
inject_includes(cmake.include_before);
inject_cmake(cmake.cmake_before);
if (!cmake.project_name.empty()) {
auto languages = std::make_pair("LANGUAGES", cmake.project_languages);
auto version = std::make_pair("VERSION", cmake.project_version);
auto description = std::make_pair("DESCRIPTION", cmake.project_description);
cmd("project")(cmake.project_name, languages, version, description).endl();
}
inject_includes(cmake.include_after);
inject_cmake(cmake.cmake_after);
if (!cmake.contents.empty()) {
cmd("include")("FetchContent").endl();
for (const auto &dep : cmake.contents) {
cmd("message")("STATUS", "Fetching " + dep.first + "...");
ss << "FetchContent_Declare(\n\t" << dep.first << "\n";
for (const auto &arg : dep.second) {
std::string first_arg = arg.first;
if (first_arg == "git") {
first_arg = "GIT_REPOSITORY";
} else if (first_arg == "tag") {
first_arg = "GIT_TAG";
} else if (first_arg == "svn") {
first_arg = "SVN_REPOSITORY";
} else if (first_arg == "rev") {
first_arg = "SVN_REVISION";
} else if (first_arg == "url") {
first_arg = "URL";
} else if (first_arg == "hash") {
first_arg = "URL_HASH";
} else {
// don't change arg
}
ss << "\t" << first_arg << "\n\t\t" << arg.second << "\n";
}
ss << ")\n";
cmd("FetchContent_MakeAvailable")(dep.first).endl();
}
}
if (!cmake.vcpkg.version.empty()) {
assert("pmm is required in fetch-content for vcpkg to work" && cmake.contents.count("pmm") != 0);
comment("Bootstrap vcpkg");
cmd("include")("${pmm_SOURCE_DIR}/pmm.cmake");
tsl::ordered_map<std::string, std::vector<std::string>> vcpkg_args;
vcpkg_args["REVISION"] = { cmake.vcpkg.version };
vcpkg_args["REQUIRES"] = cmake.vcpkg.packages;
auto vcpkg = std::make_pair("VCPKG", vcpkg_args);
cmd("pmm")(vcpkg).endl();
}
if (!cmake.packages.empty()) {
comment("Packages");
for (const auto &dep : cmake.packages) {
auto version = dep.version;
if (version == "*")
version.clear();
auto required = dep.required ? "REQUIRED" : "";
auto config = dep.config ? "CONFIG" : "";
auto components = std::make_pair("COMPONENTS", dep.components);
cmd("find_package")(dep.name, version, required, config, components).endl();
}
}
if (!cmake.options.empty()) {
comment("Options");
for (const auto &opt : cmake.options) {
cmd("option")(opt.name, opt.comment, opt.val ? "ON" : "OFF");
}
endl();
}
if (!cmake.settings.empty()) {
comment("Settings");
for (const auto &set : cmake.settings) {
std::string set_val;
if (set.val.index() == 1) {
set_val = mpark::get<1>(set.val);
} else {
set_val = mpark::get<0>(set.val) ? "ON" : "OFF";
}
if (set.cache) {
auto typ = set.val.index() == 1 ? "STRING" : "BOOL";
auto force = set.force ? "FORCE" : "";
cmd("set")(set.name, set_val, typ, set.comment, force);
} else {
cmd("set")(set.name, set_val);
}
}
endl();
}
// generate_cmake is called on the subdirectories recursively later
if (!cmake.subdirs.empty()) {
for (const auto &dir : cmake.subdirs) {
// clang-format off
comment(dir);
cmd("set")("CMKR_CMAKE_FOLDER", "${CMAKE_FOLDER}");
cmd("if")("CMAKE_FOLDER");
cmd("set")("CMAKE_FOLDER", "${CMAKE_FOLDER}/" + dir);
cmd("else")();
cmd("set")("CMAKE_FOLDER", dir);
cmd("endif")();
// clang-format on
cmd("add_subdirectory")(dir);
cmd("set")("CMAKE_FOLDER", "${CMKR_CMAKE_FOLDER}").endl();
}
endl();
}
if (!cmake.targets.empty()) {
for (const auto &target : cmake.targets) {
comment("Target " + target.name);
inject_includes(target.include_before);
inject_cmake(target.cmake_before);
if (!target.sources.empty()) {
auto sources = expand_cmake_paths(target.sources, path);
if (sources.empty()) {
throw std::runtime_error(target.name + " sources wildcard found 0 files");
}
if (target.type != cmake::target_interface) {
// Do not add cmake.toml twice
if (std::find(sources.begin(), sources.end(), "cmake.toml") == sources.end()) {
sources.push_back("cmake.toml");
}
}
cmd("set")(target.name + "_SOURCES", sources).endl();
}
std::string add_command;
std::string target_type;
std::string target_scope;
switch (target.type) {
case cmake::target_executable:
add_command = "add_executable";
target_type = "";
target_scope = "PRIVATE";
break;
case cmake::target_library:
add_command = "add_library";
target_type = "";
target_scope = "PUBLIC";
break;
case cmake::target_shared:
add_command = "add_library";
target_type = "SHARED";
target_scope = "PUBLIC";
break;
case cmake::target_static:
add_command = "add_library";
target_type = "STATIC";
target_scope = "PUBLIC";
break;
case cmake::target_interface:
add_command = "add_library";
target_type = "INTERFACE";
target_scope = "INTERFACE";
break;
case cmake::target_custom:
// TODO: add proper support, this is hacky
add_command = "add_custom_target";
target_type = "SOURCES";
target_scope = "PUBLIC";
break;
default:
assert("Unimplemented enum value" && false);
}
cmd(add_command)(target.name, target_type, "${" + target.name + "_SOURCES}").endl();
// The first executable target will become the Visual Studio startup project
if (target.type == cmake::target_executable) {
cmd("get_directory_property")("CMKR_VS_STARTUP_PROJECT", "DIRECTORY", "${PROJECT_SOURCE_DIR}", "DEFINITION", "VS_STARTUP_PROJECT");
// clang-format off
cmd("if")("NOT", "CMKR_VS_STARTUP_PROJECT");
cmd("set_property")("DIRECTORY", "${PROJECT_SOURCE_DIR}", "PROPERTY", "VS_STARTUP_PROJECT", target.name);
cmd("endif")().endl();
// clang-format on
}
if (!target.sources.empty()) {
cmd("source_group")("TREE", "${CMAKE_CURRENT_SOURCE_DIR}", "FILES", "${" + target.name + "_SOURCES}").endl();
}
if (!target.alias.empty()) {
cmd("add_library")(target.alias, "ALIAS", target.name);
}
auto target_cmd = [&](const char *command, const std::vector<std::string> &args) {
if (!args.empty()) {
cmd(command)(target.name, target_scope, args).endl();
}
};
target_cmd("target_compile_definitions", target.compile_definitions);
target_cmd("target_compile_features", target.compile_features);
target_cmd("target_compile_options", target.compile_options);
target_cmd("target_include_directories", target.include_directories);
target_cmd("target_link_directories", target.link_directories);
target_cmd("target_link_libraries", target.link_libraries);
target_cmd("target_precompile_headers", target.precompile_headers);
if (!target.properties.empty()) {
cmd("set_target_properties")(target.name, "PROPERTIES", target.properties).endl();
}
inject_includes(target.include_after);
inject_cmake(target.cmake_after);
}
}
if (!cmake.tests.empty()) {
cmd("enable_testing")().endl();
for (const auto &test : cmake.tests) {
auto name = std::make_pair("NAME", test.name);
auto configurations = std::make_pair("CONFIGURATIONS", test.configurations);
auto working_directory = std::make_pair("WORKING_DIRECTORY", test.working_directory);
auto command = std::make_pair("COMMAND", test.command);
auto arguments = std::make_pair("", test.arguments);
cmd("add_test")(name, configurations, working_directory, command, arguments).endl();
}
}
if (!cmake.installs.empty()) {
for (const auto &inst : cmake.installs) {
auto targets = std::make_pair("TARGETS", inst.targets);
auto dirs = std::make_pair("DIRS", inst.dirs);
std::vector<std::string> files_data;
if (!inst.files.empty()) {
files_data = expand_cmake_paths(inst.files, path);
if (files_data.empty()) {
throw std::runtime_error("[[install]] files wildcard did not resolve to any files");
}
}
auto files = std::make_pair("FILES", inst.files);
auto configs = std::make_pair("CONFIGURATIONS", inst.configs);
auto destination = std::make_pair("DESTINATION", inst.destination);
auto component = std::make_pair("COMPONENT", inst.targets.empty() ? "" : inst.targets.front());
cmd("install")(targets, dirs, files, configs, destination, component);
}
}
// Generate CMakeLists.txt
auto list_path = fs::path(path) / "CMakeLists.txt";
auto should_regenerate = [&list_path, &ss]() {
if (!fs::exists(list_path))
return true;
std::ifstream ifs(list_path, std::ios_base::binary);
if (!ifs.is_open()) {
throw std::runtime_error("Failed to read " + list_path.string());
}
std::string data((std::istreambuf_iterator<char>(ifs)), std::istreambuf_iterator<char>());
return data != ss.str();
}();
if (should_regenerate) {
std::ofstream ofs(list_path, std::ios_base::binary);
if (ofs.is_open()) {
ofs << ss.str();
} else {
throw std::runtime_error("Failed to write " + list_path.string());
}
}
for (const auto &sub : cmake.subdirs) {
auto subpath = fs::path(path) / fs::path(sub);
if (fs::exists(subpath / "cmake.toml"))
generate_cmake(subpath.string().c_str(), false);
}
return 0;
}
} // namespace gen
} // namespace cmkr
int cmkr_gen_generate_project(const char *typ) {
try {
return cmkr::gen::generate_project(typ);
} catch (const std::system_error &e) {
return e.code().value();
} catch (...) {
return cmkr::error::Status(cmkr::error::Status::Code::InitError);
}
}
int cmkr_gen_generate_cmake(const char *path) {
try {
return cmkr::gen::generate_cmake(path);
} catch (const std::system_error &e) {
return e.code().value();
} catch (...) {
return cmkr::error::Status(cmkr::error::Status::Code::GenerationError);
}
}

@ -0,0 +1,26 @@
#include "help.h"
namespace cmkr {
namespace help {
const char *version() noexcept { return "cmkr version 0.1.3"; }
const char *message() noexcept {
return R"lit(
Usage: cmkr [arguments]
arguments:
init [executable|library|shared|static|interface] Starts a new project in the same directory.
gen Generates CMakeLists.txt file.
build <extra cmake args> Run cmake and build.
install Run cmake --install. Needs admin privileges.
clean Clean the build directory.
help Show help.
version Current cmkr version.
)lit";
}
} // namespace help
} // namespace cmkr
const char *cmkr_help_version(void) { return cmkr::help::version(); }
const char *cmkr_help_message(void) { return cmkr::help::message(); }

@ -1,430 +0,0 @@
#include "gen.h"
#include "cmake.hpp"
#include "error.h"
#include "literals.h"
#include "fs.hpp"
#include <fstream>
#include <new>
#include <sstream>
#include <stdexcept>
#include <stdio.h>
#include <string.h>
#include <string>
namespace cmkr {
namespace gen {
namespace detail {
inline std::string to_upper(const std::string &str) {
std::string temp;
temp.reserve(str.size());
for (auto c : str) {
temp.push_back(::toupper(c));
}
return temp;
}
template <typename... Args>
std::string format(const char *fmt, Args... args) {
auto sz = snprintf(nullptr, 0, fmt, args...) + 1;
char *buf = new char[sz];
int ret = snprintf(buf, sz, fmt, args...);
if (ret != sz - 1)
throw std::runtime_error("[cmkr] error: Error formatting string!");
std::string temp(buf, buf + sz - 1);
delete[] buf;
return temp;
}
static std::vector<std::string> expand_cmake_path(const fs::path &p) {
std::vector<std::string> temp;
if (p.filename().stem().string() == "*") {
auto ext = p.extension();
for (const auto &f : fs::directory_iterator(p.parent_path())) {
if (f.path().extension() == ext) {
temp.push_back(f.path().string());
}
}
} else {
temp.push_back(p.string());
}
// Normalize all paths to work with CMake (it needs a / on Windows as well)
for (auto &path : temp) {
std::replace(path.begin(), path.end(), '\\', '/');
}
return temp;
}
} // namespace detail
int generate_project(const char *str) {
fs::create_directory("src");
fs::create_directory("include");
const auto dir_name = fs::current_path().stem().string();
std::string mainbuf;
std::string installed;
std::string target;
std::string dest;
if (!strcmp(str, "exe")) {
mainbuf = detail::format(hello_world, "main");
installed = "targets";
target = dir_name;
dest = "bin";
} else if (!strcmp(str, "static") || !strcmp(str, "shared") || !strcmp(str, "lib")) {
mainbuf = detail::format(hello_world, "test");
installed = "targets";
target = dir_name;
dest = "lib";
} else if (!strcmp(str, "interface")) {
installed = "files";
target = "include/*.h";
dest = "include/" + dir_name;
} else {
throw std::runtime_error(
"[cmkr] error: Unknown project type. Types are exe, lib, shared, static, interface!");
}
const auto tomlbuf = detail::format(cmake_toml, dir_name.c_str(), dir_name.c_str(), str,
installed.c_str(), target.c_str(), dest.c_str());
if (strcmp(str, "interface")) {
std::ofstream ofs("src/main.cpp");
if (ofs.is_open()) {
ofs << mainbuf;
}
ofs.flush();
ofs.close();
}
std::ofstream ofs2("cmake.toml");
if (ofs2.is_open()) {
ofs2 << tomlbuf;
}
ofs2.flush();
ofs2.close();
return 0;
}
int generate_cmake(const char *path) {
if (fs::exists(fs::path(path) / "cmake.toml")) {
cmake::CMake cmake(path, false);
std::stringstream ss;
ss << "# This file was generated automatically by cmkr.\n";
ss << "\n";
ss << "# Regenerate CMakeLists.txt file when necessary\n";
ss << "include(cmkr.cmake OPTIONAL RESULT_VARIABLE CMKR_INCLUDE_RESULT)\n\n";
ss << "if(CMKR_INCLUDE_RESULT)\n";
ss << "\tcmkr()\n";
ss << "endif()\n";
ss << "\n";
if (!cmake.cmake_version.empty()) {
ss << "cmake_minimum_required(VERSION " << cmake.cmake_version << ")\n\n";
ss << "set(CMAKE_EXPORT_COMPILE_COMMANDS ON)\n\n";
}
if (!cmake.cppflags.empty()) {
ss << "set(CMAKE_CXX_FLAGS ${CMAKE_CXX_FLAGS} \"";
for (const auto &flag : cmake.cppflags) {
ss << flag << " ";
}
ss << "\")\n\n";
}
if (!cmake.cflags.empty()) {
ss << "set(CMAKE_C_FLAGS ${CMAKE_C_FLAGS} \"";
for (const auto &flag : cmake.cflags) {
ss << flag << " ";
}
ss << "\")\n\n";
}
if (!cmake.linkflags.empty()) {
ss << "set(CMAKE_EXE_LINKER_FLAGS ${CMAKE_EXE_LINKER_FLAGS} \"";
for (const auto &flag : cmake.linkflags) {
ss << flag << " ";
}
ss << "\")\n\n";
}
if (!cmake.subdirs.empty()) {
for (const auto &dir : cmake.subdirs) {
ss << "add_subdirectory(" << dir << ")\n";
}
ss << "\n\n";
}
std::string desc = "";
if (!cmake.desc.empty())
desc = "\n\tLANGUAGES C CXX\n\tDESCRIPTION \"" + cmake.desc + "\"";
if (!cmake.proj_name.empty() && !cmake.proj_version.empty()) {
ss << "project(" << cmake.proj_name << "\n\tVERSION " << cmake.proj_version << desc
<< "\n\t)\n\n";
}
if (!cmake.packages.empty()) {
for (const auto &dep : cmake.packages) {
ss << "find_package(" << dep.name << " ";
if (dep.version != "*") {
ss << dep.version << " ";
}
if (dep.required) {
ss << "REQUIRED ";
}
if (!dep.components.empty()) {
ss << "COMPONENTS ";
for (const auto &comp : dep.components) {
ss << comp << " ";
}
}
ss << ")\n\n";
}
}
if (!cmake.contents.empty()) {
ss << "include(FetchContent)\n\n";
for (const auto &dep : cmake.contents) {
ss << "FetchContent_Declare(\n\t" << dep.first << "\n";
for (const auto &arg : dep.second) {
std::string first_arg = arg.first;
if (first_arg == "git") {
first_arg = "GIT_REPOSITORY";
} else if (first_arg == "tag") {
first_arg = "GIT_TAG";
} else if (first_arg == "svn") {
first_arg = "SVN_REPOSITORY";
} else if (first_arg == "rev") {
first_arg = "SVN_REVISION";
} else if (first_arg == "url") {
first_arg = "URL";
} else if (first_arg == "hash") {
first_arg = "URL_HASH";
} else {
// don't change arg
}
if (first_arg != "GIT_REPOSITORY")
ss << "\t" << first_arg << " " << arg.second << "\n";
else
ss << "\t" << first_arg << " " << arg.second << "\n\t"
<< "GIT_SHALLOW "
<< "ON\n";
}
ss << "\t)\n\n"
<< "FetchContent_MakeAvailable(" << dep.first << ")\n\n";
}
}
if (!cmake.options.empty()) {
for (const auto &opt : cmake.options) {
ss << "option(" << opt.name << " \"" << opt.comment << "\" "
<< (opt.val ? "ON" : "OFF") << ")\n\n";
}
}
if (!cmake.settings.empty()) {
for (const auto &set : cmake.settings) {
std::string set_val;
if (set.val.index() == 1) {
set_val = mpark::get<1>(set.val);
} else {
set_val = mpark::get<0>(set.val) ? "ON" : "OFF";
}
ss << "set(" << set.name << " " << set_val;
;
if (set.cache) {
std::string typ;
if (set.val.index() == 1)
typ = "STRING";
else
typ = "BOOL";
ss << " CACHE " << typ << " \"" << set.comment << "\"";
if (set.force)
ss << " FORCE";
}
ss << ")\n\n";
}
}
if (!cmake.binaries.empty()) {
for (const auto &bin : cmake.binaries) {
std::string bin_type;
std::string add_command;
if (bin.type == "exe") {
bin_type = "";
add_command = "add_executable";
} else if (bin.type == "shared" || bin.type == "static" ||
bin.type == "interface") {
bin_type = detail::to_upper(bin.type);
add_command = "add_library";
} else if (bin.type == "lib") {
bin_type = "";
add_command = "add_library";
} else {
throw std::runtime_error("[cmkr] error: Unknown binary type! Supported types "
"are exe, lib, shared, static, interface");
}
if (!bin.sources.empty()) {
ss << "set(" << detail::to_upper(bin.name) << "_SOURCES\n";
for (const auto &src : bin.sources) {
auto path = fs::path(src);
auto expanded = detail::expand_cmake_path(path);
for (const auto &f : expanded) {
ss << "\t" << f << "\n";
}
}
ss << "\t)\n\n";
}
ss << add_command << "(" << bin.name << " " << bin_type;
if (!bin.sources.empty()) {
ss << " ${" << detail::to_upper(bin.name) << "_SOURCES})\n\n";
} else {
ss << ")\n\n";
}
if (!bin.alias.empty()) {
ss << "add_library(" << bin.alias << " ALIAS " << bin.name << ")\n\n";
}
if (!bin.include_dirs.empty()) {
ss << "target_include_directories(" << bin.name << " PUBLIC\n\t";
for (const auto &inc : bin.include_dirs) {
ss << fs::path(inc).string() << "\n\t";
}
ss << ")\n\n";
}
if (!bin.link_libs.empty()) {
ss << "target_link_libraries(" << bin.name << " PUBLIC\n\t";
for (const auto &l : bin.link_libs) {
ss << l << "\n\t";
}
ss << ")\n\n";
}
if (!bin.features.empty()) {
ss << "target_compile_features(" << bin.name << " PUBLIC\n\t";
for (const auto &feat : bin.features) {
ss << feat << "\n\t";
}
ss << ")\n\n";
}
if (!bin.defines.empty()) {
ss << "target_add_definitions(" << bin.name << " PUBLIC\n\t";
for (const auto &def : bin.defines) {
ss << def << "\n\t";
}
ss << ")\n\n";
}
if (!bin.properties.empty()) {
ss << "set_target_properties(" << bin.name << " PROPERTIES\n";
for (const auto &prop : bin.properties) {
ss << "\t" << prop.first << " " << prop.second << "\n";
}
ss << "\t)\n\n";
}
}
}
if (!cmake.tests.empty()) {
ss << "include(CTest)\n"
<< "enable_testing()\n\n";
for (const auto &test : cmake.tests) {
ss << "add_test(NAME " << test.name << " COMMAND " << test.cmd;
if (!test.args.empty()) {
for (const auto &arg : test.args) {
ss << " " << arg;
}
}
ss << ")\n\n";
}
}
if (!cmake.installs.empty()) {
for (const auto &inst : cmake.installs) {
ss << "install(\n";
if (!inst.targets.empty()) {
ss << "\tTARGETS ";
for (const auto &target : inst.targets) {
ss << target << " ";
}
}
if (!inst.dirs.empty()) {
ss << "\tDIRS ";
for (const auto &dir : inst.dirs) {
ss << dir << " ";
}
}
if (!inst.files.empty()) {
ss << "\tFILES ";
for (const auto &file : inst.files) {
auto path = detail::expand_cmake_path(fs::path(file));
for (const auto &f : path)
ss << f << " ";
}
}
if (!inst.configs.empty()) {
ss << "\tCONFIGURATIONS";
for (const auto &conf : inst.configs) {
ss << conf << " ";
}
}
ss << "\n\tDESTINATION " << inst.destination << "\n\t";
if (!inst.targets.empty())
ss << "COMPONENT " << inst.targets[0] << "\n\t)\n\n";
else
ss << "\n\t)\n\n";
}
}
ss << "\n\n";
// printf("%s\n", ss.str().c_str());
std::ofstream ofs(fs::path(path) / "CMakeLists.txt");
if (ofs.is_open()) {
ofs << ss.rdbuf();
}
ofs.flush();
ofs.close();
for (const auto &sub : cmake.subdirs) {
if (fs::exists(fs::path(sub) / "cmake.toml"))
generate_cmake(sub.c_str());
}
} else {
throw std::runtime_error("[cmkr] error: No cmake.toml found!");
}
return 0;
}
} // namespace gen
} // namespace cmkr
int cmkr_gen_generate_project(const char *typ) {
try {
return cmkr::gen::generate_project(typ);
} catch (const std::system_error &e) {
return e.code().value();
} catch (...) {
return cmkr::error::Status(cmkr::error::Status::Code::InitError);
}
}
int cmkr_gen_generate_cmake(const char *path) {
try {
return cmkr::gen::generate_cmake(path);
} catch (const std::system_error &e) {
return e.code().value();
} catch (...) {
return cmkr::error::Status(cmkr::error::Status::Code::GenerationError);
}
}

@ -1,26 +0,0 @@
#include "help.h"
namespace cmkr {
namespace help {
const char *version() noexcept { return "cmkr version 0.1.3"; }
const char *message() noexcept {
return R"lit(
Usage: cmkr [arguments]
arguments:
init [exe|lib|shared|static|interface] Starts a new project in the same directory.
gen Generates CMakeLists.txt file.
build <extra cmake args> Run cmake and build.
install Run cmake --install. Needs admin privileges.
clean Clean the build directory.
help Show help.
version Current cmkr version.
)lit";
}
} // namespace help
} // namespace cmkr
const char *cmkr_help_version(void) { return cmkr::help::version(); }
const char *cmkr_help_message(void) { return cmkr::help::message(); }

@ -1,13 +1,21 @@
#include "args.h"
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <stdexcept>
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char **argv) try {
auto output = cmkr::args::handle_args(argc, argv);
return fprintf(stdout, "%s\n", output) < 0 ? EXIT_FAILURE : EXIT_SUCCESS;
auto format = "[cmkr] %s\n";
if (strchr(output, '\n') != nullptr)
format = "%s\n";
(void)fprintf(stderr, format, output);
return EXIT_SUCCESS;
} catch (const std::exception &e) {
(void)fprintf(stderr, "%s\n", e.what());
auto format = "[cmkr] error: %s\n";
if (strchr(e.what(), '\n') != nullptr)
format = "%s\n";
(void)fprintf(stderr, format, e.what());
return EXIT_FAILURE;
}

@ -0,0 +1,19 @@
# This file was generated automatically by cmkr.
# Create a configure-time dependency on cmake.toml to improve IDE support
if(CMKR_ROOT_PROJECT)
configure_file(cmake.toml cmake.toml COPYONLY)
endif()
enable_testing()
add_test(
NAME
basic
WORKING_DIRECTORY
"${CMAKE_CURRENT_LIST_DIR}/basic"
COMMAND
$<TARGET_FILE:cmkr>
build
)

@ -0,0 +1,41 @@
# This file was generated automatically by cmkr.
cmake_minimum_required(VERSION 3.5)
# Regenerate CMakeLists.txt automatically in the root project
set(CMKR_ROOT_PROJECT OFF)
if(CMAKE_CURRENT_SOURCE_DIR STREQUAL CMAKE_SOURCE_DIR)
set(CMKR_ROOT_PROJECT ON)
# Bootstrap cmkr
include(cmkr.cmake OPTIONAL RESULT_VARIABLE CMKR_INCLUDE_RESULT)
if(CMKR_INCLUDE_RESULT)
cmkr()
endif()
# Enable folder support
set_property(GLOBAL PROPERTY USE_FOLDERS ON)
endif()
# Create a configure-time dependency on cmake.toml to improve IDE support
if(CMKR_ROOT_PROJECT)
configure_file(cmake.toml cmake.toml COPYONLY)
endif()
project(basic)
# Target basic
set(basic_SOURCES
"src/basic.cpp"
cmake.toml
)
add_executable(basic ${basic_SOURCES})
get_directory_property(CMKR_VS_STARTUP_PROJECT DIRECTORY ${PROJECT_SOURCE_DIR} DEFINITION VS_STARTUP_PROJECT)
if(NOT CMKR_VS_STARTUP_PROJECT)
set_property(DIRECTORY ${PROJECT_SOURCE_DIR} PROPERTY VS_STARTUP_PROJECT basic)
endif()
source_group(TREE ${CMAKE_CURRENT_SOURCE_DIR} FILES ${basic_SOURCES})

@ -0,0 +1,9 @@
[cmake]
version = "3.5"
[project]
name = "basic"
[target.basic]
type = "executable"
sources = ["src/basic.cpp"]

@ -0,0 +1,5 @@
#include <cstdio>
int main() {
puts("Hello from cmkr!");
}

@ -0,0 +1,5 @@
[[test]]
name = "basic"
command = "$<TARGET_FILE:cmkr>"
working-directory = "${CMAKE_CURRENT_LIST_DIR}/basic"
arguments = ["build"]

@ -0,0 +1,18 @@
# Third party dependencies (manually vendored to improve fetch speeds)
# https://github.com/gulrak/filesystem (MIT)
add_library(ghc_filesystem INTERFACE)
target_include_directories(ghc_filesystem INTERFACE filesystem-1.5.2/include)
# https://github.com/Tessil/ordered-map (MIT)
add_library(ordered_map INTERFACE)
target_include_directories(ordered_map INTERFACE ordered-map-1.0.0/include)
target_compile_definitions(ordered_map INTERFACE NOMINMAX)
# https://github.com/ToruNiina/toml11 (MIT)
add_library(toml11 INTERFACE)
target_include_directories(toml11 INTERFACE toml11-3.6.0)
# https://github.com/mpark/variant (BSL-1.0)
add_library(mpark_variant INTERFACE)
target_include_directories(mpark_variant INTERFACE variant-1.4.0/include)

@ -0,0 +1,19 @@
Copyright (c) 2018, Steffen Schümann <s.schuemann@pobox.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,38 @@
//---------------------------------------------------------------------------------------
//
// ghc::filesystem - A C++17-like filesystem implementation for C++11/C++14
//
//---------------------------------------------------------------------------------------
//
// Copyright (c) 2018, Steffen Schümann <s.schuemann@pobox.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//---------------------------------------------------------------------------------------
// fs_fwd.hpp - The forwarding header for the header/implementation seperated usage of
// ghc::filesystem.
// This file can be include at any place, where ghc::filesystem api is needed while
// not bleeding implementation details (e.g. system includes) into the global namespace,
// as long as one cpp includes fs_impl.hpp to deliver the matching implementations.
//---------------------------------------------------------------------------------------
#ifndef GHC_FILESYSTEM_FWD_H
#define GHC_FILESYSTEM_FWD_H
#define GHC_FILESYSTEM_FWD
#include <ghc/filesystem.hpp>
#endif // GHC_FILESYSTEM_FWD_H

@ -0,0 +1,35 @@
//---------------------------------------------------------------------------------------
//
// ghc::filesystem - A C++17-like filesystem implementation for C++11/C++14
//
//---------------------------------------------------------------------------------------
//
// Copyright (c) 2018, Steffen Schümann <s.schuemann@pobox.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//---------------------------------------------------------------------------------------
// fs_impl.hpp - The implementation header for the header/implementation seperated usage of
// ghc::filesystem.
// This file can be used to hide the implementation of ghc::filesystem into a single cpp.
// The cpp has to include this before including fs_fwd.hpp directly or via a different
// header to work.
//---------------------------------------------------------------------------------------
#define GHC_FILESYSTEM_IMPLEMENTATION
#include <ghc/filesystem.hpp>

@ -0,0 +1,56 @@
//---------------------------------------------------------------------------------------
//
// ghc::filesystem - A C++17-like filesystem implementation for C++11/C++14
//
//---------------------------------------------------------------------------------------
//
// Copyright (c) 2018, Steffen Schümann <s.schuemann@pobox.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//---------------------------------------------------------------------------------------
// fs_std.hpp - The dynamic switching header that includes std::filesystem if detected
// or ghc::filesystem if not, and makes the resulting API available in the
// namespace fs.
//---------------------------------------------------------------------------------------
#ifndef GHC_FILESYSTEM_STD_H
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || (defined(__cplusplus) && __cplusplus >= 201703L)) && defined(__has_include)
#if __has_include(<filesystem>) && (!defined(__MAC_OS_X_VERSION_MIN_REQUIRED) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 101500)
#define GHC_USE_STD_FS
#include <filesystem>
namespace fs {
using namespace std::filesystem;
using ifstream = std::ifstream;
using ofstream = std::ofstream;
using fstream = std::fstream;
}
#endif
#endif
#ifndef GHC_USE_STD_FS
//#define GHC_WIN_DISABLE_WSTRING_STORAGE_TYPE
#include <ghc/filesystem.hpp>
namespace fs {
using namespace ghc::filesystem;
using ifstream = ghc::filesystem::ifstream;
using ofstream = ghc::filesystem::ofstream;
using fstream = ghc::filesystem::fstream;
}
#endif
#endif // GHC_FILESYSTEM_STD_H

@ -0,0 +1,60 @@
//---------------------------------------------------------------------------------------
//
// ghc::filesystem - A C++17-like filesystem implementation for C++11/C++14
//
//---------------------------------------------------------------------------------------
//
// Copyright (c) 2018, Steffen Schümann <s.schuemann@pobox.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//---------------------------------------------------------------------------------------
// fs_std_fwd.hpp - The forwarding header for the header/implementation seperated usage of
// ghc::filesystem that uses std::filesystem if it detects it.
// This file can be include at any place, where fs::filesystem api is needed while
// not bleeding implementation details (e.g. system includes) into the global namespace,
// as long as one cpp includes fs_std_impl.hpp to deliver the matching implementations.
//---------------------------------------------------------------------------------------
#ifndef GHC_FILESYSTEM_STD_FWD_H
#define GHC_FILESYSTEM_STD_FWD_H
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || (defined(__cplusplus) && __cplusplus >= 201703L)) && defined(__has_include)
#if __has_include(<filesystem>) && (!defined(__MAC_OS_X_VERSION_MIN_REQUIRED) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 101500)
#define GHC_USE_STD_FS
#include <filesystem>
namespace fs {
using namespace std::filesystem;
using ifstream = std::ifstream;
using ofstream = std::ofstream;
using fstream = std::fstream;
}
#endif
#endif
#ifndef GHC_USE_STD_FS
//#define GHC_WIN_DISABLE_WSTRING_STORAGE_TYPE
#define GHC_FILESYSTEM_FWD
#include <ghc/filesystem.hpp>
namespace fs {
using namespace ghc::filesystem;
using ifstream = ghc::filesystem::ifstream;
using ofstream = ghc::filesystem::ofstream;
using fstream = ghc::filesystem::fstream;
}
#endif
#endif // GHC_FILESYSTEM_STD_FWD_H

@ -0,0 +1,43 @@
//---------------------------------------------------------------------------------------
//
// ghc::filesystem - A C++17-like filesystem implementation for C++11/C++14
//
//---------------------------------------------------------------------------------------
//
// Copyright (c) 2018, Steffen Schümann <s.schuemann@pobox.com>
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in all
// copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
// SOFTWARE.
//
//---------------------------------------------------------------------------------------
// fs_std_impl.hpp - The implementation header for the header/implementation seperated usage of
// ghc::filesystem that does nothing if std::filesystem is detected.
// This file can be used to hide the implementation of ghc::filesystem into a single cpp.
// The cpp has to include this before including fs_std_fwd.hpp directly or via a different
// header to work.
//---------------------------------------------------------------------------------------
#if ((defined(_MSVC_LANG) && _MSVC_LANG >= 201703L) || (defined(__cplusplus) && __cplusplus >= 201703L)) && defined(__has_include)
#if __has_include(<filesystem>) && (!defined(__MAC_OS_X_VERSION_MIN_REQUIRED) || __MAC_OS_X_VERSION_MIN_REQUIRED >= 101500)
#define GHC_USE_STD_FS
#endif
#endif
#ifndef GHC_USE_STD_FS
//#define GHC_WIN_DISABLE_WSTRING_STORAGE_TYPE
#define GHC_FILESYSTEM_IMPLEMENTATION
#include <ghc/filesystem.hpp>
#endif

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,863 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_MAP_H
#define TSL_ORDERED_MAP_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash map using open addressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash map is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the map provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be useful to communicate with C API's).
*
* The Key and T must be copy constructible and/or move constructible. To use `unordered_erase` they both
* must be swappable.
*
* The behaviour of the hash map is undefined if the destructor of Key or T throws an exception.
*
* By default the maximum size of a map is limited to 2^32 - 1 values, if needed this can be changed through
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class ValueTypeContainer = std::deque<std::pair<Key, T>, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht = detail_ordered_hash::ordered_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_map(): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_map(size_type bucket_count,
const Allocator& alloc): ordered_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_map(const Allocator& alloc): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) { return m_ht.emplace(std::forward<P>(value)); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template<class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, const key_type& k, Args&&... args) {
return m_ht.try_emplace_at_position(pos, k, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template<class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, key_type&& k, Args&&... args) {
return m_ht.try_emplace_at_position(pos, std::move(k), std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibility is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized map through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
* `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `ordered_map` are not the same as the
* types used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibility is required.
*/
template<class Deserializer>
static ordered_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
ordered_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif

@ -0,0 +1,718 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash set using open addressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash set is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the set provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be useful to communicate with C API's).
*
* The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
*
* The behaviour of the hash set is undefined if the destructor of Key throws an exception.
*
* By default the maximum size of a set is limited to 2^32 - 1 values, if needed this can be changed through
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class ValueTypeContainer = std::deque<Key, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_set(size_type bucket_count,
const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `void operator()(const U& value);` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibility is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized set through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
* `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` of the `ordered_set` is not the same as the
* type used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibility is required.
*/
template<class Deserializer>
static ordered_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
ordered_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif

@ -0,0 +1,21 @@
The MIT License (MIT)
Copyright (c) 2017 Toru Niina
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

@ -0,0 +1,45 @@
/*
* The MIT License (MIT)
*
* Copyright (c) 2017 Toru Niina
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#ifndef TOML_FOR_MODERN_CPP
#define TOML_FOR_MODERN_CPP
#ifndef __cplusplus
# error "__cplusplus is not defined"
#endif
#if __cplusplus < 201103L && _MSC_VER < 1900
# error "toml11 requires C++11 or later."
#endif
#define TOML11_VERSION_MAJOR 3
#define TOML11_VERSION_MINOR 5
#define TOML11_VERSION_PATCH 0
#include "toml/parser.hpp"
#include "toml/literal.hpp"
#include "toml/serializer.hpp"
#include "toml/get.hpp"
#endif// TOML_FOR_MODERN_CPP

@ -0,0 +1,64 @@
#ifndef TOML11_COLOR_HPP
#define TOML11_COLOR_HPP
#include <cstdint>
#include <ostream>
#ifdef TOML11_COLORIZE_ERROR_MESSAGE
#define TOML11_ERROR_MESSAGE_COLORIZED true
#else
#define TOML11_ERROR_MESSAGE_COLORIZED false
#endif
namespace toml
{
// put ANSI escape sequence to ostream
namespace color_ansi
{
namespace detail
{
inline int colorize_index()
{
static const int index = std::ios_base::xalloc();
return index;
}
} // detail
inline std::ostream& colorize(std::ostream& os)
{
// by default, it is zero.
os.iword(detail::colorize_index()) = 1;
return os;
}
inline std::ostream& nocolorize(std::ostream& os)
{
os.iword(detail::colorize_index()) = 0;
return os;
}
inline std::ostream& reset (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[00m";} return os;}
inline std::ostream& bold (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[01m";} return os;}
inline std::ostream& grey (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[30m";} return os;}
inline std::ostream& red (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[31m";} return os;}
inline std::ostream& green (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[32m";} return os;}
inline std::ostream& yellow (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[33m";} return os;}
inline std::ostream& blue (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[34m";} return os;}
inline std::ostream& magenta(std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[35m";} return os;}
inline std::ostream& cyan (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[36m";} return os;}
inline std::ostream& white (std::ostream& os)
{if(os.iword(detail::colorize_index()) == 1) {os << "\033[37m";} return os;}
} // color_ansi
// ANSI escape sequence is the only and default colorization method currently
namespace color = color_ansi;
} // toml
#endif// TOML11_COLOR_HPP

@ -0,0 +1,306 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_COMBINATOR_HPP
#define TOML11_COMBINATOR_HPP
#include <cassert>
#include <cctype>
#include <cstdio>
#include <array>
#include <iomanip>
#include <iterator>
#include <limits>
#include <type_traits>
#include "region.hpp"
#include "result.hpp"
#include "traits.hpp"
#include "utility.hpp"
// they scans characters and returns region if it matches to the condition.
// when they fail, it does not change the location.
// in lexer.hpp, these are used.
namespace toml
{
namespace detail
{
// to output character as an error message.
inline std::string show_char(const char c)
{
// It supress an error that occurs only in Debug mode of MSVC++ on Windows.
// I'm not completely sure but they check the value of char to be in the
// range [0, 256) and some of the COMPLETELY VALID utf-8 character sometimes
// has negative value (if char has sign). So here it re-interprets c as
// unsigned char through pointer. In general, converting pointer to a
// pointer that has different type cause UB, but `(signed|unsigned)?char`
// are one of the exceptions. Converting pointer only to char and std::byte
// (c++17) are valid.
if(std::isgraph(*reinterpret_cast<unsigned char const*>(std::addressof(c))))
{
return std::string(1, c);
}
else
{
std::array<char, 5> buf;
buf.fill('\0');
const auto r = std::snprintf(
buf.data(), buf.size(), "0x%02x", static_cast<int>(c) & 0xFF);
(void) r; // Unused variable warning
assert(r == static_cast<int>(buf.size()) - 1);
return std::string(buf.data());
}
}
template<char C>
struct character
{
static constexpr char target = C;
static result<region, none_t>
invoke(location& loc)
{
if(loc.iter() == loc.end()) {return none();}
const auto first = loc.iter();
const char c = *(loc.iter());
if(c != target)
{
return none();
}
loc.advance(); // update location
return ok(region(loc, first, loc.iter()));
}
};
template<char C>
constexpr char character<C>::target;
// closed interval [Low, Up]. both Low and Up are included.
template<char Low, char Up>
struct in_range
{
// assuming ascii part of UTF-8...
static_assert(Low <= Up, "lower bound should be less than upper bound.");
static constexpr char upper = Up;
static constexpr char lower = Low;
static result<region, none_t>
invoke(location& loc)
{
if(loc.iter() == loc.end()) {return none();}
const auto first = loc.iter();
const char c = *(loc.iter());
if(c < lower || upper < c)
{
return none();
}
loc.advance();
return ok(region(loc, first, loc.iter()));
}
};
template<char L, char U> constexpr char in_range<L, U>::upper;
template<char L, char U> constexpr char in_range<L, U>::lower;
// keep iterator if `Combinator` matches. otherwise, increment `iter` by 1 char.
// for detecting invalid characters, like control sequences in toml string.
template<typename Combinator>
struct exclude
{
static result<region, none_t>
invoke(location& loc)
{
if(loc.iter() == loc.end()) {return none();}
auto first = loc.iter();
auto rslt = Combinator::invoke(loc);
if(rslt.is_ok())
{
loc.reset(first);
return none();
}
loc.reset(std::next(first)); // XXX maybe loc.advance() is okay but...
return ok(region(loc, first, loc.iter()));
}
};
// increment `iter`, if matches. otherwise, just return empty string.
template<typename Combinator>
struct maybe
{
static result<region, none_t>
invoke(location& loc)
{
const auto rslt = Combinator::invoke(loc);
if(rslt.is_ok())
{
return rslt;
}
return ok(region(loc));
}
};
template<typename ... Ts>
struct sequence;
template<typename Head, typename ... Tail>
struct sequence<Head, Tail...>
{
static result<region, none_t>
invoke(location& loc)
{
const auto first = loc.iter();
const auto rslt = Head::invoke(loc);
if(rslt.is_err())
{
loc.reset(first);
return none();
}
return sequence<Tail...>::invoke(loc, std::move(rslt.unwrap()), first);
}
// called from the above function only, recursively.
template<typename Iterator>
static result<region, none_t>
invoke(location& loc, region reg, Iterator first)
{
const auto rslt = Head::invoke(loc);
if(rslt.is_err())
{
loc.reset(first);
return none();
}
reg += rslt.unwrap(); // concat regions
return sequence<Tail...>::invoke(loc, std::move(reg), first);
}
};
template<typename Head>
struct sequence<Head>
{
// would be called from sequence<T ...>::invoke only.
template<typename Iterator>
static result<region, none_t>
invoke(location& loc, region reg, Iterator first)
{
const auto rslt = Head::invoke(loc);
if(rslt.is_err())
{
loc.reset(first);
return none();
}
reg += rslt.unwrap(); // concat regions
return ok(reg);
}
};
template<typename ... Ts>
struct either;
template<typename Head, typename ... Tail>
struct either<Head, Tail...>
{
static result<region, none_t>
invoke(location& loc)
{
const auto rslt = Head::invoke(loc);
if(rslt.is_ok()) {return rslt;}
return either<Tail...>::invoke(loc);
}
};
template<typename Head>
struct either<Head>
{
static result<region, none_t>
invoke(location& loc)
{
return Head::invoke(loc);
}
};
template<typename T, typename N>
struct repeat;
template<std::size_t N> struct exactly{};
template<std::size_t N> struct at_least{};
struct unlimited{};
template<typename T, std::size_t N>
struct repeat<T, exactly<N>>
{
static result<region, none_t>
invoke(location& loc)
{
region retval(loc);
const auto first = loc.iter();
for(std::size_t i=0; i<N; ++i)
{
auto rslt = T::invoke(loc);
if(rslt.is_err())
{
loc.reset(first);
return none();
}
retval += rslt.unwrap();
}
return ok(std::move(retval));
}
};
template<typename T, std::size_t N>
struct repeat<T, at_least<N>>
{
static result<region, none_t>
invoke(location& loc)
{
region retval(loc);
const auto first = loc.iter();
for(std::size_t i=0; i<N; ++i)
{
auto rslt = T::invoke(loc);
if(rslt.is_err())
{
loc.reset(first);
return none();
}
retval += rslt.unwrap();
}
while(true)
{
auto rslt = T::invoke(loc);
if(rslt.is_err())
{
return ok(std::move(retval));
}
retval += rslt.unwrap();
}
}
};
template<typename T>
struct repeat<T, unlimited>
{
static result<region, none_t>
invoke(location& loc)
{
region retval(loc);
while(true)
{
auto rslt = T::invoke(loc);
if(rslt.is_err())
{
return ok(std::move(retval));
}
retval += rslt.unwrap();
}
}
};
} // detail
} // toml
#endif// TOML11_COMBINATOR_HPP

@ -0,0 +1,465 @@
// Copyright Toru Niina 2019.
// Distributed under the MIT License.
#ifndef TOML11_COMMENTS_HPP
#define TOML11_COMMENTS_HPP
#include <initializer_list>
#include <iterator>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
// This file provides mainly two classes, `preserve_comments` and `discard_comments`.
// Those two are a container that have the same interface as `std::vector<std::string>`
// but bahaves in the opposite way. `preserve_comments` is just the same as
// `std::vector<std::string>` and each `std::string` corresponds to a comment line.
// Conversely, `discard_comments` discards all the strings and ignores everything
// assigned in it. `discard_comments` is always empty and you will encounter an
// error whenever you access to the element.
namespace toml
{
struct discard_comments; // forward decl
// use it in the following way
//
// const toml::basic_value<toml::preserve_comments> data =
// toml::parse<toml::preserve_comments>("example.toml");
//
// the interface is almost the same as std::vector<std::string>.
struct preserve_comments
{
// `container_type` is not provided in discard_comments.
// do not use this inner-type in a generic code.
using container_type = std::vector<std::string>;
using size_type = container_type::size_type;
using difference_type = container_type::difference_type;
using value_type = container_type::value_type;
using reference = container_type::reference;
using const_reference = container_type::const_reference;
using pointer = container_type::pointer;
using const_pointer = container_type::const_pointer;
using iterator = container_type::iterator;
using const_iterator = container_type::const_iterator;
using reverse_iterator = container_type::reverse_iterator;
using const_reverse_iterator = container_type::const_reverse_iterator;
preserve_comments() = default;
~preserve_comments() = default;
preserve_comments(preserve_comments const&) = default;
preserve_comments(preserve_comments &&) = default;
preserve_comments& operator=(preserve_comments const&) = default;
preserve_comments& operator=(preserve_comments &&) = default;
explicit preserve_comments(const std::vector<std::string>& c): comments(c){}
explicit preserve_comments(std::vector<std::string>&& c)
: comments(std::move(c))
{}
preserve_comments& operator=(const std::vector<std::string>& c)
{
comments = c;
return *this;
}
preserve_comments& operator=(std::vector<std::string>&& c)
{
comments = std::move(c);
return *this;
}
explicit preserve_comments(const discard_comments&) {}
explicit preserve_comments(size_type n): comments(n) {}
preserve_comments(size_type n, const std::string& x): comments(n, x) {}
preserve_comments(std::initializer_list<std::string> x): comments(x) {}
template<typename InputIterator>
preserve_comments(InputIterator first, InputIterator last)
: comments(first, last)
{}
template<typename InputIterator>
void assign(InputIterator first, InputIterator last) {comments.assign(first, last);}
void assign(std::initializer_list<std::string> ini) {comments.assign(ini);}
void assign(size_type n, const std::string& val) {comments.assign(n, val);}
// Related to the issue #97.
//
// It is known that `std::vector::insert` and `std::vector::erase` in
// the standard library implementation included in GCC 4.8.5 takes
// `std::vector::iterator` instead of `std::vector::const_iterator`.
// Because of the const-correctness, we cannot convert a `const_iterator` to
// an `iterator`. It causes compilation error in GCC 4.8.5.
#if defined(__GNUC__) && defined(__GNUC_MINOR__) && defined(__GNUC_PATCHLEVEL__) && !defined(__clang__)
# if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) <= 40805
# define TOML11_WORKAROUND_GCC_4_8_X_STANDARD_LIBRARY_IMPLEMENTATION
# endif
#endif
#ifdef TOML11_WORKAROUND_GCC_4_8_X_STANDARD_LIBRARY_IMPLEMENTATION
iterator insert(iterator p, const std::string& x)
{
return comments.insert(p, x);
}
iterator insert(iterator p, std::string&& x)
{
return comments.insert(p, std::move(x));
}
void insert(iterator p, size_type n, const std::string& x)
{
return comments.insert(p, n, x);
}
template<typename InputIterator>
void insert(iterator p, InputIterator first, InputIterator last)
{
return comments.insert(p, first, last);
}
void insert(iterator p, std::initializer_list<std::string> ini)
{
return comments.insert(p, ini);
}
template<typename ... Ts>
iterator emplace(iterator p, Ts&& ... args)
{
return comments.emplace(p, std::forward<Ts>(args)...);
}
iterator erase(iterator pos) {return comments.erase(pos);}
iterator erase(iterator first, iterator last)
{
return comments.erase(first, last);
}
#else
iterator insert(const_iterator p, const std::string& x)
{
return comments.insert(p, x);
}
iterator insert(const_iterator p, std::string&& x)
{
return comments.insert(p, std::move(x));
}
iterator insert(const_iterator p, size_type n, const std::string& x)
{
return comments.insert(p, n, x);
}
template<typename InputIterator>
iterator insert(const_iterator p, InputIterator first, InputIterator last)
{
return comments.insert(p, first, last);
}
iterator insert(const_iterator p, std::initializer_list<std::string> ini)
{
return comments.insert(p, ini);
}
template<typename ... Ts>
iterator emplace(const_iterator p, Ts&& ... args)
{
return comments.emplace(p, std::forward<Ts>(args)...);
}
iterator erase(const_iterator pos) {return comments.erase(pos);}
iterator erase(const_iterator first, const_iterator last)
{
return comments.erase(first, last);
}
#endif
void swap(preserve_comments& other) {comments.swap(other.comments);}
void push_back(const std::string& v) {comments.push_back(v);}
void push_back(std::string&& v) {comments.push_back(std::move(v));}
void pop_back() {comments.pop_back();}
template<typename ... Ts>
void emplace_back(Ts&& ... args) {comments.emplace_back(std::forward<Ts>(args)...);}
void clear() {comments.clear();}
size_type size() const noexcept {return comments.size();}
size_type max_size() const noexcept {return comments.max_size();}
size_type capacity() const noexcept {return comments.capacity();}
bool empty() const noexcept {return comments.empty();}
void reserve(size_type n) {comments.reserve(n);}
void resize(size_type n) {comments.resize(n);}
void resize(size_type n, const std::string& c) {comments.resize(n, c);}
void shrink_to_fit() {comments.shrink_to_fit();}
reference operator[](const size_type n) noexcept {return comments[n];}
const_reference operator[](const size_type n) const noexcept {return comments[n];}
reference at(const size_type n) {return comments.at(n);}
const_reference at(const size_type n) const {return comments.at(n);}
reference front() noexcept {return comments.front();}
const_reference front() const noexcept {return comments.front();}
reference back() noexcept {return comments.back();}
const_reference back() const noexcept {return comments.back();}
pointer data() noexcept {return comments.data();}
const_pointer data() const noexcept {return comments.data();}
iterator begin() noexcept {return comments.begin();}
iterator end() noexcept {return comments.end();}
const_iterator begin() const noexcept {return comments.begin();}
const_iterator end() const noexcept {return comments.end();}
const_iterator cbegin() const noexcept {return comments.cbegin();}
const_iterator cend() const noexcept {return comments.cend();}
reverse_iterator rbegin() noexcept {return comments.rbegin();}
reverse_iterator rend() noexcept {return comments.rend();}
const_reverse_iterator rbegin() const noexcept {return comments.rbegin();}
const_reverse_iterator rend() const noexcept {return comments.rend();}
const_reverse_iterator crbegin() const noexcept {return comments.crbegin();}
const_reverse_iterator crend() const noexcept {return comments.crend();}
friend bool operator==(const preserve_comments&, const preserve_comments&);
friend bool operator!=(const preserve_comments&, const preserve_comments&);
friend bool operator< (const preserve_comments&, const preserve_comments&);
friend bool operator<=(const preserve_comments&, const preserve_comments&);
friend bool operator> (const preserve_comments&, const preserve_comments&);
friend bool operator>=(const preserve_comments&, const preserve_comments&);
friend void swap(preserve_comments&, std::vector<std::string>&);
friend void swap(std::vector<std::string>&, preserve_comments&);
private:
container_type comments;
};
inline bool operator==(const preserve_comments& lhs, const preserve_comments& rhs) {return lhs.comments == rhs.comments;}
inline bool operator!=(const preserve_comments& lhs, const preserve_comments& rhs) {return lhs.comments != rhs.comments;}
inline bool operator< (const preserve_comments& lhs, const preserve_comments& rhs) {return lhs.comments < rhs.comments;}
inline bool operator<=(const preserve_comments& lhs, const preserve_comments& rhs) {return lhs.comments <= rhs.comments;}
inline bool operator> (const preserve_comments& lhs, const preserve_comments& rhs) {return lhs.comments > rhs.comments;}
inline bool operator>=(const preserve_comments& lhs, const preserve_comments& rhs) {return lhs.comments >= rhs.comments;}
inline void swap(preserve_comments& lhs, preserve_comments& rhs)
{
lhs.swap(rhs);
return;
}
inline void swap(preserve_comments& lhs, std::vector<std::string>& rhs)
{
lhs.comments.swap(rhs);
return;
}
inline void swap(std::vector<std::string>& lhs, preserve_comments& rhs)
{
lhs.swap(rhs.comments);
return;
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const preserve_comments& com)
{
for(const auto& c : com)
{
os << '#' << c << '\n';
}
return os;
}
namespace detail
{
// To provide the same interface with `preserve_comments`, `discard_comments`
// should have an iterator. But it does not contain anything, so we need to
// add an iterator that points nothing.
//
// It always points null, so DO NOT unwrap this iterator. It always crashes
// your program.
template<typename T, bool is_const>
struct empty_iterator
{
using value_type = T;
using reference_type = typename std::conditional<is_const, T const&, T&>::type;
using pointer_type = typename std::conditional<is_const, T const*, T*>::type;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
empty_iterator() = default;
~empty_iterator() = default;
empty_iterator(empty_iterator const&) = default;
empty_iterator(empty_iterator &&) = default;
empty_iterator& operator=(empty_iterator const&) = default;
empty_iterator& operator=(empty_iterator &&) = default;
// DO NOT call these operators.
reference_type operator*() const noexcept {std::terminate();}
pointer_type operator->() const noexcept {return nullptr;}
reference_type operator[](difference_type) const noexcept {return this->operator*();}
// These operators do nothing.
empty_iterator& operator++() noexcept {return *this;}
empty_iterator operator++(int) noexcept {return *this;}
empty_iterator& operator--() noexcept {return *this;}
empty_iterator operator--(int) noexcept {return *this;}
empty_iterator& operator+=(difference_type) noexcept {return *this;}
empty_iterator& operator-=(difference_type) noexcept {return *this;}
empty_iterator operator+(difference_type) const noexcept {return *this;}
empty_iterator operator-(difference_type) const noexcept {return *this;}
};
template<typename T, bool C>
bool operator==(const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return true;}
template<typename T, bool C>
bool operator!=(const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return false;}
template<typename T, bool C>
bool operator< (const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return false;}
template<typename T, bool C>
bool operator<=(const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return true;}
template<typename T, bool C>
bool operator> (const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return false;}
template<typename T, bool C>
bool operator>=(const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return true;}
template<typename T, bool C>
typename empty_iterator<T, C>::difference_type
operator-(const empty_iterator<T, C>&, const empty_iterator<T, C>&) noexcept {return 0;}
template<typename T, bool C>
empty_iterator<T, C>
operator+(typename empty_iterator<T, C>::difference_type, const empty_iterator<T, C>& rhs) noexcept {return rhs;}
template<typename T, bool C>
empty_iterator<T, C>
operator+(const empty_iterator<T, C>& lhs, typename empty_iterator<T, C>::difference_type) noexcept {return lhs;}
} // detail
// The default comment type. It discards all the comments. It requires only one
// byte to contain, so the memory footprint is smaller than preserve_comments.
//
// It just ignores `push_back`, `insert`, `erase`, and any other modifications.
// IT always returns size() == 0, the iterator taken by `begin()` is always the
// same as that of `end()`, and accessing through `operator[]` or iterators
// always causes a segmentation fault. DO NOT access to the element of this.
//
// Why this is chose as the default type is because the last version (2.x.y)
// does not contain any comments in a value. To minimize the impact on the
// efficiency, this is choosed as a default.
//
// To reduce the memory footprint, later we can try empty base optimization (EBO).
struct discard_comments
{
using size_type = std::size_t;
using difference_type = std::ptrdiff_t;
using value_type = std::string;
using reference = std::string&;
using const_reference = std::string const&;
using pointer = std::string*;
using const_pointer = std::string const*;
using iterator = detail::empty_iterator<std::string, false>;
using const_iterator = detail::empty_iterator<std::string, true>;
using reverse_iterator = detail::empty_iterator<std::string, false>;
using const_reverse_iterator = detail::empty_iterator<std::string, true>;
discard_comments() = default;
~discard_comments() = default;
discard_comments(discard_comments const&) = default;
discard_comments(discard_comments &&) = default;
discard_comments& operator=(discard_comments const&) = default;
discard_comments& operator=(discard_comments &&) = default;
explicit discard_comments(const std::vector<std::string>&) noexcept {}
explicit discard_comments(std::vector<std::string>&&) noexcept {}
discard_comments& operator=(const std::vector<std::string>&) noexcept {return *this;}
discard_comments& operator=(std::vector<std::string>&&) noexcept {return *this;}
explicit discard_comments(const preserve_comments&) noexcept {}
explicit discard_comments(size_type) noexcept {}
discard_comments(size_type, const std::string&) noexcept {}
discard_comments(std::initializer_list<std::string>) noexcept {}
template<typename InputIterator>
discard_comments(InputIterator, InputIterator) noexcept {}
template<typename InputIterator>
void assign(InputIterator, InputIterator) noexcept {}
void assign(std::initializer_list<std::string>) noexcept {}
void assign(size_type, const std::string&) noexcept {}
iterator insert(const_iterator, const std::string&) {return iterator{};}
iterator insert(const_iterator, std::string&&) {return iterator{};}
iterator insert(const_iterator, size_type, const std::string&) {return iterator{};}
template<typename InputIterator>
iterator insert(const_iterator, InputIterator, InputIterator) {return iterator{};}
iterator insert(const_iterator, std::initializer_list<std::string>) {return iterator{};}
template<typename ... Ts>
iterator emplace(const_iterator, Ts&& ...) {return iterator{};}
iterator erase(const_iterator) {return iterator{};}
iterator erase(const_iterator, const_iterator) {return iterator{};}
void swap(discard_comments&) {return;}
void push_back(const std::string&) {return;}
void push_back(std::string&& ) {return;}
void pop_back() {return;}
template<typename ... Ts>
void emplace_back(Ts&& ...) {return;}
void clear() {return;}
size_type size() const noexcept {return 0;}
size_type max_size() const noexcept {return 0;}
size_type capacity() const noexcept {return 0;}
bool empty() const noexcept {return true;}
void reserve(size_type) {return;}
void resize(size_type) {return;}
void resize(size_type, const std::string&) {return;}
void shrink_to_fit() {return;}
// DO NOT access to the element of this container. This container is always
// empty, so accessing through operator[], front/back, data causes address
// error.
reference operator[](const size_type) noexcept {return *data();}
const_reference operator[](const size_type) const noexcept {return *data();}
reference at(const size_type) {throw std::out_of_range("toml::discard_comment is always empty.");}
const_reference at(const size_type) const {throw std::out_of_range("toml::discard_comment is always empty.");}
reference front() noexcept {return *data();}
const_reference front() const noexcept {return *data();}
reference back() noexcept {return *data();}
const_reference back() const noexcept {return *data();}
pointer data() noexcept {return nullptr;}
const_pointer data() const noexcept {return nullptr;}
iterator begin() noexcept {return iterator{};}
iterator end() noexcept {return iterator{};}
const_iterator begin() const noexcept {return const_iterator{};}
const_iterator end() const noexcept {return const_iterator{};}
const_iterator cbegin() const noexcept {return const_iterator{};}
const_iterator cend() const noexcept {return const_iterator{};}
reverse_iterator rbegin() noexcept {return iterator{};}
reverse_iterator rend() noexcept {return iterator{};}
const_reverse_iterator rbegin() const noexcept {return const_iterator{};}
const_reverse_iterator rend() const noexcept {return const_iterator{};}
const_reverse_iterator crbegin() const noexcept {return const_iterator{};}
const_reverse_iterator crend() const noexcept {return const_iterator{};}
};
inline bool operator==(const discard_comments&, const discard_comments&) noexcept {return true;}
inline bool operator!=(const discard_comments&, const discard_comments&) noexcept {return false;}
inline bool operator< (const discard_comments&, const discard_comments&) noexcept {return false;}
inline bool operator<=(const discard_comments&, const discard_comments&) noexcept {return true;}
inline bool operator> (const discard_comments&, const discard_comments&) noexcept {return false;}
inline bool operator>=(const discard_comments&, const discard_comments&) noexcept {return true;}
inline void swap(const discard_comments&, const discard_comments&) noexcept {return;}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const discard_comments&)
{
return os;
}
} // toml11
#endif// TOML11_COMMENTS_HPP

@ -0,0 +1,631 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_DATETIME_HPP
#define TOML11_DATETIME_HPP
#include <cstdint>
#include <cstdlib>
#include <ctime>
#include <array>
#include <chrono>
#include <iomanip>
#include <ostream>
#include <tuple>
namespace toml
{
// To avoid non-threadsafe std::localtime. In C11 (not C++11!), localtime_s is
// provided in the absolutely same purpose, but C++11 is actually not compatible
// with C11. We need to dispatch the function depending on the OS.
namespace detail
{
// TODO: find more sophisticated way to handle this
#if (defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 1) || defined(_XOPEN_SOURCE) || defined(_BSD_SOURCE) || defined(_SVID_SOURCE) || defined(_POSIX_SOURCE)
inline std::tm localtime_s(const std::time_t* src)
{
std::tm dst;
const auto result = ::localtime_r(src, &dst);
if (!result) { throw std::runtime_error("localtime_r failed."); }
return dst;
}
inline std::tm gmtime_s(const std::time_t* src)
{
std::tm dst;
const auto result = ::gmtime_r(src, &dst);
if (!result) { throw std::runtime_error("gmtime_r failed."); }
return dst;
}
#elif defined(_MSC_VER)
inline std::tm localtime_s(const std::time_t* src)
{
std::tm dst;
const auto result = ::localtime_s(&dst, src);
if (result) { throw std::runtime_error("localtime_s failed."); }
return dst;
}
inline std::tm gmtime_s(const std::time_t* src)
{
std::tm dst;
const auto result = ::gmtime_s(&dst, src);
if (result) { throw std::runtime_error("gmtime_s failed."); }
return dst;
}
#else // fallback. not threadsafe
inline std::tm localtime_s(const std::time_t* src)
{
const auto result = std::localtime(src);
if (!result) { throw std::runtime_error("localtime failed."); }
return *result;
}
inline std::tm gmtime_s(const std::time_t* src)
{
const auto result = std::gmtime(src);
if (!result) { throw std::runtime_error("gmtime failed."); }
return *result;
}
#endif
} // detail
enum class month_t : std::uint8_t
{
Jan = 0,
Feb = 1,
Mar = 2,
Apr = 3,
May = 4,
Jun = 5,
Jul = 6,
Aug = 7,
Sep = 8,
Oct = 9,
Nov = 10,
Dec = 11
};
struct local_date
{
std::int16_t year; // A.D. (like, 2018)
std::uint8_t month; // [0, 11]
std::uint8_t day; // [1, 31]
local_date(int y, month_t m, int d)
: year (static_cast<std::int16_t>(y)),
month(static_cast<std::uint8_t>(m)),
day (static_cast<std::uint8_t>(d))
{}
explicit local_date(const std::tm& t)
: year (static_cast<std::int16_t>(t.tm_year + 1900)),
month(static_cast<std::uint8_t>(t.tm_mon)),
day (static_cast<std::uint8_t>(t.tm_mday))
{}
explicit local_date(const std::chrono::system_clock::time_point& tp)
{
const auto t = std::chrono::system_clock::to_time_t(tp);
const auto time = detail::localtime_s(&t);
*this = local_date(time);
}
explicit local_date(const std::time_t t)
: local_date(std::chrono::system_clock::from_time_t(t))
{}
operator std::chrono::system_clock::time_point() const
{
// std::mktime returns date as local time zone. no conversion needed
std::tm t;
t.tm_sec = 0;
t.tm_min = 0;
t.tm_hour = 0;
t.tm_mday = static_cast<int>(this->day);
t.tm_mon = static_cast<int>(this->month);
t.tm_year = static_cast<int>(this->year) - 1900;
t.tm_wday = 0; // the value will be ignored
t.tm_yday = 0; // the value will be ignored
t.tm_isdst = -1;
return std::chrono::system_clock::from_time_t(std::mktime(&t));
}
operator std::time_t() const
{
return std::chrono::system_clock::to_time_t(
std::chrono::system_clock::time_point(*this));
}
local_date() = default;
~local_date() = default;
local_date(local_date const&) = default;
local_date(local_date&&) = default;
local_date& operator=(local_date const&) = default;
local_date& operator=(local_date&&) = default;
};
inline bool operator==(const local_date& lhs, const local_date& rhs)
{
return std::make_tuple(lhs.year, lhs.month, lhs.day) ==
std::make_tuple(rhs.year, rhs.month, rhs.day);
}
inline bool operator!=(const local_date& lhs, const local_date& rhs)
{
return !(lhs == rhs);
}
inline bool operator< (const local_date& lhs, const local_date& rhs)
{
return std::make_tuple(lhs.year, lhs.month, lhs.day) <
std::make_tuple(rhs.year, rhs.month, rhs.day);
}
inline bool operator<=(const local_date& lhs, const local_date& rhs)
{
return (lhs < rhs) || (lhs == rhs);
}
inline bool operator> (const local_date& lhs, const local_date& rhs)
{
return !(lhs <= rhs);
}
inline bool operator>=(const local_date& lhs, const local_date& rhs)
{
return !(lhs < rhs);
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const local_date& date)
{
os << std::setfill('0') << std::setw(4) << static_cast<int>(date.year ) << '-';
os << std::setfill('0') << std::setw(2) << static_cast<int>(date.month) + 1 << '-';
os << std::setfill('0') << std::setw(2) << static_cast<int>(date.day ) ;
return os;
}
struct local_time
{
std::uint8_t hour; // [0, 23]
std::uint8_t minute; // [0, 59]
std::uint8_t second; // [0, 60]
std::uint16_t millisecond; // [0, 999]
std::uint16_t microsecond; // [0, 999]
std::uint16_t nanosecond; // [0, 999]
local_time(int h, int m, int s,
int ms = 0, int us = 0, int ns = 0)
: hour (static_cast<std::uint8_t>(h)),
minute(static_cast<std::uint8_t>(m)),
second(static_cast<std::uint8_t>(s)),
millisecond(static_cast<std::uint16_t>(ms)),
microsecond(static_cast<std::uint16_t>(us)),
nanosecond (static_cast<std::uint16_t>(ns))
{}
explicit local_time(const std::tm& t)
: hour (static_cast<std::uint8_t>(t.tm_hour)),
minute(static_cast<std::uint8_t>(t.tm_min)),
second(static_cast<std::uint8_t>(t.tm_sec)),
millisecond(0), microsecond(0), nanosecond(0)
{}
template<typename Rep, typename Period>
explicit local_time(const std::chrono::duration<Rep, Period>& t)
{
const auto h = std::chrono::duration_cast<std::chrono::hours>(t);
this->hour = static_cast<std::uint8_t>(h.count());
const auto t2 = t - h;
const auto m = std::chrono::duration_cast<std::chrono::minutes>(t2);
this->minute = static_cast<std::uint8_t>(m.count());
const auto t3 = t2 - m;
const auto s = std::chrono::duration_cast<std::chrono::seconds>(t3);
this->second = static_cast<std::uint8_t>(s.count());
const auto t4 = t3 - s;
const auto ms = std::chrono::duration_cast<std::chrono::milliseconds>(t4);
this->millisecond = static_cast<std::uint16_t>(ms.count());
const auto t5 = t4 - ms;
const auto us = std::chrono::duration_cast<std::chrono::microseconds>(t5);
this->microsecond = static_cast<std::uint16_t>(us.count());
const auto t6 = t5 - us;
const auto ns = std::chrono::duration_cast<std::chrono::nanoseconds>(t6);
this->nanosecond = static_cast<std::uint16_t>(ns.count());
}
operator std::chrono::nanoseconds() const
{
return std::chrono::nanoseconds (this->nanosecond) +
std::chrono::microseconds(this->microsecond) +
std::chrono::milliseconds(this->millisecond) +
std::chrono::seconds(this->second) +
std::chrono::minutes(this->minute) +
std::chrono::hours(this->hour);
}
local_time() = default;
~local_time() = default;
local_time(local_time const&) = default;
local_time(local_time&&) = default;
local_time& operator=(local_time const&) = default;
local_time& operator=(local_time&&) = default;
};
inline bool operator==(const local_time& lhs, const local_time& rhs)
{
return std::make_tuple(lhs.hour, lhs.minute, lhs.second, lhs.millisecond, lhs.microsecond, lhs.nanosecond) ==
std::make_tuple(rhs.hour, rhs.minute, rhs.second, rhs.millisecond, rhs.microsecond, rhs.nanosecond);
}
inline bool operator!=(const local_time& lhs, const local_time& rhs)
{
return !(lhs == rhs);
}
inline bool operator< (const local_time& lhs, const local_time& rhs)
{
return std::make_tuple(lhs.hour, lhs.minute, lhs.second, lhs.millisecond, lhs.microsecond, lhs.nanosecond) <
std::make_tuple(rhs.hour, rhs.minute, rhs.second, rhs.millisecond, rhs.microsecond, rhs.nanosecond);
}
inline bool operator<=(const local_time& lhs, const local_time& rhs)
{
return (lhs < rhs) || (lhs == rhs);
}
inline bool operator> (const local_time& lhs, const local_time& rhs)
{
return !(lhs <= rhs);
}
inline bool operator>=(const local_time& lhs, const local_time& rhs)
{
return !(lhs < rhs);
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const local_time& time)
{
os << std::setfill('0') << std::setw(2) << static_cast<int>(time.hour ) << ':';
os << std::setfill('0') << std::setw(2) << static_cast<int>(time.minute) << ':';
os << std::setfill('0') << std::setw(2) << static_cast<int>(time.second);
if(time.millisecond != 0 || time.microsecond != 0 || time.nanosecond != 0)
{
os << '.';
os << std::setfill('0') << std::setw(3) << static_cast<int>(time.millisecond);
if(time.microsecond != 0 || time.nanosecond != 0)
{
os << std::setfill('0') << std::setw(3) << static_cast<int>(time.microsecond);
if(time.nanosecond != 0)
{
os << std::setfill('0') << std::setw(3) << static_cast<int>(time.nanosecond);
}
}
}
return os;
}
struct time_offset
{
std::int8_t hour; // [-12, 12]
std::int8_t minute; // [-59, 59]
time_offset(int h, int m)
: hour (static_cast<std::int8_t>(h)),
minute(static_cast<std::int8_t>(m))
{}
operator std::chrono::minutes() const
{
return std::chrono::minutes(this->minute) +
std::chrono::hours(this->hour);
}
time_offset() = default;
~time_offset() = default;
time_offset(time_offset const&) = default;
time_offset(time_offset&&) = default;
time_offset& operator=(time_offset const&) = default;
time_offset& operator=(time_offset&&) = default;
};
inline bool operator==(const time_offset& lhs, const time_offset& rhs)
{
return std::make_tuple(lhs.hour, lhs.minute) ==
std::make_tuple(rhs.hour, rhs.minute);
}
inline bool operator!=(const time_offset& lhs, const time_offset& rhs)
{
return !(lhs == rhs);
}
inline bool operator< (const time_offset& lhs, const time_offset& rhs)
{
return std::make_tuple(lhs.hour, lhs.minute) <
std::make_tuple(rhs.hour, rhs.minute);
}
inline bool operator<=(const time_offset& lhs, const time_offset& rhs)
{
return (lhs < rhs) || (lhs == rhs);
}
inline bool operator> (const time_offset& lhs, const time_offset& rhs)
{
return !(lhs <= rhs);
}
inline bool operator>=(const time_offset& lhs, const time_offset& rhs)
{
return !(lhs < rhs);
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const time_offset& offset)
{
if(offset.hour == 0 && offset.minute == 0)
{
os << 'Z';
return os;
}
int minute = static_cast<int>(offset.hour) * 60 + offset.minute;
if(minute < 0){os << '-'; minute = std::abs(minute);} else {os << '+';}
os << std::setfill('0') << std::setw(2) << minute / 60 << ':';
os << std::setfill('0') << std::setw(2) << minute % 60;
return os;
}
struct local_datetime
{
local_date date;
local_time time;
local_datetime(local_date d, local_time t): date(d), time(t) {}
explicit local_datetime(const std::tm& t): date(t), time(t){}
explicit local_datetime(const std::chrono::system_clock::time_point& tp)
{
const auto t = std::chrono::system_clock::to_time_t(tp);
std::tm ltime = detail::localtime_s(&t);
this->date = local_date(ltime);
this->time = local_time(ltime);
// std::tm lacks subsecond information, so diff between tp and tm
// can be used to get millisecond & microsecond information.
const auto t_diff = tp -
std::chrono::system_clock::from_time_t(std::mktime(&ltime));
this->time.millisecond = static_cast<std::uint16_t>(
std::chrono::duration_cast<std::chrono::milliseconds>(t_diff).count());
this->time.microsecond = static_cast<std::uint16_t>(
std::chrono::duration_cast<std::chrono::microseconds>(t_diff).count());
this->time.nanosecond = static_cast<std::uint16_t>(
std::chrono::duration_cast<std::chrono::nanoseconds >(t_diff).count());
}
explicit local_datetime(const std::time_t t)
: local_datetime(std::chrono::system_clock::from_time_t(t))
{}
operator std::chrono::system_clock::time_point() const
{
using internal_duration =
typename std::chrono::system_clock::time_point::duration;
// Normally DST begins at A.M. 3 or 4. If we re-use conversion operator
// of local_date and local_time independently, the conversion fails if
// it is the day when DST begins or ends. Since local_date considers the
// time is 00:00 A.M. and local_time does not consider DST because it
// does not have any date information. We need to consider both date and
// time information at the same time to convert it correctly.
std::tm t;
t.tm_sec = static_cast<int>(this->time.second);
t.tm_min = static_cast<int>(this->time.minute);
t.tm_hour = static_cast<int>(this->time.hour);
t.tm_mday = static_cast<int>(this->date.day);
t.tm_mon = static_cast<int>(this->date.month);
t.tm_year = static_cast<int>(this->date.year) - 1900;
t.tm_wday = 0; // the value will be ignored
t.tm_yday = 0; // the value will be ignored
t.tm_isdst = -1;
// std::mktime returns date as local time zone. no conversion needed
auto dt = std::chrono::system_clock::from_time_t(std::mktime(&t));
dt += std::chrono::duration_cast<internal_duration>(
std::chrono::milliseconds(this->time.millisecond) +
std::chrono::microseconds(this->time.microsecond) +
std::chrono::nanoseconds (this->time.nanosecond));
return dt;
}
operator std::time_t() const
{
return std::chrono::system_clock::to_time_t(
std::chrono::system_clock::time_point(*this));
}
local_datetime() = default;
~local_datetime() = default;
local_datetime(local_datetime const&) = default;
local_datetime(local_datetime&&) = default;
local_datetime& operator=(local_datetime const&) = default;
local_datetime& operator=(local_datetime&&) = default;
};
inline bool operator==(const local_datetime& lhs, const local_datetime& rhs)
{
return std::make_tuple(lhs.date, lhs.time) ==
std::make_tuple(rhs.date, rhs.time);
}
inline bool operator!=(const local_datetime& lhs, const local_datetime& rhs)
{
return !(lhs == rhs);
}
inline bool operator< (const local_datetime& lhs, const local_datetime& rhs)
{
return std::make_tuple(lhs.date, lhs.time) <
std::make_tuple(rhs.date, rhs.time);
}
inline bool operator<=(const local_datetime& lhs, const local_datetime& rhs)
{
return (lhs < rhs) || (lhs == rhs);
}
inline bool operator> (const local_datetime& lhs, const local_datetime& rhs)
{
return !(lhs <= rhs);
}
inline bool operator>=(const local_datetime& lhs, const local_datetime& rhs)
{
return !(lhs < rhs);
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const local_datetime& dt)
{
os << dt.date << 'T' << dt.time;
return os;
}
struct offset_datetime
{
local_date date;
local_time time;
time_offset offset;
offset_datetime(local_date d, local_time t, time_offset o)
: date(d), time(t), offset(o)
{}
offset_datetime(const local_datetime& dt, time_offset o)
: date(dt.date), time(dt.time), offset(o)
{}
explicit offset_datetime(const local_datetime& ld)
: date(ld.date), time(ld.time), offset(get_local_offset(nullptr))
// use the current local timezone offset
{}
explicit offset_datetime(const std::chrono::system_clock::time_point& tp)
: offset(0, 0) // use gmtime
{
const auto timet = std::chrono::system_clock::to_time_t(tp);
const auto tm = detail::gmtime_s(&timet);
this->date = local_date(tm);
this->time = local_time(tm);
}
explicit offset_datetime(const std::time_t& t)
: offset(0, 0) // use gmtime
{
const auto tm = detail::gmtime_s(&t);
this->date = local_date(tm);
this->time = local_time(tm);
}
explicit offset_datetime(const std::tm& t)
: offset(0, 0) // assume gmtime
{
this->date = local_date(t);
this->time = local_time(t);
}
operator std::chrono::system_clock::time_point() const
{
// get date-time
using internal_duration =
typename std::chrono::system_clock::time_point::duration;
// first, convert it to local date-time information in the same way as
// local_datetime does. later we will use time_t to adjust time offset.
std::tm t;
t.tm_sec = static_cast<int>(this->time.second);
t.tm_min = static_cast<int>(this->time.minute);
t.tm_hour = static_cast<int>(this->time.hour);
t.tm_mday = static_cast<int>(this->date.day);
t.tm_mon = static_cast<int>(this->date.month);
t.tm_year = static_cast<int>(this->date.year) - 1900;
t.tm_wday = 0; // the value will be ignored
t.tm_yday = 0; // the value will be ignored
t.tm_isdst = -1;
const std::time_t tp_loc = std::mktime(std::addressof(t));
auto tp = std::chrono::system_clock::from_time_t(tp_loc);
tp += std::chrono::duration_cast<internal_duration>(
std::chrono::milliseconds(this->time.millisecond) +
std::chrono::microseconds(this->time.microsecond) +
std::chrono::nanoseconds (this->time.nanosecond));
// Since mktime uses local time zone, it should be corrected.
// `12:00:00+09:00` means `03:00:00Z`. So mktime returns `03:00:00Z` if
// we are in `+09:00` timezone. To represent `12:00:00Z` there, we need
// to add `+09:00` to `03:00:00Z`.
// Here, it uses the time_t converted from date-time info to handle
// daylight saving time.
const auto ofs = get_local_offset(std::addressof(tp_loc));
tp += std::chrono::hours (ofs.hour);
tp += std::chrono::minutes(ofs.minute);
// We got `12:00:00Z` by correcting local timezone applied by mktime.
// Then we will apply the offset. Let's say `12:00:00-08:00` is given.
// And now, we have `12:00:00Z`. `12:00:00-08:00` means `20:00:00Z`.
// So we need to subtract the offset.
tp -= std::chrono::minutes(this->offset);
return tp;
}
operator std::time_t() const
{
return std::chrono::system_clock::to_time_t(
std::chrono::system_clock::time_point(*this));
}
offset_datetime() = default;
~offset_datetime() = default;
offset_datetime(offset_datetime const&) = default;
offset_datetime(offset_datetime&&) = default;
offset_datetime& operator=(offset_datetime const&) = default;
offset_datetime& operator=(offset_datetime&&) = default;
private:
static time_offset get_local_offset(const std::time_t* tp)
{
// get local timezone with the same date-time information as mktime
const auto t = detail::localtime_s(tp);
std::array<char, 6> buf;
const auto result = std::strftime(buf.data(), 6, "%z", &t); // +hhmm\0
if(result != 5)
{
throw std::runtime_error("toml::offset_datetime: cannot obtain "
"timezone information of current env");
}
const int ofs = std::atoi(buf.data());
const int ofs_h = ofs / 100;
const int ofs_m = ofs - (ofs_h * 100);
return time_offset(ofs_h, ofs_m);
}
};
inline bool operator==(const offset_datetime& lhs, const offset_datetime& rhs)
{
return std::make_tuple(lhs.date, lhs.time, lhs.offset) ==
std::make_tuple(rhs.date, rhs.time, rhs.offset);
}
inline bool operator!=(const offset_datetime& lhs, const offset_datetime& rhs)
{
return !(lhs == rhs);
}
inline bool operator< (const offset_datetime& lhs, const offset_datetime& rhs)
{
return std::make_tuple(lhs.date, lhs.time, lhs.offset) <
std::make_tuple(rhs.date, rhs.time, rhs.offset);
}
inline bool operator<=(const offset_datetime& lhs, const offset_datetime& rhs)
{
return (lhs < rhs) || (lhs == rhs);
}
inline bool operator> (const offset_datetime& lhs, const offset_datetime& rhs)
{
return !(lhs <= rhs);
}
inline bool operator>=(const offset_datetime& lhs, const offset_datetime& rhs)
{
return !(lhs < rhs);
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const offset_datetime& dt)
{
os << dt.date << 'T' << dt.time << dt.offset;
return os;
}
}//toml
#endif// TOML11_DATETIME

@ -0,0 +1,65 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_EXCEPTION_HPP
#define TOML11_EXCEPTION_HPP
#include <stdexcept>
#include <string>
#include "source_location.hpp"
namespace toml
{
struct exception : public std::exception
{
public:
explicit exception(const source_location& loc): loc_(loc) {}
virtual ~exception() noexcept override = default;
virtual const char* what() const noexcept override {return "";}
virtual source_location const& location() const noexcept {return loc_;}
protected:
source_location loc_;
};
struct syntax_error : public toml::exception
{
public:
explicit syntax_error(const std::string& what_arg, const source_location& loc)
: exception(loc), what_(what_arg)
{}
virtual ~syntax_error() noexcept override = default;
virtual const char* what() const noexcept override {return what_.c_str();}
protected:
std::string what_;
};
struct type_error : public toml::exception
{
public:
explicit type_error(const std::string& what_arg, const source_location& loc)
: exception(loc), what_(what_arg)
{}
virtual ~type_error() noexcept override = default;
virtual const char* what() const noexcept override {return what_.c_str();}
protected:
std::string what_;
};
struct internal_error : public toml::exception
{
public:
explicit internal_error(const std::string& what_arg, const source_location& loc)
: exception(loc), what_(what_arg)
{}
virtual ~internal_error() noexcept override = default;
virtual const char* what() const noexcept override {return what_.c_str();}
protected:
std::string what_;
};
} // toml
#endif // TOML_EXCEPTION

@ -0,0 +1,20 @@
// Copyright Toru Niina 2019.
// Distributed under the MIT License.
#ifndef TOML11_FROM_HPP
#define TOML11_FROM_HPP
#include "traits.hpp"
namespace toml
{
template<typename T>
struct from;
// {
// static T from_toml(const toml::value& v)
// {
// // User-defined conversions ...
// }
// };
} // toml
#endif // TOML11_FROM_HPP

File diff suppressed because it is too large Load Diff

@ -0,0 +1,20 @@
// Copyright Toru Niina 2019.
// Distributed under the MIT License.
#ifndef TOML11_INTO_HPP
#define TOML11_INTO_HPP
#include "traits.hpp"
namespace toml
{
template<typename T>
struct into;
// {
// static toml::value into_toml(const T& user_defined_type)
// {
// // User-defined conversions ...
// }
// };
} // toml
#endif // TOML11_INTO_HPP

@ -0,0 +1,270 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_LEXER_HPP
#define TOML11_LEXER_HPP
#include <istream>
#include <sstream>
#include <stdexcept>
#include <fstream>
#include "combinator.hpp"
namespace toml
{
namespace detail
{
// these scans contents from current location in a container of char
// and extract a region that matches their own pattern.
// to see the implementation of each component, see combinator.hpp.
using lex_wschar = either<character<' '>, character<'\t'>>;
using lex_ws = repeat<lex_wschar, at_least<1>>;
using lex_newline = either<character<'\n'>,
sequence<character<'\r'>, character<'\n'>>>;
using lex_lower = in_range<'a', 'z'>;
using lex_upper = in_range<'A', 'Z'>;
using lex_alpha = either<lex_lower, lex_upper>;
using lex_digit = in_range<'0', '9'>;
using lex_nonzero = in_range<'1', '9'>;
using lex_oct_dig = in_range<'0', '7'>;
using lex_bin_dig = in_range<'0', '1'>;
using lex_hex_dig = either<lex_digit, in_range<'A', 'F'>, in_range<'a', 'f'>>;
using lex_hex_prefix = sequence<character<'0'>, character<'x'>>;
using lex_oct_prefix = sequence<character<'0'>, character<'o'>>;
using lex_bin_prefix = sequence<character<'0'>, character<'b'>>;
using lex_underscore = character<'_'>;
using lex_plus = character<'+'>;
using lex_minus = character<'-'>;
using lex_sign = either<lex_plus, lex_minus>;
// digit | nonzero 1*(digit | _ digit)
using lex_unsigned_dec_int = either<sequence<lex_nonzero, repeat<
either<lex_digit, sequence<lex_underscore, lex_digit>>, at_least<1>>>,
lex_digit>;
// (+|-)? unsigned_dec_int
using lex_dec_int = sequence<maybe<lex_sign>, lex_unsigned_dec_int>;
// hex_prefix hex_dig *(hex_dig | _ hex_dig)
using lex_hex_int = sequence<lex_hex_prefix, sequence<lex_hex_dig, repeat<
either<lex_hex_dig, sequence<lex_underscore, lex_hex_dig>>, unlimited>>>;
// oct_prefix oct_dig *(oct_dig | _ oct_dig)
using lex_oct_int = sequence<lex_oct_prefix, sequence<lex_oct_dig, repeat<
either<lex_oct_dig, sequence<lex_underscore, lex_oct_dig>>, unlimited>>>;
// bin_prefix bin_dig *(bin_dig | _ bin_dig)
using lex_bin_int = sequence<lex_bin_prefix, sequence<lex_bin_dig, repeat<
either<lex_bin_dig, sequence<lex_underscore, lex_bin_dig>>, unlimited>>>;
// (dec_int | hex_int | oct_int | bin_int)
using lex_integer = either<lex_bin_int, lex_oct_int, lex_hex_int, lex_dec_int>;
// ===========================================================================
using lex_inf = sequence<character<'i'>, character<'n'>, character<'f'>>;
using lex_nan = sequence<character<'n'>, character<'a'>, character<'n'>>;
using lex_special_float = sequence<maybe<lex_sign>, either<lex_inf, lex_nan>>;
using lex_zero_prefixable_int = sequence<lex_digit, repeat<either<lex_digit,
sequence<lex_underscore, lex_digit>>, unlimited>>;
using lex_fractional_part = sequence<character<'.'>, lex_zero_prefixable_int>;
using lex_exponent_part = sequence<either<character<'e'>, character<'E'>>,
maybe<lex_sign>, lex_zero_prefixable_int>;
using lex_float = either<lex_special_float,
sequence<lex_dec_int, either<lex_exponent_part,
sequence<lex_fractional_part, maybe<lex_exponent_part>>>>>;
// ===========================================================================
using lex_true = sequence<character<'t'>, character<'r'>,
character<'u'>, character<'e'>>;
using lex_false = sequence<character<'f'>, character<'a'>, character<'l'>,
character<'s'>, character<'e'>>;
using lex_boolean = either<lex_true, lex_false>;
// ===========================================================================
using lex_date_fullyear = repeat<lex_digit, exactly<4>>;
using lex_date_month = repeat<lex_digit, exactly<2>>;
using lex_date_mday = repeat<lex_digit, exactly<2>>;
using lex_time_delim = either<character<'T'>, character<'t'>, character<' '>>;
using lex_time_hour = repeat<lex_digit, exactly<2>>;
using lex_time_minute = repeat<lex_digit, exactly<2>>;
using lex_time_second = repeat<lex_digit, exactly<2>>;
using lex_time_secfrac = sequence<character<'.'>,
repeat<lex_digit, at_least<1>>>;
using lex_time_numoffset = sequence<either<character<'+'>, character<'-'>>,
sequence<lex_time_hour, character<':'>,
lex_time_minute>>;
using lex_time_offset = either<character<'Z'>, character<'z'>,
lex_time_numoffset>;
using lex_partial_time = sequence<lex_time_hour, character<':'>,
lex_time_minute, character<':'>,
lex_time_second, maybe<lex_time_secfrac>>;
using lex_full_date = sequence<lex_date_fullyear, character<'-'>,
lex_date_month, character<'-'>,
lex_date_mday>;
using lex_full_time = sequence<lex_partial_time, lex_time_offset>;
using lex_offset_date_time = sequence<lex_full_date, lex_time_delim, lex_full_time>;
using lex_local_date_time = sequence<lex_full_date, lex_time_delim, lex_partial_time>;
using lex_local_date = lex_full_date;
using lex_local_time = lex_partial_time;
// ===========================================================================
using lex_quotation_mark = character<'"'>;
using lex_basic_unescaped = exclude<either<in_range<0x00, 0x08>, // 0x09 (tab)
in_range<0x0a, 0x1F>, // is allowed
character<0x22>, character<0x5C>,
character<0x7F>>>;
using lex_escape = character<'\\'>;
using lex_escape_unicode_short = sequence<character<'u'>,
repeat<lex_hex_dig, exactly<4>>>;
using lex_escape_unicode_long = sequence<character<'U'>,
repeat<lex_hex_dig, exactly<8>>>;
using lex_escape_seq_char = either<character<'"'>, character<'\\'>,
character<'b'>, character<'f'>,
character<'n'>, character<'r'>,
character<'t'>,
lex_escape_unicode_short,
lex_escape_unicode_long
>;
using lex_escaped = sequence<lex_escape, lex_escape_seq_char>;
using lex_basic_char = either<lex_basic_unescaped, lex_escaped>;
using lex_basic_string = sequence<lex_quotation_mark,
repeat<lex_basic_char, unlimited>,
lex_quotation_mark>;
// After toml post-v0.5.0, it is explicitly clarified how quotes in ml-strings
// are allowed to be used.
// After this, the following strings are *explicitly* allowed.
// - One or two `"`s in a multi-line basic string is allowed wherever it is.
// - Three consecutive `"`s in a multi-line basic string is considered as a delimiter.
// - One or two `"`s can appear just before or after the delimiter.
// ```toml
// str4 = """Here are two quotation marks: "". Simple enough."""
// str5 = """Here are three quotation marks: ""\"."""
// str6 = """Here are fifteen quotation marks: ""\"""\"""\"""\"""\"."""
// str7 = """"This," she said, "is just a pointless statement.""""
// ```
// In the current implementation (v3.3.0), it is difficult to parse `str7` in
// the above example. It is difficult to recognize `"` at the end of string body
// collectly. It will be misunderstood as a `"""` delimiter and an additional,
// invalid `"`. Like this:
// ```console
// what(): [error] toml::parse_table: invalid line format
// --> hoge.toml
// |
// 13 | str7 = """"This," she said, "is just a pointless statement.""""
// | ^- expected newline, but got '"'.
// ```
// As a quick workaround for this problem, `lex_ml_basic_string_delim` was
// splitted into two, `lex_ml_basic_string_open` and `lex_ml_basic_string_close`.
// `lex_ml_basic_string_open` allows only `"""`. `_close` allows 3-5 `"`s.
// In parse_ml_basic_string() function, the trailing `"`s will be attached to
// the string body.
//
using lex_ml_basic_string_delim = repeat<lex_quotation_mark, exactly<3>>;
using lex_ml_basic_string_open = lex_ml_basic_string_delim;
using lex_ml_basic_string_close = sequence<
repeat<lex_quotation_mark, exactly<3>>,
maybe<lex_quotation_mark>, maybe<lex_quotation_mark>
>;
using lex_ml_basic_unescaped = exclude<either<in_range<0x00, 0x08>, // 0x09
in_range<0x0a, 0x1F>, // is tab
character<0x5C>, // backslash
character<0x7F>, // DEL
lex_ml_basic_string_delim>>;
using lex_ml_basic_escaped_newline = sequence<
lex_escape, maybe<lex_ws>, lex_newline,
repeat<either<lex_ws, lex_newline>, unlimited>>;
using lex_ml_basic_char = either<lex_ml_basic_unescaped, lex_escaped>;
using lex_ml_basic_body = repeat<either<lex_ml_basic_char, lex_newline,
lex_ml_basic_escaped_newline>,
unlimited>;
using lex_ml_basic_string = sequence<lex_ml_basic_string_open,
lex_ml_basic_body,
lex_ml_basic_string_close>;
using lex_literal_char = exclude<either<in_range<0x00, 0x08>,
in_range<0x10, 0x19>, character<0x27>>>;
using lex_apostrophe = character<'\''>;
using lex_literal_string = sequence<lex_apostrophe,
repeat<lex_literal_char, unlimited>,
lex_apostrophe>;
// the same reason as above.
using lex_ml_literal_string_delim = repeat<lex_apostrophe, exactly<3>>;
using lex_ml_literal_string_open = lex_ml_literal_string_delim;
using lex_ml_literal_string_close = sequence<
repeat<lex_apostrophe, exactly<3>>,
maybe<lex_apostrophe>, maybe<lex_apostrophe>
>;
using lex_ml_literal_char = exclude<either<in_range<0x00, 0x08>,
in_range<0x10, 0x1F>,
character<0x7F>,
lex_ml_literal_string_delim>>;
using lex_ml_literal_body = repeat<either<lex_ml_literal_char, lex_newline>,
unlimited>;
using lex_ml_literal_string = sequence<lex_ml_literal_string_open,
lex_ml_literal_body,
lex_ml_literal_string_close>;
using lex_string = either<lex_ml_basic_string, lex_basic_string,
lex_ml_literal_string, lex_literal_string>;
// ===========================================================================
using lex_comment_start_symbol = character<'#'>;
using lex_non_eol = either<character<'\t'>, exclude<in_range<0x00, 0x19>>>;
using lex_comment = sequence<lex_comment_start_symbol,
repeat<lex_non_eol, unlimited>>;
using lex_dot_sep = sequence<maybe<lex_ws>, character<'.'>, maybe<lex_ws>>;
using lex_unquoted_key = repeat<either<lex_alpha, lex_digit,
character<'-'>, character<'_'>>,
at_least<1>>;
using lex_quoted_key = either<lex_basic_string, lex_literal_string>;
using lex_simple_key = either<lex_unquoted_key, lex_quoted_key>;
using lex_dotted_key = sequence<lex_simple_key,
repeat<sequence<lex_dot_sep, lex_simple_key>,
at_least<1>
>
>;
using lex_key = either<lex_dotted_key, lex_simple_key>;
using lex_keyval_sep = sequence<maybe<lex_ws>,
character<'='>,
maybe<lex_ws>>;
using lex_std_table_open = character<'['>;
using lex_std_table_close = character<']'>;
using lex_std_table = sequence<lex_std_table_open,
maybe<lex_ws>,
lex_key,
maybe<lex_ws>,
lex_std_table_close>;
using lex_array_table_open = sequence<lex_std_table_open, lex_std_table_open>;
using lex_array_table_close = sequence<lex_std_table_close, lex_std_table_close>;
using lex_array_table = sequence<lex_array_table_open,
maybe<lex_ws>,
lex_key,
maybe<lex_ws>,
lex_array_table_close>;
} // detail
} // toml
#endif // TOML_LEXER_HPP

@ -0,0 +1,107 @@
// Copyright Toru Niina 2019.
// Distributed under the MIT License.
#ifndef TOML11_LITERAL_HPP
#define TOML11_LITERAL_HPP
#include "parser.hpp"
namespace toml
{
inline namespace literals
{
inline namespace toml_literals
{
// implementation
inline ::toml::value literal_internal_impl(::toml::detail::location loc)
{
// if there are some comments or empty lines, skip them.
using skip_line = ::toml::detail::repeat<toml::detail::sequence<
::toml::detail::maybe<::toml::detail::lex_ws>,
::toml::detail::maybe<::toml::detail::lex_comment>,
::toml::detail::lex_newline
>, ::toml::detail::at_least<1>>;
skip_line::invoke(loc);
// if there are some whitespaces before a value, skip them.
using skip_ws = ::toml::detail::repeat<
::toml::detail::lex_ws, ::toml::detail::at_least<1>>;
skip_ws::invoke(loc);
// to distinguish arrays and tables, first check it is a table or not.
//
// "[1,2,3]"_toml; // this is an array
// "[table]"_toml; // a table that has an empty table named "table" inside.
// "[[1,2,3]]"_toml; // this is an array of arrays
// "[[table]]"_toml; // this is a table that has an array of tables inside.
//
// "[[1]]"_toml; // this can be both... (currently it becomes a table)
// "1 = [{}]"_toml; // this is a table that has an array of table named 1.
// "[[1,]]"_toml; // this is an array of arrays.
// "[[1],]"_toml; // this also.
const auto the_front = loc.iter();
const bool is_table_key = ::toml::detail::lex_std_table::invoke(loc);
loc.reset(the_front);
const bool is_aots_key = ::toml::detail::lex_array_table::invoke(loc);
loc.reset(the_front);
// If it is neither a table-key or a array-of-table-key, it may be a value.
if(!is_table_key && !is_aots_key)
{
if(auto data = ::toml::detail::parse_value<::toml::value>(loc))
{
return data.unwrap();
}
}
// Note that still it can be a table, because the literal might be something
// like the following.
// ```cpp
// R"( // c++11 raw string literals
// key = "value"
// int = 42
// )"_toml;
// ```
// It is a valid toml file.
// It should be parsed as if we parse a file with this content.
if(auto data = ::toml::detail::parse_toml_file<::toml::value>(loc))
{
return data.unwrap();
}
else // none of them.
{
throw ::toml::syntax_error(data.unwrap_err(), source_location(loc));
}
}
inline ::toml::value operator"" _toml(const char* str, std::size_t len)
{
::toml::detail::location loc(
std::string("TOML literal encoded in a C++ code"),
std::vector<char>(str, str + len));
return literal_internal_impl(std::move(loc));
}
// value of __cplusplus in C++2a/20 mode is not fixed yet along compilers.
// So here we use the feature test macro for `char8_t` itself.
#if defined(__cpp_char8_t) && __cpp_char8_t >= 201811L
// value of u8"" literal has been changed from char to char8_t and char8_t is
// NOT compatible to char
inline ::toml::value operator"" _toml(const char8_t* str, std::size_t len)
{
::toml::detail::location loc(
std::string("TOML literal encoded in a C++ code"),
std::vector<char>(reinterpret_cast<const char*>(str),
reinterpret_cast<const char*>(str) + len));
return literal_internal_impl(std::move(loc));
}
#endif
} // toml_literals
} // literals
} // toml
#endif//TOML11_LITERAL_HPP

File diff suppressed because it is too large Load Diff

@ -0,0 +1,417 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_REGION_HPP
#define TOML11_REGION_HPP
#include <memory>
#include <vector>
#include <algorithm>
#include <initializer_list>
#include <iterator>
#include <iomanip>
#include <cassert>
#include "color.hpp"
namespace toml
{
namespace detail
{
// helper function to avoid std::string(0, 'c') or std::string(iter, iter)
template<typename Iterator>
std::string make_string(Iterator first, Iterator last)
{
if(first == last) {return "";}
return std::string(first, last);
}
inline std::string make_string(std::size_t len, char c)
{
if(len == 0) {return "";}
return std::string(len, c);
}
// region_base is a base class of location and region that are defined below.
// it will be used to generate better error messages.
struct region_base
{
region_base() = default;
virtual ~region_base() = default;
region_base(const region_base&) = default;
region_base(region_base&& ) = default;
region_base& operator=(const region_base&) = default;
region_base& operator=(region_base&& ) = default;
virtual bool is_ok() const noexcept {return false;}
virtual char front() const noexcept {return '\0';}
virtual std::string str() const {return std::string("unknown region");}
virtual std::string name() const {return std::string("unknown file");}
virtual std::string line() const {return std::string("unknown line");}
virtual std::string line_num() const {return std::string("?");}
// length of the region
virtual std::size_t size() const noexcept {return 0;}
// number of characters in the line before the region
virtual std::size_t before() const noexcept {return 0;}
// number of characters in the line after the region
virtual std::size_t after() const noexcept {return 0;}
virtual std::vector<std::string> comments() const {return {};}
// ```toml
// # comment_before
// key = "value" # comment_inline
// ```
};
// location represents a position in a container, which contains a file content.
// it can be considered as a region that contains only one character.
//
// it contains pointer to the file content and iterator that points the current
// location.
struct location final : public region_base
{
using const_iterator = typename std::vector<char>::const_iterator;
using difference_type = typename const_iterator::difference_type;
using source_ptr = std::shared_ptr<const std::vector<char>>;
location(std::string name, std::vector<char> cont)
: source_(std::make_shared<std::vector<char>>(std::move(cont))),
line_number_(1), source_name_(std::move(name)), iter_(source_->cbegin())
{}
location(std::string name, const std::string& cont)
: source_(std::make_shared<std::vector<char>>(cont.begin(), cont.end())),
line_number_(1), source_name_(std::move(name)), iter_(source_->cbegin())
{}
location(const location&) = default;
location(location&&) = default;
location& operator=(const location&) = default;
location& operator=(location&&) = default;
~location() = default;
bool is_ok() const noexcept override {return static_cast<bool>(source_);}
char front() const noexcept override {return *iter_;}
// this const prohibits codes like `++(loc.iter())`.
const const_iterator iter() const noexcept {return iter_;}
const_iterator begin() const noexcept {return source_->cbegin();}
const_iterator end() const noexcept {return source_->cend();}
// XXX `location::line_num()` used to be implemented using `std::count` to
// count a number of '\n'. But with a long toml file (typically, 10k lines),
// it becomes intolerably slow because each time it generates error messages,
// it counts '\n' from thousands of characters. To workaround it, I decided
// to introduce `location::line_number_` member variable and synchronize it
// to the location changes the point to look. So an overload of `iter()`
// which returns mutable reference is removed and `advance()`, `retrace()`
// and `reset()` is added.
void advance(difference_type n = 1) noexcept
{
this->line_number_ += static_cast<std::size_t>(
std::count(this->iter_, std::next(this->iter_, n), '\n'));
this->iter_ += n;
return;
}
void retrace(difference_type n = 1) noexcept
{
this->line_number_ -= static_cast<std::size_t>(
std::count(std::prev(this->iter_, n), this->iter_, '\n'));
this->iter_ -= n;
return;
}
void reset(const_iterator rollback) noexcept
{
// since c++11, std::distance works in both ways for random-access
// iterators and returns a negative value if `first > last`.
if(0 <= std::distance(rollback, this->iter_)) // rollback < iter
{
this->line_number_ -= static_cast<std::size_t>(
std::count(rollback, this->iter_, '\n'));
}
else // iter < rollback [[unlikely]]
{
this->line_number_ += static_cast<std::size_t>(
std::count(this->iter_, rollback, '\n'));
}
this->iter_ = rollback;
return;
}
std::string str() const override {return make_string(1, *this->iter());}
std::string name() const override {return source_name_;}
std::string line_num() const override
{
return std::to_string(this->line_number_);
}
std::string line() const override
{
return make_string(this->line_begin(), this->line_end());
}
const_iterator line_begin() const noexcept
{
using reverse_iterator = std::reverse_iterator<const_iterator>;
return std::find(reverse_iterator(this->iter()),
reverse_iterator(this->begin()), '\n').base();
}
const_iterator line_end() const noexcept
{
return std::find(this->iter(), this->end(), '\n');
}
// location is always points a character. so the size is 1.
std::size_t size() const noexcept override
{
return 1u;
}
std::size_t before() const noexcept override
{
const auto sz = std::distance(this->line_begin(), this->iter());
assert(sz >= 0);
return static_cast<std::size_t>(sz);
}
std::size_t after() const noexcept override
{
const auto sz = std::distance(this->iter(), this->line_end());
assert(sz >= 0);
return static_cast<std::size_t>(sz);
}
source_ptr const& source() const& noexcept {return source_;}
source_ptr&& source() && noexcept {return std::move(source_);}
private:
source_ptr source_;
std::size_t line_number_;
std::string source_name_;
const_iterator iter_;
};
// region represents a range in a container, which contains a file content.
//
// it contains pointer to the file content and iterator that points the first
// and last location.
struct region final : public region_base
{
using const_iterator = typename std::vector<char>::const_iterator;
using source_ptr = std::shared_ptr<const std::vector<char>>;
// delete default constructor. source_ never be null.
region() = delete;
explicit region(const location& loc)
: source_(loc.source()), source_name_(loc.name()),
first_(loc.iter()), last_(loc.iter())
{}
explicit region(location&& loc)
: source_(loc.source()), source_name_(loc.name()),
first_(loc.iter()), last_(loc.iter())
{}
region(const location& loc, const_iterator f, const_iterator l)
: source_(loc.source()), source_name_(loc.name()), first_(f), last_(l)
{}
region(location&& loc, const_iterator f, const_iterator l)
: source_(loc.source()), source_name_(loc.name()), first_(f), last_(l)
{}
region(const region&) = default;
region(region&&) = default;
region& operator=(const region&) = default;
region& operator=(region&&) = default;
~region() = default;
region& operator+=(const region& other)
{
// different regions cannot be concatenated
assert(this->begin() == other.begin() && this->end() == other.end() &&
this->last_ == other.first_);
this->last_ = other.last_;
return *this;
}
bool is_ok() const noexcept override {return static_cast<bool>(source_);}
char front() const noexcept override {return *first_;}
std::string str() const override {return make_string(first_, last_);}
std::string line() const override
{
if(this->contain_newline())
{
return make_string(this->line_begin(),
std::find(this->line_begin(), this->last(), '\n'));
}
return make_string(this->line_begin(), this->line_end());
}
std::string line_num() const override
{
return std::to_string(1 + std::count(this->begin(), this->first(), '\n'));
}
std::size_t size() const noexcept override
{
const auto sz = std::distance(first_, last_);
assert(sz >= 0);
return static_cast<std::size_t>(sz);
}
std::size_t before() const noexcept override
{
const auto sz = std::distance(this->line_begin(), this->first());
assert(sz >= 0);
return static_cast<std::size_t>(sz);
}
std::size_t after() const noexcept override
{
const auto sz = std::distance(this->last(), this->line_end());
assert(sz >= 0);
return static_cast<std::size_t>(sz);
}
bool contain_newline() const noexcept
{
return std::find(this->first(), this->last(), '\n') != this->last();
}
const_iterator line_begin() const noexcept
{
using reverse_iterator = std::reverse_iterator<const_iterator>;
return std::find(reverse_iterator(this->first()),
reverse_iterator(this->begin()), '\n').base();
}
const_iterator line_end() const noexcept
{
return std::find(this->last(), this->end(), '\n');
}
const_iterator begin() const noexcept {return source_->cbegin();}
const_iterator end() const noexcept {return source_->cend();}
const_iterator first() const noexcept {return first_;}
const_iterator last() const noexcept {return last_;}
source_ptr const& source() const& noexcept {return source_;}
source_ptr&& source() && noexcept {return std::move(source_);}
std::string name() const override {return source_name_;}
std::vector<std::string> comments() const override
{
// assuming the current region (`*this`) points a value.
// ```toml
// a = "value"
// ^^^^^^^- this region
// ```
using rev_iter = std::reverse_iterator<const_iterator>;
std::vector<std::string> com{};
{
// find comments just before the current region.
// ```toml
// # this should be collected.
// # this also.
// a = value # not this.
// ```
// # this is a comment for `a`, not array elements.
// a = [1, 2, 3, 4, 5]
if(this->first() == std::find_if(this->line_begin(), this->first(),
[](const char c) noexcept -> bool {return c == '[' || c == '{';}))
{
auto iter = this->line_begin(); // points the first character
while(iter != this->begin())
{
iter = std::prev(iter);
// range [line_start, iter) represents the previous line
const auto line_start = std::find(
rev_iter(iter), rev_iter(this->begin()), '\n').base();
const auto comment_found = std::find(line_start, iter, '#');
if(comment_found == iter)
{
break; // comment not found.
}
// exclude the following case.
// > a = "foo" # comment // <-- this is not a comment for b but a.
// > b = "current value"
if(std::all_of(line_start, comment_found,
[](const char c) noexcept -> bool {
return c == ' ' || c == '\t';
}))
{
// unwrap the first '#' by std::next.
auto str = make_string(std::next(comment_found), iter);
if(str.back() == '\r') {str.pop_back();}
com.push_back(std::move(str));
}
else
{
break;
}
iter = line_start;
}
}
}
if(com.size() > 1)
{
std::reverse(com.begin(), com.end());
}
{
// find comments just after the current region.
// ```toml
// # not this.
// a = value # this one.
// a = [ # not this (technically difficult)
//
// ] # and this.
// ```
// The reason why it's difficult is that it requires parsing in the
// following case.
// ```toml
// a = [ 10 # this comment is for `10`. not for `a` but `a[0]`.
// # ...
// ] # this is apparently a comment for a.
//
// b = [
// 3.14 ] # there is no way to add a comment to `3.14` currently.
//
// c = [
// 3.14 # do this if you need a comment here.
// ]
// ```
const auto comment_found =
std::find(this->last(), this->line_end(), '#');
if(comment_found != this->line_end()) // '#' found
{
// table = {key = "value"} # what is this for?
// the above comment is not for "value", but {key="value"}.
if(comment_found == std::find_if(this->last(), comment_found,
[](const char c) noexcept -> bool {
return !(c == ' ' || c == '\t' || c == ',');
}))
{
// unwrap the first '#' by std::next.
auto str = make_string(std::next(comment_found), this->line_end());
if(str.back() == '\r') {str.pop_back();}
com.push_back(std::move(str));
}
}
}
return com;
}
private:
source_ptr source_;
std::string source_name_;
const_iterator first_, last_;
};
} // detail
} // toml
#endif// TOML11_REGION_H

@ -0,0 +1,717 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_RESULT_HPP
#define TOML11_RESULT_HPP
#include "traits.hpp"
#include <type_traits>
#include <stdexcept>
#include <utility>
#include <new>
#include <string>
#include <sstream>
#include <cassert>
namespace toml
{
template<typename T>
struct success
{
using value_type = T;
value_type value;
explicit success(const value_type& v)
noexcept(std::is_nothrow_copy_constructible<value_type>::value)
: value(v)
{}
explicit success(value_type&& v)
noexcept(std::is_nothrow_move_constructible<value_type>::value)
: value(std::move(v))
{}
template<typename U>
explicit success(U&& v): value(std::forward<U>(v)) {}
template<typename U>
explicit success(const success<U>& v): value(v.value) {}
template<typename U>
explicit success(success<U>&& v): value(std::move(v.value)) {}
~success() = default;
success(const success&) = default;
success(success&&) = default;
success& operator=(const success&) = default;
success& operator=(success&&) = default;
};
template<typename T>
struct failure
{
using value_type = T;
value_type value;
explicit failure(const value_type& v)
noexcept(std::is_nothrow_copy_constructible<value_type>::value)
: value(v)
{}
explicit failure(value_type&& v)
noexcept(std::is_nothrow_move_constructible<value_type>::value)
: value(std::move(v))
{}
template<typename U>
explicit failure(U&& v): value(std::forward<U>(v)) {}
template<typename U>
explicit failure(const failure<U>& v): value(v.value) {}
template<typename U>
explicit failure(failure<U>&& v): value(std::move(v.value)) {}
~failure() = default;
failure(const failure&) = default;
failure(failure&&) = default;
failure& operator=(const failure&) = default;
failure& operator=(failure&&) = default;
};
template<typename T>
success<typename std::remove_cv<typename std::remove_reference<T>::type>::type>
ok(T&& v)
{
return success<
typename std::remove_cv<typename std::remove_reference<T>::type>::type
>(std::forward<T>(v));
}
template<typename T>
failure<typename std::remove_cv<typename std::remove_reference<T>::type>::type>
err(T&& v)
{
return failure<
typename std::remove_cv<typename std::remove_reference<T>::type>::type
>(std::forward<T>(v));
}
inline success<std::string> ok(const char* literal)
{
return success<std::string>(std::string(literal));
}
inline failure<std::string> err(const char* literal)
{
return failure<std::string>(std::string(literal));
}
template<typename T, typename E>
struct result
{
using value_type = T;
using error_type = E;
using success_type = success<value_type>;
using failure_type = failure<error_type>;
result(const success_type& s): is_ok_(true)
{
auto tmp = ::new(std::addressof(this->succ)) success_type(s);
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
result(const failure_type& f): is_ok_(false)
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(f);
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
result(success_type&& s): is_ok_(true)
{
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(s));
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
result(failure_type&& f): is_ok_(false)
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(f));
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
template<typename U>
result(const success<U>& s): is_ok_(true)
{
auto tmp = ::new(std::addressof(this->succ)) success_type(s.value);
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
template<typename U>
result(const failure<U>& f): is_ok_(false)
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(f.value);
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
template<typename U>
result(success<U>&& s): is_ok_(true)
{
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(s.value));
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
template<typename U>
result(failure<U>&& f): is_ok_(false)
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(f.value));
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
result& operator=(const success_type& s)
{
this->cleanup();
this->is_ok_ = true;
auto tmp = ::new(std::addressof(this->succ)) success_type(s);
assert(tmp == std::addressof(this->succ));
(void)tmp;
return *this;
}
result& operator=(const failure_type& f)
{
this->cleanup();
this->is_ok_ = false;
auto tmp = ::new(std::addressof(this->fail)) failure_type(f);
assert(tmp == std::addressof(this->fail));
(void)tmp;
return *this;
}
result& operator=(success_type&& s)
{
this->cleanup();
this->is_ok_ = true;
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(s));
assert(tmp == std::addressof(this->succ));
(void)tmp;
return *this;
}
result& operator=(failure_type&& f)
{
this->cleanup();
this->is_ok_ = false;
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(f));
assert(tmp == std::addressof(this->fail));
(void)tmp;
return *this;
}
template<typename U>
result& operator=(const success<U>& s)
{
this->cleanup();
this->is_ok_ = true;
auto tmp = ::new(std::addressof(this->succ)) success_type(s.value);
assert(tmp == std::addressof(this->succ));
(void)tmp;
return *this;
}
template<typename U>
result& operator=(const failure<U>& f)
{
this->cleanup();
this->is_ok_ = false;
auto tmp = ::new(std::addressof(this->fail)) failure_type(f.value);
assert(tmp == std::addressof(this->fail));
(void)tmp;
return *this;
}
template<typename U>
result& operator=(success<U>&& s)
{
this->cleanup();
this->is_ok_ = true;
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(s.value));
assert(tmp == std::addressof(this->succ));
(void)tmp;
return *this;
}
template<typename U>
result& operator=(failure<U>&& f)
{
this->cleanup();
this->is_ok_ = false;
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(f.value));
assert(tmp == std::addressof(this->fail));
(void)tmp;
return *this;
}
~result() noexcept {this->cleanup();}
result(const result& other): is_ok_(other.is_ok())
{
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(other.as_ok());
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(other.as_err());
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
}
result(result&& other): is_ok_(other.is_ok())
{
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(other.as_ok()));
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(other.as_err()));
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
}
template<typename U, typename F>
result(const result<U, F>& other): is_ok_(other.is_ok())
{
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(other.as_ok());
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(other.as_err());
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
}
template<typename U, typename F>
result(result<U, F>&& other): is_ok_(other.is_ok())
{
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(other.as_ok()));
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(other.as_err()));
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
}
result& operator=(const result& other)
{
this->cleanup();
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(other.as_ok());
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(other.as_err());
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
is_ok_ = other.is_ok();
return *this;
}
result& operator=(result&& other)
{
this->cleanup();
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(other.as_ok()));
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(other.as_err()));
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
is_ok_ = other.is_ok();
return *this;
}
template<typename U, typename F>
result& operator=(const result<U, F>& other)
{
this->cleanup();
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(other.as_ok());
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(other.as_err());
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
is_ok_ = other.is_ok();
return *this;
}
template<typename U, typename F>
result& operator=(result<U, F>&& other)
{
this->cleanup();
if(other.is_ok())
{
auto tmp = ::new(std::addressof(this->succ)) success_type(std::move(other.as_ok()));
assert(tmp == std::addressof(this->succ));
(void)tmp;
}
else
{
auto tmp = ::new(std::addressof(this->fail)) failure_type(std::move(other.as_err()));
assert(tmp == std::addressof(this->fail));
(void)tmp;
}
is_ok_ = other.is_ok();
return *this;
}
bool is_ok() const noexcept {return is_ok_;}
bool is_err() const noexcept {return !is_ok_;}
operator bool() const noexcept {return is_ok_;}
value_type& unwrap() &
{
if(is_err())
{
throw std::runtime_error("toml::result: bad unwrap: " +
format_error(this->as_err()));
}
return this->succ.value;
}
value_type const& unwrap() const&
{
if(is_err())
{
throw std::runtime_error("toml::result: bad unwrap: " +
format_error(this->as_err()));
}
return this->succ.value;
}
value_type&& unwrap() &&
{
if(is_err())
{
throw std::runtime_error("toml::result: bad unwrap: " +
format_error(this->as_err()));
}
return std::move(this->succ.value);
}
value_type& unwrap_or(value_type& opt) &
{
if(is_err()) {return opt;}
return this->succ.value;
}
value_type const& unwrap_or(value_type const& opt) const&
{
if(is_err()) {return opt;}
return this->succ.value;
}
value_type unwrap_or(value_type opt) &&
{
if(is_err()) {return opt;}
return this->succ.value;
}
error_type& unwrap_err() &
{
if(is_ok()) {throw std::runtime_error("toml::result: bad unwrap_err");}
return this->fail.value;
}
error_type const& unwrap_err() const&
{
if(is_ok()) {throw std::runtime_error("toml::result: bad unwrap_err");}
return this->fail.value;
}
error_type&& unwrap_err() &&
{
if(is_ok()) {throw std::runtime_error("toml::result: bad unwrap_err");}
return std::move(this->fail.value);
}
value_type& as_ok() & noexcept {return this->succ.value;}
value_type const& as_ok() const& noexcept {return this->succ.value;}
value_type&& as_ok() && noexcept {return std::move(this->succ.value);}
error_type& as_err() & noexcept {return this->fail.value;}
error_type const& as_err() const& noexcept {return this->fail.value;}
error_type&& as_err() && noexcept {return std::move(this->fail.value);}
// prerequisities
// F: T -> U
// retval: result<U, E>
template<typename F>
result<detail::return_type_of_t<F, value_type&>, error_type>
map(F&& f) &
{
if(this->is_ok()){return ok(f(this->as_ok()));}
return err(this->as_err());
}
template<typename F>
result<detail::return_type_of_t<F, value_type const&>, error_type>
map(F&& f) const&
{
if(this->is_ok()){return ok(f(this->as_ok()));}
return err(this->as_err());
}
template<typename F>
result<detail::return_type_of_t<F, value_type &&>, error_type>
map(F&& f) &&
{
if(this->is_ok()){return ok(f(std::move(this->as_ok())));}
return err(std::move(this->as_err()));
}
// prerequisities
// F: E -> F
// retval: result<T, F>
template<typename F>
result<value_type, detail::return_type_of_t<F, error_type&>>
map_err(F&& f) &
{
if(this->is_err()){return err(f(this->as_err()));}
return ok(this->as_ok());
}
template<typename F>
result<value_type, detail::return_type_of_t<F, error_type const&>>
map_err(F&& f) const&
{
if(this->is_err()){return err(f(this->as_err()));}
return ok(this->as_ok());
}
template<typename F>
result<value_type, detail::return_type_of_t<F, error_type&&>>
map_err(F&& f) &&
{
if(this->is_err()){return err(f(std::move(this->as_err())));}
return ok(std::move(this->as_ok()));
}
// prerequisities
// F: T -> U
// retval: U
template<typename F, typename U>
detail::return_type_of_t<F, value_type&>
map_or_else(F&& f, U&& opt) &
{
if(this->is_err()){return std::forward<U>(opt);}
return f(this->as_ok());
}
template<typename F, typename U>
detail::return_type_of_t<F, value_type const&>
map_or_else(F&& f, U&& opt) const&
{
if(this->is_err()){return std::forward<U>(opt);}
return f(this->as_ok());
}
template<typename F, typename U>
detail::return_type_of_t<F, value_type&&>
map_or_else(F&& f, U&& opt) &&
{
if(this->is_err()){return std::forward<U>(opt);}
return f(std::move(this->as_ok()));
}
// prerequisities
// F: E -> U
// retval: U
template<typename F, typename U>
detail::return_type_of_t<F, error_type&>
map_err_or_else(F&& f, U&& opt) &
{
if(this->is_ok()){return std::forward<U>(opt);}
return f(this->as_err());
}
template<typename F, typename U>
detail::return_type_of_t<F, error_type const&>
map_err_or_else(F&& f, U&& opt) const&
{
if(this->is_ok()){return std::forward<U>(opt);}
return f(this->as_err());
}
template<typename F, typename U>
detail::return_type_of_t<F, error_type&&>
map_err_or_else(F&& f, U&& opt) &&
{
if(this->is_ok()){return std::forward<U>(opt);}
return f(std::move(this->as_err()));
}
// prerequisities:
// F: func T -> U
// toml::err(error_type) should be convertible to U.
// normally, type U is another result<S, F> and E is convertible to F
template<typename F>
detail::return_type_of_t<F, value_type&>
and_then(F&& f) &
{
if(this->is_ok()){return f(this->as_ok());}
return err(this->as_err());
}
template<typename F>
detail::return_type_of_t<F, value_type const&>
and_then(F&& f) const&
{
if(this->is_ok()){return f(this->as_ok());}
return err(this->as_err());
}
template<typename F>
detail::return_type_of_t<F, value_type&&>
and_then(F&& f) &&
{
if(this->is_ok()){return f(std::move(this->as_ok()));}
return err(std::move(this->as_err()));
}
// prerequisities:
// F: func E -> U
// toml::ok(value_type) should be convertible to U.
// normally, type U is another result<S, F> and T is convertible to S
template<typename F>
detail::return_type_of_t<F, error_type&>
or_else(F&& f) &
{
if(this->is_err()){return f(this->as_err());}
return ok(this->as_ok());
}
template<typename F>
detail::return_type_of_t<F, error_type const&>
or_else(F&& f) const&
{
if(this->is_err()){return f(this->as_err());}
return ok(this->as_ok());
}
template<typename F>
detail::return_type_of_t<F, error_type&&>
or_else(F&& f) &&
{
if(this->is_err()){return f(std::move(this->as_err()));}
return ok(std::move(this->as_ok()));
}
// if *this is error, returns *this. otherwise, returns other.
result and_other(const result& other) const&
{
return this->is_err() ? *this : other;
}
result and_other(result&& other) &&
{
return this->is_err() ? std::move(*this) : std::move(other);
}
// if *this is okay, returns *this. otherwise, returns other.
result or_other(const result& other) const&
{
return this->is_ok() ? *this : other;
}
result or_other(result&& other) &&
{
return this->is_ok() ? std::move(*this) : std::move(other);
}
void swap(result<T, E>& other)
{
result<T, E> tmp(std::move(*this));
*this = std::move(other);
other = std::move(tmp);
return ;
}
private:
static std::string format_error(std::exception const& excpt)
{
return std::string(excpt.what());
}
template<typename U, typename std::enable_if<!std::is_base_of<
std::exception, U>::value, std::nullptr_t>::type = nullptr>
static std::string format_error(U const& others)
{
std::ostringstream oss; oss << others;
return oss.str();
}
void cleanup() noexcept
{
if(this->is_ok_) {this->succ.~success_type();}
else {this->fail.~failure_type();}
return;
}
private:
bool is_ok_;
union
{
success_type succ;
failure_type fail;
};
};
template<typename T, typename E>
void swap(result<T, E>& lhs, result<T, E>& rhs)
{
lhs.swap(rhs);
return;
}
// this might be confusing because it eagerly evaluated, while in the other
// cases operator && and || are short-circuited.
//
// template<typename T, typename E>
// inline result<T, E>
// operator&&(const result<T, E>& lhs, const result<T, E>& rhs) noexcept
// {
// return lhs.is_ok() ? rhs : lhs;
// }
//
// template<typename T, typename E>
// inline result<T, E>
// operator||(const result<T, E>& lhs, const result<T, E>& rhs) noexcept
// {
// return lhs.is_ok() ? lhs : rhs;
// }
// ----------------------------------------------------------------------------
// re-use result<T, E> as a optional<T> with none_t
namespace detail
{
struct none_t {};
inline bool operator==(const none_t&, const none_t&) noexcept {return true;}
inline bool operator!=(const none_t&, const none_t&) noexcept {return false;}
inline bool operator< (const none_t&, const none_t&) noexcept {return false;}
inline bool operator<=(const none_t&, const none_t&) noexcept {return true;}
inline bool operator> (const none_t&, const none_t&) noexcept {return false;}
inline bool operator>=(const none_t&, const none_t&) noexcept {return true;}
template<typename charT, typename traitsT>
std::basic_ostream<charT, traitsT>&
operator<<(std::basic_ostream<charT, traitsT>& os, const none_t&)
{
os << "none";
return os;
}
inline failure<none_t> none() noexcept {return failure<none_t>{none_t{}};}
} // detail
} // toml11
#endif// TOML11_RESULT_H

@ -0,0 +1,788 @@
// Copyright Toru Niina 2019.
// Distributed under the MIT License.
#ifndef TOML11_SERIALIZER_HPP
#define TOML11_SERIALIZER_HPP
#include <cstdio>
#include <limits>
#include "lexer.hpp"
#include "value.hpp"
namespace toml
{
// This function serialize a key. It checks a string is a bare key and
// escapes special characters if the string is not compatible to a bare key.
// ```cpp
// std::string k("non.bare.key"); // the key itself includes `.`s.
// std::string formatted = toml::format_key(k);
// assert(formatted == "\"non.bare.key\"");
// ```
//
// This function is exposed to make it easy to write a user-defined serializer.
// Since toml restricts characters available in a bare key, generally a string
// should be escaped. But checking whether a string needs to be surrounded by
// a `"` and escaping some special character is boring.
template<typename charT, typename traits, typename Alloc>
std::basic_string<charT, traits, Alloc>
format_key(const std::basic_string<charT, traits, Alloc>& key)
{
// check the key can be a bare (unquoted) key
detail::location loc(key, std::vector<char>(key.begin(), key.end()));
detail::lex_unquoted_key::invoke(loc);
if(loc.iter() == loc.end())
{
return key; // all the tokens are consumed. the key is unquoted-key.
}
//if it includes special characters, then format it in a "quoted" key.
std::basic_string<charT, traits, Alloc> serialized("\"");
for(const char c : key)
{
switch(c)
{
case '\\': {serialized += "\\\\"; break;}
case '\"': {serialized += "\\\""; break;}
case '\b': {serialized += "\\b"; break;}
case '\t': {serialized += "\\t"; break;}
case '\f': {serialized += "\\f"; break;}
case '\n': {serialized += "\\n"; break;}
case '\r': {serialized += "\\r"; break;}
default : {serialized += c; break;}
}
}
serialized += "\"";
return serialized;
}
template<typename charT, typename traits, typename Alloc>
std::basic_string<charT, traits, Alloc>
format_keys(const std::vector<std::basic_string<charT, traits, Alloc>>& keys)
{
std::basic_string<charT, traits, Alloc> serialized;
if(keys.empty()) {return serialized;}
for(const auto& ky : keys)
{
serialized += format_key(ky);
serialized += charT('.');
}
serialized.pop_back(); // remove the last dot '.'
return serialized;
}
template<typename Value>
struct serializer
{
static_assert(detail::is_basic_value<Value>::value,
"toml::serializer is for toml::value and its variants, "
"toml::basic_value<...>.");
using value_type = Value;
using key_type = typename value_type::key_type ;
using comment_type = typename value_type::comment_type ;
using boolean_type = typename value_type::boolean_type ;
using integer_type = typename value_type::integer_type ;
using floating_type = typename value_type::floating_type ;
using string_type = typename value_type::string_type ;
using local_time_type = typename value_type::local_time_type ;
using local_date_type = typename value_type::local_date_type ;
using local_datetime_type = typename value_type::local_datetime_type ;
using offset_datetime_type = typename value_type::offset_datetime_type;
using array_type = typename value_type::array_type ;
using table_type = typename value_type::table_type ;
serializer(const std::size_t w = 80u,
const int float_prec = std::numeric_limits<toml::floating>::max_digits10,
const bool can_be_inlined = false,
const bool no_comment = false,
std::vector<toml::key> ks = {})
: can_be_inlined_(can_be_inlined), no_comment_(no_comment),
float_prec_(float_prec), width_(w), keys_(std::move(ks))
{}
~serializer() = default;
std::string operator()(const boolean_type& b) const
{
return b ? "true" : "false";
}
std::string operator()(const integer_type i) const
{
return std::to_string(i);
}
std::string operator()(const floating_type f) const
{
const auto fmt = "%.*g";
const auto bsz = std::snprintf(nullptr, 0, fmt, this->float_prec_, f);
// +1 for null character(\0)
std::vector<char> buf(static_cast<std::size_t>(bsz + 1), '\0');
std::snprintf(buf.data(), buf.size(), fmt, this->float_prec_, f);
std::string token(buf.begin(), std::prev(buf.end()));
if(token.back() == '.') // 1. => 1.0
{
token += '0';
}
const auto e = std::find_if(
token.cbegin(), token.cend(), [](const char c) noexcept -> bool {
return c == 'e' || c == 'E';
});
const auto has_exponent = (token.cend() != e);
const auto has_fraction = (token.cend() != std::find(
token.cbegin(), token.cend(), '.'));
if(!has_exponent && !has_fraction)
{
// the resulting value does not have any float specific part!
token += ".0";
}
return token;
}
std::string operator()(const string_type& s) const
{
if(s.kind == string_t::basic)
{
if(std::find(s.str.cbegin(), s.str.cend(), '\n') != s.str.cend() ||
std::find(s.str.cbegin(), s.str.cend(), '\"') != s.str.cend())
{
// if linefeed or double-quote is contained,
// make it multiline basic string.
const auto escaped = this->escape_ml_basic_string(s.str);
std::string open("\"\"\"");
std::string close("\"\"\"");
if(escaped.find('\n') != std::string::npos ||
this->width_ < escaped.size() + 6)
{
// if the string body contains newline or is enough long,
// add newlines after and before delimiters.
open += "\n";
close = std::string("\\\n") + close;
}
return open + escaped + close;
}
// no linefeed. try to make it oneline-string.
std::string oneline = this->escape_basic_string(s.str);
if(oneline.size() + 2 < width_ || width_ < 2)
{
const std::string quote("\"");
return quote + oneline + quote;
}
// the line is too long compared to the specified width.
// split it into multiple lines.
std::string token("\"\"\"\n");
while(!oneline.empty())
{
if(oneline.size() < width_)
{
token += oneline;
oneline.clear();
}
else if(oneline.at(width_-2) == '\\')
{
token += oneline.substr(0, width_-2);
token += "\\\n";
oneline.erase(0, width_-2);
}
else
{
token += oneline.substr(0, width_-1);
token += "\\\n";
oneline.erase(0, width_-1);
}
}
return token + std::string("\\\n\"\"\"");
}
else // the string `s` is literal-string.
{
if(std::find(s.str.cbegin(), s.str.cend(), '\n') != s.str.cend() ||
std::find(s.str.cbegin(), s.str.cend(), '\'') != s.str.cend() )
{
std::string open("'''");
if(this->width_ + 6 < s.str.size())
{
open += '\n'; // the first newline is ignored by TOML spec
}
const std::string close("'''");
return open + s.str + close;
}
else
{
const std::string quote("'");
return quote + s.str + quote;
}
}
}
std::string operator()(const local_date_type& d) const
{
std::ostringstream oss;
oss << d;
return oss.str();
}
std::string operator()(const local_time_type& t) const
{
std::ostringstream oss;
oss << t;
return oss.str();
}
std::string operator()(const local_datetime_type& dt) const
{
std::ostringstream oss;
oss << dt;
return oss.str();
}
std::string operator()(const offset_datetime_type& odt) const
{
std::ostringstream oss;
oss << odt;
return oss.str();
}
std::string operator()(const array_type& v) const
{
if(!v.empty() && v.front().is_table())// v is an array of tables
{
// if it's not inlined, we need to add `[[table.key]]`.
// but if it can be inlined,
// ```
// table.key = [
// {...},
// # comment
// {...},
// ]
// ```
if(this->can_be_inlined_)
{
std::string token;
if(!keys_.empty())
{
token += format_key(keys_.back());
token += " = ";
}
bool failed = false;
token += "[\n";
for(const auto& item : v)
{
// if an element of the table has a comment, the table
// cannot be inlined.
if(this->has_comment_inside(item.as_table()))
{
failed = true;
break;
}
if(!no_comment_)
{
for(const auto& c : item.comments())
{
token += '#';
token += c;
token += '\n';
}
}
const auto t = this->make_inline_table(item.as_table());
if(t.size() + 1 > width_ || // +1 for the last comma {...},
std::find(t.cbegin(), t.cend(), '\n') != t.cend())
{
failed = true;
break;
}
token += t;
token += ",\n";
}
if(!failed)
{
token += "]\n";
return token;
}
// if failed, serialize them as [[array.of.tables]].
}
std::string token;
for(const auto& item : v)
{
if(!no_comment_)
{
for(const auto& c : item.comments())
{
token += '#';
token += c;
token += '\n';
}
}
token += "[[";
token += format_keys(keys_);
token += "]]\n";
token += this->make_multiline_table(item.as_table());
}
return token;
}
if(v.empty())
{
return std::string("[]");
}
// not an array of tables. normal array.
// first, try to make it inline if none of the elements have a comment.
if(!this->has_comment_inside(v))
{
const auto inl = this->make_inline_array(v);
if(inl.size() < this->width_ &&
std::find(inl.cbegin(), inl.cend(), '\n') == inl.cend())
{
return inl;
}
}
// if the length exceeds this->width_, print multiline array.
// key = [
// # ...
// 42,
// ...
// ]
std::string token;
std::string current_line;
token += "[\n";
for(const auto& item : v)
{
if(!item.comments().empty() && !no_comment_)
{
// if comment exists, the element must be the only element in the line.
// e.g. the following is not allowed.
// ```toml
// array = [
// # comment for what?
// 1, 2, 3, 4, 5
// ]
// ```
if(!current_line.empty())
{
if(current_line.back() != '\n')
{
current_line += '\n';
}
token += current_line;
current_line.clear();
}
for(const auto& c : item.comments())
{
token += '#';
token += c;
token += '\n';
}
token += toml::visit(*this, item);
if(token.back() == '\n') {token.pop_back();}
token += ",\n";
continue;
}
std::string next_elem;
next_elem += toml::visit(*this, item);
// comma before newline.
if(next_elem.back() == '\n') {next_elem.pop_back();}
// if current line does not exceeds the width limit, continue.
if(current_line.size() + next_elem.size() + 1 < this->width_)
{
current_line += next_elem;
current_line += ',';
}
else if(current_line.empty())
{
// if current line was empty, force put the next_elem because
// next_elem is not splittable
token += next_elem;
token += ",\n";
// current_line is kept empty
}
else // reset current_line
{
assert(current_line.back() == ',');
token += current_line;
token += '\n';
current_line = next_elem;
current_line += ',';
}
}
if(!current_line.empty())
{
if(current_line.back() != '\n') {current_line += '\n';}
token += current_line;
}
token += "]\n";
return token;
}
// templatize for any table-like container
std::string operator()(const table_type& v) const
{
// if an element has a comment, then it can't be inlined.
// table = {# how can we write a comment for this? key = "value"}
if(this->can_be_inlined_ && !(this->has_comment_inside(v)))
{
std::string token;
if(!this->keys_.empty())
{
token += format_key(this->keys_.back());
token += " = ";
}
token += this->make_inline_table(v);
if(token.size() < this->width_ &&
token.end() == std::find(token.begin(), token.end(), '\n'))
{
return token;
}
}
std::string token;
if(!keys_.empty())
{
token += '[';
token += format_keys(keys_);
token += "]\n";
}
token += this->make_multiline_table(v);
return token;
}
private:
std::string escape_basic_string(const std::string& s) const
{
//XXX assuming `s` is a valid utf-8 sequence.
std::string retval;
for(const char c : s)
{
switch(c)
{
case '\\': {retval += "\\\\"; break;}
case '\"': {retval += "\\\""; break;}
case '\b': {retval += "\\b"; break;}
case '\t': {retval += "\\t"; break;}
case '\f': {retval += "\\f"; break;}
case '\n': {retval += "\\n"; break;}
case '\r': {retval += "\\r"; break;}
default : {retval += c; break;}
}
}
return retval;
}
std::string escape_ml_basic_string(const std::string& s) const
{
std::string retval;
for(auto i=s.cbegin(), e=s.cend(); i!=e; ++i)
{
switch(*i)
{
case '\\': {retval += "\\\\"; break;}
// One or two consecutive "s are allowed.
// Later we will check there are no three consecutive "s.
// case '\"': {retval += "\\\""; break;}
case '\b': {retval += "\\b"; break;}
case '\t': {retval += "\\t"; break;}
case '\f': {retval += "\\f"; break;}
case '\n': {retval += "\n"; break;}
case '\r':
{
if(std::next(i) != e && *std::next(i) == '\n')
{
retval += "\r\n";
++i;
}
else
{
retval += "\\r";
}
break;
}
default: {retval += *i; break;}
}
}
// Only 1 or 2 consecutive `"`s are allowed in multiline basic string.
// 3 consecutive `"`s are considered as a closing delimiter.
// We need to check if there are 3 or more consecutive `"`s and insert
// backslash to break them down into several short `"`s like the `str6`
// in the following example.
// ```toml
// str4 = """Here are two quotation marks: "". Simple enough."""
// # str5 = """Here are three quotation marks: """.""" # INVALID
// str5 = """Here are three quotation marks: ""\"."""
// str6 = """Here are fifteen quotation marks: ""\"""\"""\"""\"""\"."""
// ```
auto found_3_quotes = retval.find("\"\"\"");
while(found_3_quotes != std::string::npos)
{
retval.replace(found_3_quotes, 3, "\"\"\\\"");
found_3_quotes = retval.find("\"\"\"");
}
return retval;
}
// if an element of a table or an array has a comment, it cannot be inlined.
bool has_comment_inside(const array_type& a) const noexcept
{
// if no_comment is set, comments would not be written.
if(this->no_comment_) {return false;}
for(const auto& v : a)
{
if(!v.comments().empty()) {return true;}
}
return false;
}
bool has_comment_inside(const table_type& t) const noexcept
{
// if no_comment is set, comments would not be written.
if(this->no_comment_) {return false;}
for(const auto& kv : t)
{
if(!kv.second.comments().empty()) {return true;}
}
return false;
}
std::string make_inline_array(const array_type& v) const
{
assert(!has_comment_inside(v));
std::string token;
token += '[';
bool is_first = true;
for(const auto& item : v)
{
if(is_first) {is_first = false;} else {token += ',';}
token += visit(serializer((std::numeric_limits<std::size_t>::max)(),
this->float_prec_, true), item);
}
token += ']';
return token;
}
std::string make_inline_table(const table_type& v) const
{
assert(!has_comment_inside(v));
assert(this->can_be_inlined_);
std::string token;
token += '{';
bool is_first = true;
for(const auto& kv : v)
{
// in inline tables, trailing comma is not allowed (toml-lang #569).
if(is_first) {is_first = false;} else {token += ',';}
token += format_key(kv.first);
token += '=';
token += visit(serializer((std::numeric_limits<std::size_t>::max)(),
this->float_prec_, true), kv.second);
}
token += '}';
return token;
}
std::string make_multiline_table(const table_type& v) const
{
std::string token;
// print non-table stuff first. because after printing [foo.bar], the
// remaining non-table values will be assigned into [foo.bar], not [foo]
for(const auto& kv : v)
{
if(kv.second.is_table() || is_array_of_tables(kv.second))
{
continue;
}
if(!kv.second.comments().empty() && !no_comment_)
{
for(const auto& c : kv.second.comments())
{
token += '#';
token += c;
token += '\n';
}
}
const auto key_and_sep = format_key(kv.first) + " = ";
const auto residual_width = (this->width_ > key_and_sep.size()) ?
this->width_ - key_and_sep.size() : 0;
token += key_and_sep;
token += visit(serializer(residual_width, this->float_prec_, true),
kv.second);
if(token.back() != '\n')
{
token += '\n';
}
}
// normal tables / array of tables
// after multiline table appeared, the other tables cannot be inline
// because the table would be assigned into the table.
// [foo]
// ...
// bar = {...} # <- bar will be a member of [foo].
bool multiline_table_printed = false;
for(const auto& kv : v)
{
if(!kv.second.is_table() && !is_array_of_tables(kv.second))
{
continue; // other stuff are already serialized. skip them.
}
std::vector<toml::key> ks(this->keys_);
ks.push_back(kv.first);
auto tmp = visit(serializer(this->width_, this->float_prec_,
!multiline_table_printed, this->no_comment_, ks),
kv.second);
if((!multiline_table_printed) &&
std::find(tmp.cbegin(), tmp.cend(), '\n') != tmp.cend())
{
multiline_table_printed = true;
}
else
{
// still inline tables only.
tmp += '\n';
}
if(!kv.second.comments().empty() && !no_comment_)
{
for(const auto& c : kv.second.comments())
{
token += '#';
token += c;
token += '\n';
}
}
token += tmp;
}
return token;
}
bool is_array_of_tables(const value_type& v) const
{
if(!v.is_array()) {return false;}
const auto& a = v.as_array();
return !a.empty() && a.front().is_table();
}
private:
bool can_be_inlined_;
bool no_comment_;
int float_prec_;
std::size_t width_;
std::vector<toml::key> keys_;
};
template<typename C,
template<typename ...> class M, template<typename ...> class V>
std::string
format(const basic_value<C, M, V>& v, std::size_t w = 80u,
int fprec = std::numeric_limits<toml::floating>::max_digits10,
bool no_comment = false, bool force_inline = false)
{
using value_type = basic_value<C, M, V>;
// if value is a table, it is considered to be a root object.
// the root object can't be an inline table.
if(v.is_table())
{
std::ostringstream oss;
if(!v.comments().empty())
{
oss << v.comments();
oss << '\n'; // to split the file comment from the first element
}
const auto serialized = visit(serializer<value_type>(w, fprec, no_comment, false), v);
oss << serialized;
return oss.str();
}
return visit(serializer<value_type>(w, fprec, force_inline), v);
}
namespace detail
{
template<typename charT, typename traits>
int comment_index(std::basic_ostream<charT, traits>&)
{
static const int index = std::ios_base::xalloc();
return index;
}
} // detail
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
nocomment(std::basic_ostream<charT, traits>& os)
{
// by default, it is zero. and by defalut, it shows comments.
os.iword(detail::comment_index(os)) = 1;
return os;
}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
showcomment(std::basic_ostream<charT, traits>& os)
{
// by default, it is zero. and by defalut, it shows comments.
os.iword(detail::comment_index(os)) = 0;
return os;
}
template<typename charT, typename traits, typename C,
template<typename ...> class M, template<typename ...> class V>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const basic_value<C, M, V>& v)
{
using value_type = basic_value<C, M, V>;
// get status of std::setw().
const auto w = static_cast<std::size_t>(os.width());
const int fprec = static_cast<int>(os.precision());
os.width(0);
// by defualt, iword is initialized byl 0. And by default, toml11 outputs
// comments. So `0` means showcomment. 1 means nocommnet.
const bool no_comment = (1 == os.iword(detail::comment_index(os)));
if(!no_comment && v.is_table() && !v.comments().empty())
{
os << v.comments();
os << '\n'; // to split the file comment from the first element
}
// the root object can't be an inline table. so pass `false`.
const auto serialized = visit(serializer<value_type>(w, fprec, no_comment, false), v);
os << serialized;
// if v is a non-table value, and has only one comment, then
// put a comment just after a value. in the following way.
//
// ```toml
// key = "value" # comment.
// ```
//
// Since the top-level toml object is a table, one who want to put a
// non-table toml value must use this in a following way.
//
// ```cpp
// toml::value v;
// std::cout << "user-defined-key = " << v << std::endl;
// ```
//
// In this case, it is impossible to put comments before key-value pair.
// The only way to preserve comments is to put all of them after a value.
if(!no_comment && !v.is_table() && !v.comments().empty())
{
os << " #";
for(const auto& c : v.comments()) {os << c;}
}
return os;
}
} // toml
#endif// TOML11_SERIALIZER_HPP

@ -0,0 +1,232 @@
// Copyright Toru Niina 2019.
// Distributed under the MIT License.
#ifndef TOML11_SOURCE_LOCATION_HPP
#define TOML11_SOURCE_LOCATION_HPP
#include <cstdint>
#include "region.hpp"
namespace toml
{
// A struct to contain location in a toml file.
// The interface imitates std::experimental::source_location,
// but not completely the same.
//
// It would be constructed by toml::value. It can be used to generate
// user-defined error messages.
//
// - std::uint_least32_t line() const noexcept
// - returns the line number where the region is on.
// - std::uint_least32_t column() const noexcept
// - returns the column number where the region starts.
// - std::uint_least32_t region() const noexcept
// - returns the size of the region.
//
// +-- line() +-- region of interest (region() == 9)
// v .---+---.
// 12 | value = "foo bar"
// ^
// +-- column()
//
// - std::string const& file_name() const noexcept;
// - name of the file.
// - std::string const& line_str() const noexcept;
// - the whole line that contains the region of interest.
//
struct source_location
{
public:
source_location()
: line_num_(1), column_num_(1), region_size_(1),
file_name_("unknown file"), line_str_("")
{}
explicit source_location(const detail::region_base* reg)
: line_num_(1), column_num_(1), region_size_(1),
file_name_("unknown file"), line_str_("")
{
if(reg)
{
if(reg->line_num() != detail::region_base().line_num())
{
line_num_ = static_cast<std::uint_least32_t>(
std::stoul(reg->line_num()));
}
column_num_ = static_cast<std::uint_least32_t>(reg->before() + 1);
region_size_ = static_cast<std::uint_least32_t>(reg->size());
file_name_ = reg->name();
line_str_ = reg->line();
}
}
explicit source_location(const detail::region& reg)
: line_num_(static_cast<std::uint_least32_t>(std::stoul(reg.line_num()))),
column_num_(static_cast<std::uint_least32_t>(reg.before() + 1)),
region_size_(static_cast<std::uint_least32_t>(reg.size())),
file_name_(reg.name()),
line_str_ (reg.line())
{}
explicit source_location(const detail::location& loc)
: line_num_(static_cast<std::uint_least32_t>(std::stoul(loc.line_num()))),
column_num_(static_cast<std::uint_least32_t>(loc.before() + 1)),
region_size_(static_cast<std::uint_least32_t>(loc.size())),
file_name_(loc.name()),
line_str_ (loc.line())
{}
~source_location() = default;
source_location(source_location const&) = default;
source_location(source_location &&) = default;
source_location& operator=(source_location const&) = default;
source_location& operator=(source_location &&) = default;
std::uint_least32_t line() const noexcept {return line_num_;}
std::uint_least32_t column() const noexcept {return column_num_;}
std::uint_least32_t region() const noexcept {return region_size_;}
std::string const& file_name() const noexcept {return file_name_;}
std::string const& line_str() const noexcept {return line_str_;}
private:
std::uint_least32_t line_num_;
std::uint_least32_t column_num_;
std::uint_least32_t region_size_;
std::string file_name_;
std::string line_str_;
};
namespace detail
{
// internal error message generation.
inline std::string format_underline(const std::string& message,
const std::vector<std::pair<source_location, std::string>>& loc_com,
const std::vector<std::string>& helps = {},
const bool colorize = TOML11_ERROR_MESSAGE_COLORIZED)
{
std::size_t line_num_width = 0;
for(const auto& lc : loc_com)
{
std::uint_least32_t line = lc.first.line();
std::size_t digit = 0;
while(line != 0)
{
line /= 10;
digit += 1;
}
line_num_width = (std::max)(line_num_width, digit);
}
// 1 is the minimum width
line_num_width = std::max<std::size_t>(line_num_width, 1);
std::ostringstream retval;
if(colorize)
{
retval << color::colorize; // turn on ANSI color
}
// XXX
// Here, before `colorize` support, it does not output `[error]` prefix
// automatically. So some user may output it manually and this change may
// duplicate the prefix. To avoid it, check the first 7 characters and
// if it is "[error]", it removes that part from the message shown.
if(message.size() > 7 && message.substr(0, 7) == "[error]")
{
retval << color::bold << color::red << "[error]" << color::reset
<< color::bold << message.substr(7) << color::reset << '\n';
}
else
{
retval << color::bold << color::red << "[error] " << color::reset
<< color::bold << message << color::reset << '\n';
}
const auto format_one_location = [line_num_width]
(std::ostringstream& oss,
const source_location& loc, const std::string& comment) -> void
{
oss << ' ' << color::bold << color::blue
<< std::setw(static_cast<int>(line_num_width))
<< std::right << loc.line() << " | " << color::reset
<< loc.line_str() << '\n';
oss << make_string(line_num_width + 1, ' ')
<< color::bold << color::blue << " | " << color::reset
<< make_string(loc.column()-1 /*1-origin*/, ' ');
if(loc.region() == 1)
{
// invalid
// ^------
oss << color::bold << color::red << "^---" << color::reset;
}
else
{
// invalid
// ~~~~~~~
const auto underline_len = (std::min)(
static_cast<std::size_t>(loc.region()), loc.line_str().size());
oss << color::bold << color::red
<< make_string(underline_len, '~') << color::reset;
}
oss << ' ';
oss << comment;
return;
};
assert(!loc_com.empty());
// --> example.toml
// |
retval << color::bold << color::blue << " --> " << color::reset
<< loc_com.front().first.file_name() << '\n';
retval << make_string(line_num_width + 1, ' ')
<< color::bold << color::blue << " |\n" << color::reset;
// 1 | key value
// | ^--- missing =
format_one_location(retval, loc_com.front().first, loc_com.front().second);
// process the rest of the locations
for(std::size_t i=1; i<loc_com.size(); ++i)
{
const auto& prev = loc_com.at(i-1);
const auto& curr = loc_com.at(i);
retval << '\n';
// if the filenames are the same, print "..."
if(prev.first.file_name() == curr.first.file_name())
{
retval << color::bold << color::blue << " ...\n" << color::reset;
}
else // if filename differs, print " --> filename.toml" again
{
retval << color::bold << color::blue << " --> " << color::reset
<< curr.first.file_name() << '\n';
retval << make_string(line_num_width + 1, ' ')
<< color::bold << color::blue << " |\n" << color::reset;
}
format_one_location(retval, curr.first, curr.second);
}
if(!helps.empty())
{
retval << '\n';
retval << make_string(line_num_width + 1, ' ');
retval << color::bold << color::blue << " |" << color::reset;
for(const auto& help : helps)
{
retval << color::bold << "\nHint: " << color::reset;
retval << help;
}
}
return retval.str();
}
} // detail
} // toml
#endif// TOML11_SOURCE_LOCATION_HPP

@ -0,0 +1,43 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_STORAGE_HPP
#define TOML11_STORAGE_HPP
#include "utility.hpp"
namespace toml
{
namespace detail
{
// this contains pointer and deep-copy the content if copied.
// to avoid recursive pointer.
template<typename T>
struct storage
{
using value_type = T;
explicit storage(value_type const& v): ptr(toml::make_unique<T>(v)) {}
explicit storage(value_type&& v): ptr(toml::make_unique<T>(std::move(v))) {}
~storage() = default;
storage(const storage& rhs): ptr(toml::make_unique<T>(*rhs.ptr)) {}
storage& operator=(const storage& rhs)
{
this->ptr = toml::make_unique<T>(*rhs.ptr);
return *this;
}
storage(storage&&) = default;
storage& operator=(storage&&) = default;
bool is_ok() const noexcept {return static_cast<bool>(ptr);}
value_type& value() & noexcept {return *ptr;}
value_type const& value() const& noexcept {return *ptr;}
value_type&& value() && noexcept {return std::move(*ptr);}
private:
std::unique_ptr<value_type> ptr;
};
} // detail
} // toml
#endif// TOML11_STORAGE_HPP

@ -0,0 +1,224 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_STRING_HPP
#define TOML11_STRING_HPP
#include <cstdint>
#include <algorithm>
#include <string>
#if __cplusplus >= 201703L
#if __has_include(<string_view>)
#include <string_view>
#endif
#endif
namespace toml
{
enum class string_t : std::uint8_t
{
basic = 0,
literal = 1,
};
struct string
{
string() = default;
~string() = default;
string(const string& s) = default;
string(string&& s) = default;
string& operator=(const string& s) = default;
string& operator=(string&& s) = default;
string(const std::string& s): kind(string_t::basic), str(s){}
string(const std::string& s, string_t k): kind(k), str(s){}
string(const char* s): kind(string_t::basic), str(s){}
string(const char* s, string_t k): kind(k), str(s){}
string(std::string&& s): kind(string_t::basic), str(std::move(s)){}
string(std::string&& s, string_t k): kind(k), str(std::move(s)){}
string& operator=(const std::string& s)
{kind = string_t::basic; str = s; return *this;}
string& operator=(std::string&& s)
{kind = string_t::basic; str = std::move(s); return *this;}
operator std::string& () & noexcept {return str;}
operator std::string const& () const& noexcept {return str;}
operator std::string&& () && noexcept {return std::move(str);}
string& operator+=(const char* rhs) {str += rhs; return *this;}
string& operator+=(const char rhs) {str += rhs; return *this;}
string& operator+=(const std::string& rhs) {str += rhs; return *this;}
string& operator+=(const string& rhs) {str += rhs.str; return *this;}
#if __cplusplus >= 201703L
explicit string(std::string_view s): kind(string_t::basic), str(s){}
string(std::string_view s, string_t k): kind(k), str(s){}
string& operator=(std::string_view s)
{kind = string_t::basic; str = s; return *this;}
explicit operator std::string_view() const noexcept
{return std::string_view(str);}
string& operator+=(const std::string_view& rhs) {str += rhs; return *this;}
#endif
string_t kind;
std::string str;
};
inline bool operator==(const string& lhs, const string& rhs)
{
return lhs.kind == rhs.kind && lhs.str == rhs.str;
}
inline bool operator!=(const string& lhs, const string& rhs)
{
return !(lhs == rhs);
}
inline bool operator<(const string& lhs, const string& rhs)
{
return (lhs.kind == rhs.kind) ? (lhs.str < rhs.str) : (lhs.kind < rhs.kind);
}
inline bool operator>(const string& lhs, const string& rhs)
{
return rhs < lhs;
}
inline bool operator<=(const string& lhs, const string& rhs)
{
return !(rhs < lhs);
}
inline bool operator>=(const string& lhs, const string& rhs)
{
return !(lhs < rhs);
}
inline bool
operator==(const string& lhs, const std::string& rhs) {return lhs.str == rhs;}
inline bool
operator!=(const string& lhs, const std::string& rhs) {return lhs.str != rhs;}
inline bool
operator< (const string& lhs, const std::string& rhs) {return lhs.str < rhs;}
inline bool
operator> (const string& lhs, const std::string& rhs) {return lhs.str > rhs;}
inline bool
operator<=(const string& lhs, const std::string& rhs) {return lhs.str <= rhs;}
inline bool
operator>=(const string& lhs, const std::string& rhs) {return lhs.str >= rhs;}
inline bool
operator==(const std::string& lhs, const string& rhs) {return lhs == rhs.str;}
inline bool
operator!=(const std::string& lhs, const string& rhs) {return lhs != rhs.str;}
inline bool
operator< (const std::string& lhs, const string& rhs) {return lhs < rhs.str;}
inline bool
operator> (const std::string& lhs, const string& rhs) {return lhs > rhs.str;}
inline bool
operator<=(const std::string& lhs, const string& rhs) {return lhs <= rhs.str;}
inline bool
operator>=(const std::string& lhs, const string& rhs) {return lhs >= rhs.str;}
inline bool
operator==(const string& lhs, const char* rhs) {return lhs.str == std::string(rhs);}
inline bool
operator!=(const string& lhs, const char* rhs) {return lhs.str != std::string(rhs);}
inline bool
operator< (const string& lhs, const char* rhs) {return lhs.str < std::string(rhs);}
inline bool
operator> (const string& lhs, const char* rhs) {return lhs.str > std::string(rhs);}
inline bool
operator<=(const string& lhs, const char* rhs) {return lhs.str <= std::string(rhs);}
inline bool
operator>=(const string& lhs, const char* rhs) {return lhs.str >= std::string(rhs);}
inline bool
operator==(const char* lhs, const string& rhs) {return std::string(lhs) == rhs.str;}
inline bool
operator!=(const char* lhs, const string& rhs) {return std::string(lhs) != rhs.str;}
inline bool
operator< (const char* lhs, const string& rhs) {return std::string(lhs) < rhs.str;}
inline bool
operator> (const char* lhs, const string& rhs) {return std::string(lhs) > rhs.str;}
inline bool
operator<=(const char* lhs, const string& rhs) {return std::string(lhs) <= rhs.str;}
inline bool
operator>=(const char* lhs, const string& rhs) {return std::string(lhs) >= rhs.str;}
template<typename charT, typename traits>
std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, const string& s)
{
if(s.kind == string_t::basic)
{
if(std::find(s.str.cbegin(), s.str.cend(), '\n') != s.str.cend())
{
// it contains newline. make it multiline string.
os << "\"\"\"\n";
for(auto i=s.str.cbegin(), e=s.str.cend(); i!=e; ++i)
{
switch(*i)
{
case '\\': {os << "\\\\"; break;}
case '\"': {os << "\\\""; break;}
case '\b': {os << "\\b"; break;}
case '\t': {os << "\\t"; break;}
case '\f': {os << "\\f"; break;}
case '\n': {os << '\n'; break;}
case '\r':
{
// since it is a multiline string,
// CRLF is not needed to be escaped.
if(std::next(i) != e && *std::next(i) == '\n')
{
os << "\r\n";
++i;
}
else
{
os << "\\r";
}
break;
}
default: {os << *i; break;}
}
}
os << "\\\n\"\"\"";
return os;
}
// no newline. make it inline.
os << "\"";
for(const auto c : s.str)
{
switch(c)
{
case '\\': {os << "\\\\"; break;}
case '\"': {os << "\\\""; break;}
case '\b': {os << "\\b"; break;}
case '\t': {os << "\\t"; break;}
case '\f': {os << "\\f"; break;}
case '\n': {os << "\\n"; break;}
case '\r': {os << "\\r"; break;}
default : {os << c; break;}
}
}
os << "\"";
return os;
}
// the string `s` is literal-string.
if(std::find(s.str.cbegin(), s.str.cend(), '\n') != s.str.cend() ||
std::find(s.str.cbegin(), s.str.cend(), '\'') != s.str.cend() )
{
// contains newline or single quote. make it multiline.
os << "'''\n" << s.str << "'''";
return os;
}
// normal literal string
os << '\'' << s.str << '\'';
return os;
}
} // toml
#endif// TOML11_STRING_H

@ -0,0 +1,300 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_TRAITS_HPP
#define TOML11_TRAITS_HPP
#include <chrono>
#include <forward_list>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#if __cplusplus >= 201703L
#if __has_include(<string_view>)
#include <string_view>
#endif // has_include(<string_view>)
#endif // cplusplus >= C++17
namespace toml
{
template<typename C, template<typename ...> class T, template<typename ...> class A>
class basic_value;
namespace detail
{
// ---------------------------------------------------------------------------
// check whether type T is a kind of container/map class
struct has_iterator_impl
{
template<typename T> static std::true_type check(typename T::iterator*);
template<typename T> static std::false_type check(...);
};
struct has_value_type_impl
{
template<typename T> static std::true_type check(typename T::value_type*);
template<typename T> static std::false_type check(...);
};
struct has_key_type_impl
{
template<typename T> static std::true_type check(typename T::key_type*);
template<typename T> static std::false_type check(...);
};
struct has_mapped_type_impl
{
template<typename T> static std::true_type check(typename T::mapped_type*);
template<typename T> static std::false_type check(...);
};
struct has_reserve_method_impl
{
template<typename T> static std::false_type check(...);
template<typename T> static std::true_type check(
decltype(std::declval<T>().reserve(std::declval<std::size_t>()))*);
};
struct has_push_back_method_impl
{
template<typename T> static std::false_type check(...);
template<typename T> static std::true_type check(
decltype(std::declval<T>().push_back(std::declval<typename T::value_type>()))*);
};
struct is_comparable_impl
{
template<typename T> static std::false_type check(...);
template<typename T> static std::true_type check(
decltype(std::declval<T>() < std::declval<T>())*);
};
struct has_from_toml_method_impl
{
template<typename T, typename C,
template<typename ...> class Tb, template<typename ...> class A>
static std::true_type check(
decltype(std::declval<T>().from_toml(
std::declval<::toml::basic_value<C, Tb, A>>()))*);
template<typename T, typename C,
template<typename ...> class Tb, template<typename ...> class A>
static std::false_type check(...);
};
struct has_into_toml_method_impl
{
template<typename T>
static std::true_type check(decltype(std::declval<T>().into_toml())*);
template<typename T>
static std::false_type check(...);
};
/// Intel C++ compiler can not use decltype in parent class declaration, here
/// is a hack to work around it. https://stackoverflow.com/a/23953090/4692076
#ifdef __INTEL_COMPILER
#define decltype(...) std::enable_if<true, decltype(__VA_ARGS__)>::type
#endif
template<typename T>
struct has_iterator : decltype(has_iterator_impl::check<T>(nullptr)){};
template<typename T>
struct has_value_type : decltype(has_value_type_impl::check<T>(nullptr)){};
template<typename T>
struct has_key_type : decltype(has_key_type_impl::check<T>(nullptr)){};
template<typename T>
struct has_mapped_type : decltype(has_mapped_type_impl::check<T>(nullptr)){};
template<typename T>
struct has_reserve_method : decltype(has_reserve_method_impl::check<T>(nullptr)){};
template<typename T>
struct has_push_back_method : decltype(has_push_back_method_impl::check<T>(nullptr)){};
template<typename T>
struct is_comparable : decltype(is_comparable_impl::check<T>(nullptr)){};
template<typename T, typename C,
template<typename ...> class Tb, template<typename ...> class A>
struct has_from_toml_method
: decltype(has_from_toml_method_impl::check<T, C, Tb, A>(nullptr)){};
template<typename T>
struct has_into_toml_method
: decltype(has_into_toml_method_impl::check<T>(nullptr)){};
#ifdef __INTEL_COMPILER
#undef decltype
#endif
// ---------------------------------------------------------------------------
// C++17 and/or/not
#if __cplusplus >= 201703L
using std::conjunction;
using std::disjunction;
using std::negation;
#else
template<typename ...> struct conjunction : std::true_type{};
template<typename T> struct conjunction<T> : T{};
template<typename T, typename ... Ts>
struct conjunction<T, Ts...> :
std::conditional<static_cast<bool>(T::value), conjunction<Ts...>, T>::type
{};
template<typename ...> struct disjunction : std::false_type{};
template<typename T> struct disjunction<T> : T {};
template<typename T, typename ... Ts>
struct disjunction<T, Ts...> :
std::conditional<static_cast<bool>(T::value), T, disjunction<Ts...>>::type
{};
template<typename T>
struct negation : std::integral_constant<bool, !static_cast<bool>(T::value)>{};
#endif
// ---------------------------------------------------------------------------
// type checkers
template<typename T> struct is_std_pair : std::false_type{};
template<typename T1, typename T2>
struct is_std_pair<std::pair<T1, T2>> : std::true_type{};
template<typename T> struct is_std_tuple : std::false_type{};
template<typename ... Ts>
struct is_std_tuple<std::tuple<Ts...>> : std::true_type{};
template<typename T> struct is_std_forward_list : std::false_type{};
template<typename T>
struct is_std_forward_list<std::forward_list<T>> : std::true_type{};
template<typename T> struct is_chrono_duration: std::false_type{};
template<typename Rep, typename Period>
struct is_chrono_duration<std::chrono::duration<Rep, Period>>: std::true_type{};
template<typename T>
struct is_map : conjunction< // map satisfies all the following conditions
has_iterator<T>, // has T::iterator
has_value_type<T>, // has T::value_type
has_key_type<T>, // has T::key_type
has_mapped_type<T> // has T::mapped_type
>{};
template<typename T> struct is_map<T&> : is_map<T>{};
template<typename T> struct is_map<T const&> : is_map<T>{};
template<typename T> struct is_map<T volatile&> : is_map<T>{};
template<typename T> struct is_map<T const volatile&> : is_map<T>{};
template<typename T>
struct is_container : conjunction<
negation<is_map<T>>, // not a map
negation<std::is_same<T, std::string>>, // not a std::string
#if __cplusplus >= 201703L
negation<std::is_same<T, std::string_view>>, // not a std::string_view
#endif
has_iterator<T>, // has T::iterator
has_value_type<T> // has T::value_type
>{};
template<typename T> struct is_container<T&> : is_container<T>{};
template<typename T> struct is_container<T const&> : is_container<T>{};
template<typename T> struct is_container<T volatile&> : is_container<T>{};
template<typename T> struct is_container<T const volatile&> : is_container<T>{};
template<typename T>
struct is_basic_value: std::false_type{};
template<typename T> struct is_basic_value<T&> : is_basic_value<T>{};
template<typename T> struct is_basic_value<T const&> : is_basic_value<T>{};
template<typename T> struct is_basic_value<T volatile&> : is_basic_value<T>{};
template<typename T> struct is_basic_value<T const volatile&> : is_basic_value<T>{};
template<typename C, template<typename ...> class M, template<typename ...> class V>
struct is_basic_value<::toml::basic_value<C, M, V>>: std::true_type{};
// ---------------------------------------------------------------------------
// C++14 index_sequence
#if __cplusplus >= 201402L
using std::index_sequence;
using std::make_index_sequence;
#else
template<std::size_t ... Ns> struct index_sequence{};
template<typename IS, std::size_t N> struct push_back_index_sequence{};
template<std::size_t N, std::size_t ... Ns>
struct push_back_index_sequence<index_sequence<Ns...>, N>
{
typedef index_sequence<Ns..., N> type;
};
template<std::size_t N>
struct index_sequence_maker
{
typedef typename push_back_index_sequence<
typename index_sequence_maker<N-1>::type, N>::type type;
};
template<>
struct index_sequence_maker<0>
{
typedef index_sequence<0> type;
};
template<std::size_t N>
using make_index_sequence = typename index_sequence_maker<N-1>::type;
#endif // __cplusplus >= 2014
// ---------------------------------------------------------------------------
// C++14 enable_if_t
#if __cplusplus >= 201402L
using std::enable_if_t;
#else
template<bool B, typename T>
using enable_if_t = typename std::enable_if<B, T>::type;
#endif // __cplusplus >= 2014
// ---------------------------------------------------------------------------
// return_type_of_t
#if __cplusplus >= 201703L
template<typename F, typename ... Args>
using return_type_of_t = std::invoke_result_t<F, Args...>;
#else
// result_of is deprecated after C++17
template<typename F, typename ... Args>
using return_type_of_t = typename std::result_of<F(Args...)>::type;
#endif
// ---------------------------------------------------------------------------
// is_string_literal
//
// to use this, pass `typename remove_reference<T>::type` to T.
template<typename T>
struct is_string_literal:
disjunction<
std::is_same<const char*, T>,
conjunction<
std::is_array<T>,
std::is_same<const char, typename std::remove_extent<T>::type>
>
>{};
// ---------------------------------------------------------------------------
// C++20 remove_cvref_t
template<typename T>
struct remove_cvref
{
using type = typename std::remove_cv<
typename std::remove_reference<T>::type>::type;
};
template<typename T>
using remove_cvref_t = typename remove_cvref<T>::type;
}// detail
}//toml
#endif // TOML_TRAITS

@ -0,0 +1,150 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_TYPES_HPP
#define TOML11_TYPES_HPP
#include <unordered_map>
#include <vector>
#include "comments.hpp"
#include "datetime.hpp"
#include "string.hpp"
#include "traits.hpp"
namespace toml
{
template<typename Comment, // discard/preserve_comment
template<typename ...> class Table, // map-like class
template<typename ...> class Array> // vector-like class
class basic_value;
using character = char;
using key = std::string;
using boolean = bool;
using integer = std::int64_t;
using floating = double; // "float" is a keyward, cannot use it here.
// the following stuffs are structs defined here, so aliases are not needed.
// - string
// - offset_datetime
// - offset_datetime
// - local_datetime
// - local_date
// - local_time
// default toml::value and default array/table. these are defined after defining
// basic_value itself.
// using value = basic_value<discard_comments, std::unordered_map, std::vector>;
// using array = typename value::array_type;
// using table = typename value::table_type;
enum class value_t : std::uint8_t
{
empty = 0,
boolean = 1,
integer = 2,
floating = 3,
string = 4,
offset_datetime = 5,
local_datetime = 6,
local_date = 7,
local_time = 8,
array = 9,
table = 10,
};
template<typename charT, typename traits>
inline std::basic_ostream<charT, traits>&
operator<<(std::basic_ostream<charT, traits>& os, value_t t)
{
switch(t)
{
case value_t::boolean : os << "boolean"; return os;
case value_t::integer : os << "integer"; return os;
case value_t::floating : os << "floating"; return os;
case value_t::string : os << "string"; return os;
case value_t::offset_datetime : os << "offset_datetime"; return os;
case value_t::local_datetime : os << "local_datetime"; return os;
case value_t::local_date : os << "local_date"; return os;
case value_t::local_time : os << "local_time"; return os;
case value_t::array : os << "array"; return os;
case value_t::table : os << "table"; return os;
case value_t::empty : os << "empty"; return os;
default : os << "unknown"; return os;
}
}
template<typename charT = char,
typename traits = std::char_traits<charT>,
typename alloc = std::allocator<charT>>
inline std::basic_string<charT, traits, alloc> stringize(value_t t)
{
std::basic_ostringstream<charT, traits, alloc> oss;
oss << t;
return oss.str();
}
namespace detail
{
// helper to define a type that represents a value_t value.
template<value_t V>
using value_t_constant = std::integral_constant<value_t, V>;
// meta-function that convertes from value_t to the exact toml type that corresponds to.
// It takes toml::basic_value type because array and table types depend on it.
template<value_t t, typename Value> struct enum_to_type {using type = void ;};
template<typename Value> struct enum_to_type<value_t::empty , Value>{using type = void ;};
template<typename Value> struct enum_to_type<value_t::boolean , Value>{using type = boolean ;};
template<typename Value> struct enum_to_type<value_t::integer , Value>{using type = integer ;};
template<typename Value> struct enum_to_type<value_t::floating , Value>{using type = floating ;};
template<typename Value> struct enum_to_type<value_t::string , Value>{using type = string ;};
template<typename Value> struct enum_to_type<value_t::offset_datetime, Value>{using type = offset_datetime ;};
template<typename Value> struct enum_to_type<value_t::local_datetime , Value>{using type = local_datetime ;};
template<typename Value> struct enum_to_type<value_t::local_date , Value>{using type = local_date ;};
template<typename Value> struct enum_to_type<value_t::local_time , Value>{using type = local_time ;};
template<typename Value> struct enum_to_type<value_t::array , Value>{using type = typename Value::array_type;};
template<typename Value> struct enum_to_type<value_t::table , Value>{using type = typename Value::table_type;};
// meta-function that converts from an exact toml type to the enum that corresponds to.
template<typename T, typename Value>
struct type_to_enum : std::conditional<
std::is_same<T, typename Value::array_type>::value, // if T == array_type,
value_t_constant<value_t::array>, // then value_t::array
typename std::conditional< // else...
std::is_same<T, typename Value::table_type>::value, // if T == table_type
value_t_constant<value_t::table>, // then value_t::table
value_t_constant<value_t::empty> // else value_t::empty
>::type
>::type {};
template<typename Value> struct type_to_enum<boolean , Value>: value_t_constant<value_t::boolean > {};
template<typename Value> struct type_to_enum<integer , Value>: value_t_constant<value_t::integer > {};
template<typename Value> struct type_to_enum<floating , Value>: value_t_constant<value_t::floating > {};
template<typename Value> struct type_to_enum<string , Value>: value_t_constant<value_t::string > {};
template<typename Value> struct type_to_enum<offset_datetime, Value>: value_t_constant<value_t::offset_datetime> {};
template<typename Value> struct type_to_enum<local_datetime , Value>: value_t_constant<value_t::local_datetime > {};
template<typename Value> struct type_to_enum<local_date , Value>: value_t_constant<value_t::local_date > {};
template<typename Value> struct type_to_enum<local_time , Value>: value_t_constant<value_t::local_time > {};
// meta-function that checks the type T is the same as one of the toml::* types.
template<typename T, typename Value>
struct is_exact_toml_type : disjunction<
std::is_same<T, boolean >,
std::is_same<T, integer >,
std::is_same<T, floating >,
std::is_same<T, string >,
std::is_same<T, offset_datetime>,
std::is_same<T, local_datetime >,
std::is_same<T, local_date >,
std::is_same<T, local_time >,
std::is_same<T, typename Value::array_type>,
std::is_same<T, typename Value::table_type>
>{};
template<typename T, typename V> struct is_exact_toml_type<T&, V> : is_exact_toml_type<T, V>{};
template<typename T, typename V> struct is_exact_toml_type<T const&, V> : is_exact_toml_type<T, V>{};
template<typename T, typename V> struct is_exact_toml_type<T volatile&, V> : is_exact_toml_type<T, V>{};
template<typename T, typename V> struct is_exact_toml_type<T const volatile&, V>: is_exact_toml_type<T, V>{};
} // detail
} // toml
#endif// TOML11_TYPES_H

@ -0,0 +1,93 @@
// Copyright Toru Niina 2017.
// Distributed under the MIT License.
#ifndef TOML11_UTILITY_HPP
#define TOML11_UTILITY_HPP
#include <memory>
#include <sstream>
#include <utility>
#include "traits.hpp"
#if __cplusplus >= 201402L
# define TOML11_MARK_AS_DEPRECATED(msg) [[deprecated(msg)]]
#elif defined(__GNUC__)
# define TOML11_MARK_AS_DEPRECATED(msg) __attribute__((deprecated(msg)))
#elif defined(_MSC_VER)
# define TOML11_MARK_AS_DEPRECATED(msg) __declspec(deprecated(msg))
#else
# define TOML11_MARK_AS_DEPRECATED
#endif
namespace toml
{
#if __cplusplus >= 201402L
using std::make_unique;
#else
template<typename T, typename ... Ts>
inline std::unique_ptr<T> make_unique(Ts&& ... args)
{
return std::unique_ptr<T>(new T(std::forward<Ts>(args)...));
}
#endif // __cplusplus >= 2014
namespace detail
{
template<typename Container>
void try_reserve_impl(Container& container, std::size_t N, std::true_type)
{
container.reserve(N);
return;
}
template<typename Container>
void try_reserve_impl(Container&, std::size_t, std::false_type) noexcept
{
return;
}
} // detail
template<typename Container>
void try_reserve(Container& container, std::size_t N)
{
if(N <= container.size()) {return;}
detail::try_reserve_impl(container, N, detail::has_reserve_method<Container>{});
return;
}
namespace detail
{
inline std::string concat_to_string_impl(std::ostringstream& oss)
{
return oss.str();
}
template<typename T, typename ... Ts>
std::string concat_to_string_impl(std::ostringstream& oss, T&& head, Ts&& ... tail)
{
oss << std::forward<T>(head);
return concat_to_string_impl(oss, std::forward<Ts>(tail) ... );
}
} // detail
template<typename ... Ts>
std::string concat_to_string(Ts&& ... args)
{
std::ostringstream oss;
oss << std::boolalpha << std::fixed;
return detail::concat_to_string_impl(oss, std::forward<Ts>(args) ...);
}
template<typename T>
T from_string(const std::string& str, T opt)
{
T v(opt);
std::istringstream iss(str);
iss >> v;
return v;
}
}// toml
#endif // TOML11_UTILITY

File diff suppressed because it is too large Load Diff

@ -0,0 +1,23 @@
Boost Software License - Version 1.0 - August 17th, 2003
Permission is hereby granted, free of charge, to any person or organization
obtaining a copy of the software and accompanying documentation covered by
this license (the "Software") to use, reproduce, display, distribute,
execute, and transmit the Software, and to prepare derivative works of the
Software, and to permit third-parties to whom the Software is furnished to
do so, all subject to the following:
The copyright notices in the Software and this entire statement, including
the above license grant, this restriction and the following disclaimer,
must be included in all copies of the Software, in whole or in part, and
all derivative works of the Software, unless such copies or derivative
works are solely in the form of machine-executable object code generated by
a source language processor.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
DEALINGS IN THE SOFTWARE.

@ -0,0 +1,96 @@
// MPark.Variant
//
// Copyright Michael Park, 2015-2017
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
#ifndef MPARK_CONFIG_HPP
#define MPARK_CONFIG_HPP
// MSVC 2015 Update 3.
#if __cplusplus < 201103L && (!defined(_MSC_VER) || _MSC_FULL_VER < 190024210)
#error "MPark.Variant requires C++11 support."
#endif
#ifndef __has_attribute
#define __has_attribute(x) 0
#endif
#ifndef __has_builtin
#define __has_builtin(x) 0
#endif
#ifndef __has_include
#define __has_include(x) 0
#endif
#ifndef __has_feature
#define __has_feature(x) 0
#endif
#if __has_attribute(always_inline) || defined(__GNUC__)
#define MPARK_ALWAYS_INLINE __attribute__((__always_inline__)) inline
#elif defined(_MSC_VER)
#define MPARK_ALWAYS_INLINE __forceinline
#else
#define MPARK_ALWAYS_INLINE inline
#endif
#if __has_builtin(__builtin_addressof) || \
(defined(__GNUC__) && __GNUC__ >= 7) || defined(_MSC_VER)
#define MPARK_BUILTIN_ADDRESSOF
#endif
#if __has_builtin(__builtin_unreachable) || defined(__GNUC__)
#define MPARK_BUILTIN_UNREACHABLE __builtin_unreachable()
#elif defined(_MSC_VER)
#define MPARK_BUILTIN_UNREACHABLE __assume(false)
#else
#define MPARK_BUILTIN_UNREACHABLE
#endif
#if __has_builtin(__type_pack_element)
#define MPARK_TYPE_PACK_ELEMENT
#endif
#if defined(__cpp_constexpr) && __cpp_constexpr >= 200704 && \
!(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 9)
#define MPARK_CPP11_CONSTEXPR
#endif
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201304
#define MPARK_CPP14_CONSTEXPR
#endif
#if __has_feature(cxx_exceptions) || defined(__cpp_exceptions) || \
(defined(_MSC_VER) && defined(_CPPUNWIND))
#define MPARK_EXCEPTIONS
#endif
#if defined(__cpp_generic_lambdas) || defined(_MSC_VER)
#define MPARK_GENERIC_LAMBDAS
#endif
#if defined(__cpp_lib_integer_sequence)
#define MPARK_INTEGER_SEQUENCE
#endif
#if defined(__cpp_return_type_deduction) || defined(_MSC_VER)
#define MPARK_RETURN_TYPE_DEDUCTION
#endif
#if defined(__cpp_lib_transparent_operators) || defined(_MSC_VER)
#define MPARK_TRANSPARENT_OPERATORS
#endif
#if defined(__cpp_variable_templates) || defined(_MSC_VER)
#define MPARK_VARIABLE_TEMPLATES
#endif
#if !defined(__GLIBCXX__) || __has_include(<codecvt>) // >= libstdc++-5
#define MPARK_TRIVIALITY_TYPE_TRAITS
#define MPARK_INCOMPLETE_TYPE_TRAITS
#endif
#endif // MPARK_CONFIG_HPP

@ -0,0 +1,35 @@
// MPark.Variant
//
// Copyright Michael Park, 2015-2017
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
#ifndef MPARK_IN_PLACE_HPP
#define MPARK_IN_PLACE_HPP
#include <cstddef>
#include "config.hpp"
namespace mpark {
struct in_place_t { explicit in_place_t() = default; };
template <std::size_t I>
struct in_place_index_t { explicit in_place_index_t() = default; };
template <typename T>
struct in_place_type_t { explicit in_place_type_t() = default; };
#ifdef MPARK_VARIABLE_TEMPLATES
constexpr in_place_t in_place{};
template <std::size_t I> constexpr in_place_index_t<I> in_place_index{};
template <typename T> constexpr in_place_type_t<T> in_place_type{};
#endif
} // namespace mpark
#endif // MPARK_IN_PLACE_HPP

@ -0,0 +1,537 @@
// MPark.Variant
//
// Copyright Michael Park, 2015-2017
//
// Distributed under the Boost Software License, Version 1.0.
// (See accompanying file LICENSE.md or copy at http://boost.org/LICENSE_1_0.txt)
#ifndef MPARK_LIB_HPP
#define MPARK_LIB_HPP
#include <memory>
#include <functional>
#include <type_traits>
#include <utility>
#include "config.hpp"
#define MPARK_RETURN(...) \
noexcept(noexcept(__VA_ARGS__)) -> decltype(__VA_ARGS__) { return __VA_ARGS__; }
namespace mpark {
namespace lib {
template <typename T>
struct identity { using type = T; };
inline namespace cpp14 {
template <typename T, std::size_t N>
struct array {
constexpr const T &operator[](std::size_t index) const {
return data[index];
}
T data[N == 0 ? 1 : N];
};
template <typename T>
using add_pointer_t = typename std::add_pointer<T>::type;
template <typename... Ts>
using common_type_t = typename std::common_type<Ts...>::type;
template <typename T>
using decay_t = typename std::decay<T>::type;
template <bool B, typename T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
template <typename T>
using remove_const_t = typename std::remove_const<T>::type;
template <typename T>
using remove_reference_t = typename std::remove_reference<T>::type;
template <typename T>
inline constexpr T &&forward(remove_reference_t<T> &t) noexcept {
return static_cast<T &&>(t);
}
template <typename T>
inline constexpr T &&forward(remove_reference_t<T> &&t) noexcept {
static_assert(!std::is_lvalue_reference<T>::value,
"can not forward an rvalue as an lvalue");
return static_cast<T &&>(t);
}
template <typename T>
inline constexpr remove_reference_t<T> &&move(T &&t) noexcept {
return static_cast<remove_reference_t<T> &&>(t);
}
#ifdef MPARK_INTEGER_SEQUENCE
using std::integer_sequence;
using std::index_sequence;
using std::make_index_sequence;
using std::index_sequence_for;
#else
template <typename T, T... Is>
struct integer_sequence {
using value_type = T;
static constexpr std::size_t size() noexcept { return sizeof...(Is); }
};
template <std::size_t... Is>
using index_sequence = integer_sequence<std::size_t, Is...>;
template <typename Lhs, typename Rhs>
struct make_index_sequence_concat;
template <std::size_t... Lhs, std::size_t... Rhs>
struct make_index_sequence_concat<index_sequence<Lhs...>,
index_sequence<Rhs...>>
: identity<index_sequence<Lhs..., (sizeof...(Lhs) + Rhs)...>> {};
template <std::size_t N>
struct make_index_sequence_impl;
template <std::size_t N>
using make_index_sequence = typename make_index_sequence_impl<N>::type;
template <std::size_t N>
struct make_index_sequence_impl
: make_index_sequence_concat<make_index_sequence<N / 2>,
make_index_sequence<N - (N / 2)>> {};
template <>
struct make_index_sequence_impl<0> : identity<index_sequence<>> {};
template <>
struct make_index_sequence_impl<1> : identity<index_sequence<0>> {};
template <typename... Ts>
using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
#endif
// <functional>
#ifdef MPARK_TRANSPARENT_OPERATORS
using equal_to = std::equal_to<>;
#else
struct equal_to {
template <typename Lhs, typename Rhs>
inline constexpr auto operator()(Lhs &&lhs, Rhs &&rhs) const
MPARK_RETURN(lib::forward<Lhs>(lhs) == lib::forward<Rhs>(rhs))
};
#endif
#ifdef MPARK_TRANSPARENT_OPERATORS
using not_equal_to = std::not_equal_to<>;
#else
struct not_equal_to {
template <typename Lhs, typename Rhs>
inline constexpr auto operator()(Lhs &&lhs, Rhs &&rhs) const
MPARK_RETURN(lib::forward<Lhs>(lhs) != lib::forward<Rhs>(rhs))
};
#endif
#ifdef MPARK_TRANSPARENT_OPERATORS
using less = std::less<>;
#else
struct less {
template <typename Lhs, typename Rhs>
inline constexpr auto operator()(Lhs &&lhs, Rhs &&rhs) const
MPARK_RETURN(lib::forward<Lhs>(lhs) < lib::forward<Rhs>(rhs))
};
#endif
#ifdef MPARK_TRANSPARENT_OPERATORS
using greater = std::greater<>;
#else
struct greater {
template <typename Lhs, typename Rhs>
inline constexpr auto operator()(Lhs &&lhs, Rhs &&rhs) const
MPARK_RETURN(lib::forward<Lhs>(lhs) > lib::forward<Rhs>(rhs))
};
#endif
#ifdef MPARK_TRANSPARENT_OPERATORS
using less_equal = std::less_equal<>;
#else
struct less_equal {
template <typename Lhs, typename Rhs>
inline constexpr auto operator()(Lhs &&lhs, Rhs &&rhs) const
MPARK_RETURN(lib::forward<Lhs>(lhs) <= lib::forward<Rhs>(rhs))
};
#endif
#ifdef MPARK_TRANSPARENT_OPERATORS
using greater_equal = std::greater_equal<>;
#else
struct greater_equal {
template <typename Lhs, typename Rhs>
inline constexpr auto operator()(Lhs &&lhs, Rhs &&rhs) const
MPARK_RETURN(lib::forward<Lhs>(lhs) >= lib::forward<Rhs>(rhs))
};
#endif
} // namespace cpp14
inline namespace cpp17 {
// <type_traits>
template <bool B>
using bool_constant = std::integral_constant<bool, B>;
template <typename...>
struct voider : identity<void> {};
template <typename... Ts>
using void_t = typename voider<Ts...>::type;
namespace detail {
namespace swappable {
using std::swap;
template <typename T>
struct is_swappable {
private:
template <typename U,
typename = decltype(swap(std::declval<U &>(),
std::declval<U &>()))>
inline static std::true_type test(int);
template <typename U>
inline static std::false_type test(...);
public:
static constexpr bool value = decltype(test<T>(0))::value;
};
template <bool IsSwappable, typename T>
struct is_nothrow_swappable {
static constexpr bool value =
noexcept(swap(std::declval<T &>(), std::declval<T &>()));
};
template <typename T>
struct is_nothrow_swappable<false, T> : std::false_type {};
} // namespace swappable
} // namespace detail
using detail::swappable::is_swappable;
template <typename T>
using is_nothrow_swappable =
detail::swappable::is_nothrow_swappable<is_swappable<T>::value, T>;
// <functional>
namespace detail {
template <typename T>
struct is_reference_wrapper : std::false_type {};
template <typename T>
struct is_reference_wrapper<std::reference_wrapper<T>>
: std::true_type {};
template <bool, int>
struct Invoke;
template <>
struct Invoke<true /* pmf */, 0 /* is_base_of */> {
template <typename R, typename T, typename Arg, typename... Args>
inline static constexpr auto invoke(R T::*pmf, Arg &&arg, Args &&... args)
MPARK_RETURN((lib::forward<Arg>(arg).*pmf)(lib::forward<Args>(args)...))
};
template <>
struct Invoke<true /* pmf */, 1 /* is_reference_wrapper */> {
template <typename R, typename T, typename Arg, typename... Args>
inline static constexpr auto invoke(R T::*pmf, Arg &&arg, Args &&... args)
MPARK_RETURN((lib::forward<Arg>(arg).get().*pmf)(lib::forward<Args>(args)...))
};
template <>
struct Invoke<true /* pmf */, 2 /* otherwise */> {
template <typename R, typename T, typename Arg, typename... Args>
inline static constexpr auto invoke(R T::*pmf, Arg &&arg, Args &&... args)
MPARK_RETURN(((*lib::forward<Arg>(arg)).*pmf)(lib::forward<Args>(args)...))
};
template <>
struct Invoke<false /* pmo */, 0 /* is_base_of */> {
template <typename R, typename T, typename Arg>
inline static constexpr auto invoke(R T::*pmo, Arg &&arg)
MPARK_RETURN(lib::forward<Arg>(arg).*pmo)
};
template <>
struct Invoke<false /* pmo */, 1 /* is_reference_wrapper */> {
template <typename R, typename T, typename Arg>
inline static constexpr auto invoke(R T::*pmo, Arg &&arg)
MPARK_RETURN(lib::forward<Arg>(arg).get().*pmo)
};
template <>
struct Invoke<false /* pmo */, 2 /* otherwise */> {
template <typename R, typename T, typename Arg>
inline static constexpr auto invoke(R T::*pmo, Arg &&arg)
MPARK_RETURN((*lib::forward<Arg>(arg)).*pmo)
};
template <typename R, typename T, typename Arg, typename... Args>
inline constexpr auto invoke(R T::*f, Arg &&arg, Args &&... args)
MPARK_RETURN(
Invoke<std::is_function<R>::value,
(std::is_base_of<T, lib::decay_t<Arg>>::value
? 0
: is_reference_wrapper<lib::decay_t<Arg>>::value
? 1
: 2)>::invoke(f,
lib::forward<Arg>(arg),
lib::forward<Args>(args)...))
#ifdef _MSC_VER
#pragma warning(push)
#pragma warning(disable : 4100)
#endif
template <typename F, typename... Args>
inline constexpr auto invoke(F &&f, Args &&... args)
MPARK_RETURN(lib::forward<F>(f)(lib::forward<Args>(args)...))
#ifdef _MSC_VER
#pragma warning(pop)
#endif
} // namespace detail
template <typename F, typename... Args>
inline constexpr auto invoke(F &&f, Args &&... args)
MPARK_RETURN(detail::invoke(lib::forward<F>(f),
lib::forward<Args>(args)...))
namespace detail {
template <typename Void, typename, typename...>
struct invoke_result {};
template <typename F, typename... Args>
struct invoke_result<void_t<decltype(lib::invoke(
std::declval<F>(), std::declval<Args>()...))>,
F,
Args...>
: identity<decltype(
lib::invoke(std::declval<F>(), std::declval<Args>()...))> {};
} // namespace detail
template <typename F, typename... Args>
using invoke_result = detail::invoke_result<void, F, Args...>;
template <typename F, typename... Args>
using invoke_result_t = typename invoke_result<F, Args...>::type;
namespace detail {
template <typename Void, typename, typename...>
struct is_invocable : std::false_type {};
template <typename F, typename... Args>
struct is_invocable<void_t<invoke_result_t<F, Args...>>, F, Args...>
: std::true_type {};
template <typename Void, typename, typename, typename...>
struct is_invocable_r : std::false_type {};
template <typename R, typename F, typename... Args>
struct is_invocable_r<void_t<invoke_result_t<F, Args...>>,
R,
F,
Args...>
: std::is_convertible<invoke_result_t<F, Args...>, R> {};
} // namespace detail
template <typename F, typename... Args>
using is_invocable = detail::is_invocable<void, F, Args...>;
template <typename R, typename F, typename... Args>
using is_invocable_r = detail::is_invocable_r<void, R, F, Args...>;
namespace detail {
template <bool Invocable, typename F, typename... Args>
struct is_nothrow_invocable {
static constexpr bool value =
noexcept(lib::invoke(std::declval<F>(), std::declval<Args>()...));
};
template <typename F, typename... Args>
struct is_nothrow_invocable<false, F, Args...> : std::false_type {};
template <bool Invocable, typename R, typename F, typename... Args>
struct is_nothrow_invocable_r {
private:
inline static R impl() {
return lib::invoke(std::declval<F>(), std::declval<Args>()...);
}
public:
static constexpr bool value = noexcept(impl());
};
template <typename R, typename F, typename... Args>
struct is_nothrow_invocable_r<false, R, F, Args...> : std::false_type {};
} // namespace detail
template <typename F, typename... Args>
using is_nothrow_invocable = detail::
is_nothrow_invocable<is_invocable<F, Args...>::value, F, Args...>;
template <typename R, typename F, typename... Args>
using is_nothrow_invocable_r =
detail::is_nothrow_invocable_r<is_invocable_r<R, F, Args...>::value,
R,
F,
Args...>;
// <memory>
#ifdef MPARK_BUILTIN_ADDRESSOF
template <typename T>
inline constexpr T *addressof(T &arg) noexcept {
return __builtin_addressof(arg);
}
#else
namespace detail {
namespace has_addressof_impl {
struct fail;
template <typename T>
inline fail operator&(T &&);
template <typename T>
inline static constexpr bool impl() {
return (std::is_class<T>::value || std::is_union<T>::value) &&
!std::is_same<decltype(&std::declval<T &>()), fail>::value;
}
} // namespace has_addressof_impl
template <typename T>
using has_addressof = bool_constant<has_addressof_impl::impl<T>()>;
template <typename T>
inline constexpr T *addressof(T &arg, std::true_type) noexcept {
return std::addressof(arg);
}
template <typename T>
inline constexpr T *addressof(T &arg, std::false_type) noexcept {
return &arg;
}
} // namespace detail
template <typename T>
inline constexpr T *addressof(T &arg) noexcept {
return detail::addressof(arg, detail::has_addressof<T>{});
}
#endif
template <typename T>
inline constexpr T *addressof(const T &&) = delete;
} // namespace cpp17
template <typename T>
struct remove_all_extents : identity<T> {};
template <typename T, std::size_t N>
struct remove_all_extents<array<T, N>> : remove_all_extents<T> {};
template <typename T>
using remove_all_extents_t = typename remove_all_extents<T>::type;
template <std::size_t N>
using size_constant = std::integral_constant<std::size_t, N>;
template <std::size_t I, typename T>
struct indexed_type : size_constant<I> { using type = T; };
template <bool... Bs>
using all = std::is_same<integer_sequence<bool, true, Bs...>,
integer_sequence<bool, Bs..., true>>;
#ifdef MPARK_TYPE_PACK_ELEMENT
template <std::size_t I, typename... Ts>
using type_pack_element_t = __type_pack_element<I, Ts...>;
#else
template <std::size_t I, typename... Ts>
struct type_pack_element_impl {
private:
template <typename>
struct set;
template <std::size_t... Is>
struct set<index_sequence<Is...>> : indexed_type<Is, Ts>... {};
template <typename T>
inline static std::enable_if<true, T> impl(indexed_type<I, T>);
inline static std::enable_if<false> impl(...);
public:
using type = decltype(impl(set<index_sequence_for<Ts...>>{}));
};
template <std::size_t I, typename... Ts>
using type_pack_element = typename type_pack_element_impl<I, Ts...>::type;
template <std::size_t I, typename... Ts>
using type_pack_element_t = typename type_pack_element<I, Ts...>::type;
#endif
#ifdef MPARK_TRIVIALITY_TYPE_TRAITS
using std::is_trivially_copy_constructible;
using std::is_trivially_move_constructible;
using std::is_trivially_copy_assignable;
using std::is_trivially_move_assignable;
#else
template <typename T>
struct is_trivially_copy_constructible
: bool_constant<
std::is_copy_constructible<T>::value && __has_trivial_copy(T)> {};
template <typename T>
struct is_trivially_move_constructible : bool_constant<__is_trivial(T)> {};
template <typename T>
struct is_trivially_copy_assignable
: bool_constant<
std::is_copy_assignable<T>::value && __has_trivial_assign(T)> {};
template <typename T>
struct is_trivially_move_assignable : bool_constant<__is_trivial(T)> {};
#endif
template <typename T, bool>
struct dependent_type : T {};
template <typename Is, std::size_t J>
struct push_back;
template <typename Is, std::size_t J>
using push_back_t = typename push_back<Is, J>::type;
template <std::size_t... Is, std::size_t J>
struct push_back<index_sequence<Is...>, J> {
using type = index_sequence<Is..., J>;
};
} // namespace lib
} // namespace mpark
#undef MPARK_RETURN
#endif // MPARK_LIB_HPP

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save