Preserve ordering and switch target syntax to use tables

toml-checker
Duncan Ogilvie 4 years ago
parent bd36e67d2e
commit f905440871

@ -46,6 +46,7 @@ target_link_libraries(cmkrlib PUBLIC
toml11
ghc_filesystem
mpark_variant
ordered_map
)
target_compile_features(cmkrlib PUBLIC

@ -6,16 +6,14 @@ name = "cmkr"
version = "0.1.3"
inject-after = "add_subdirectory(third_party)"
[[target]]
name = "cmkrlib"
[target.cmkrlib]
type = "static"
sources = ["src/cmkrlib/*.cpp", "src/cmkrlib/*.hpp", "include/*.h"]
include-directories = ["include"]
compile-features = ["cxx_std_11"]
link-libraries = ["toml11", "ghc_filesystem", "mpark_variant"]
link-libraries = ["toml11", "ghc_filesystem", "mpark_variant", "ordered_map"]
[[target]]
name = "cmkr"
[target.cmkr]
type = "executable"
sources = ["src/main.cpp"]
link-libraries = ["cmkrlib"]

@ -3,14 +3,15 @@
#include "fs.hpp"
#include <stdexcept>
#include <toml.hpp>
#include <tsl/ordered_map.h>
namespace cmkr {
namespace cmake {
using TomlBasicValue = toml::basic_value<toml::preserve_comments, tsl::ordered_map, std::vector>;
namespace detail {
std::vector<std::string> to_string_vec(
const std::vector<toml::basic_value<toml::discard_comments, std::unordered_map, std::vector>>
&vals) {
std::vector<std::string> to_string_vec(const std::vector<TomlBasicValue> &vals) {
std::vector<std::string> temp;
for (const auto &val : vals)
temp.push_back(val.as_string());
@ -22,7 +23,7 @@ CMake::CMake(const std::string &path, bool build) {
if (!fs::exists(fs::path(path) / "cmake.toml")) {
throw std::runtime_error("No cmake.toml was found!");
}
const auto toml = toml::parse((fs::path(path) / "cmake.toml").string());
const auto toml = toml::parse<toml::preserve_comments, tsl::ordered_map, std::vector>((fs::path(path) / "cmake.toml").string());
if (build) {
if (toml.contains("cmake")) {
const auto &cmake = toml::find(toml, "cmake");
@ -88,9 +89,7 @@ CMake::CMake(const std::string &path, bool build) {
}
if (toml.contains("settings")) {
using set_map =
std::map<std::string, toml::basic_value<toml::discard_comments, std::unordered_map,
std::vector>>;
using set_map = std::map<std::string, TomlBasicValue>;
const auto &sets = toml::find<set_map>(toml, "settings");
for (const auto set : sets) {
Setting s;
@ -123,9 +122,7 @@ CMake::CMake(const std::string &path, bool build) {
}
if (toml.contains("options")) {
using opts_map =
std::map<std::string, toml::basic_value<toml::discard_comments, std::unordered_map,
std::vector>>;
using opts_map = tsl::ordered_map<std::string, TomlBasicValue>;
const auto &opts = toml::find<opts_map>(toml, "options");
for (const auto opt : opts) {
Option o;
@ -145,9 +142,7 @@ CMake::CMake(const std::string &path, bool build) {
}
if (toml.contains("find-package")) {
using pkg_map =
std::map<std::string, toml::basic_value<toml::discard_comments, std::unordered_map,
std::vector>>;
using pkg_map = tsl::ordered_map<std::string, TomlBasicValue>;
const auto &pkgs = toml::find<pkg_map>(toml, "find-package");
for (const auto &pkg : pkgs) {
Package p;
@ -162,16 +157,16 @@ CMake::CMake(const std::string &path, bool build) {
p.required = toml::find(pkg.second, "required").as_boolean();
}
if (pkg.second.contains("components")) {
p.components =
detail::to_string_vec(toml::find(pkg.second, "components").as_array());
p.components = detail::to_string_vec(toml::find(pkg.second, "components").as_array());
}
}
packages.push_back(p);
}
}
// TODO: refactor to std::vector<Content> instead of this hacky thing?
if (toml.contains("fetch-content")) {
using content_map = std::map<std::string, std::map<std::string, std::string>>;
using content_map = tsl::ordered_map<std::string, std::map<std::string, std::string>>;
contents = toml::find<content_map>(toml, "fetch-content");
}
@ -180,18 +175,19 @@ CMake::CMake(const std::string &path, bool build) {
}
if (toml.contains("target")) {
const auto &ts = toml::find(toml, "target").as_array();
const auto &ts = toml::find(toml, "target").as_table();
for (const auto &t : ts) {
for (const auto &itr : ts) {
const auto &t = itr.second;
Target target;
target.name = toml::find(t, "name").as_string();
target.name = itr.first;
target.type = toml::find(t, "type").as_string();
target.sources = detail::to_string_vec(toml::find(t, "sources").as_array());
#define renamed(from, to) \
if (t.contains(from)) { \
throw std::runtime_error(from "has been renamed to " to); \
#define renamed(from, to) \
if (t.contains(from)) { \
throw std::runtime_error(from "has been renamed to " to); \
}
renamed("include-dirs", "include-directories");
@ -202,23 +198,19 @@ CMake::CMake(const std::string &path, bool build) {
#undef renamed
if (t.contains("include-directories")) {
target.include_directories =
detail::to_string_vec(toml::find(t, "include-directories").as_array());
target.include_directories = detail::to_string_vec(toml::find(t, "include-directories").as_array());
}
if (t.contains("link-libraries")) {
target.link_libraries =
detail::to_string_vec(toml::find(t, "link-libraries").as_array());
target.link_libraries = detail::to_string_vec(toml::find(t, "link-libraries").as_array());
}
if (t.contains("compile-features")) {
target.compile_features =
detail::to_string_vec(toml::find(t, "compile-features").as_array());
target.compile_features = detail::to_string_vec(toml::find(t, "compile-features").as_array());
}
if (t.contains("compile-definitions")) {
target.compile_definitions =
detail::to_string_vec(toml::find(t, "compile-definitions").as_array());
target.compile_definitions = detail::to_string_vec(toml::find(t, "compile-definitions").as_array());
}
if (t.contains("alias")) {

@ -5,6 +5,7 @@
#include <string>
#include <vector>
#include <mpark/variant.hpp>
#include <tsl/ordered_map.h>
namespace cmkr {
namespace cmake {
@ -76,7 +77,7 @@ struct CMake {
std::vector<Setting> settings;
std::vector<Option> options;
std::vector<Package> packages;
std::map<std::string, std::map<std::string, std::string>> contents;
tsl::ordered_map<std::string, std::map<std::string, std::string>> contents;
std::vector<Target> targets;
std::vector<Test> tests;
std::vector<Install> installs;

@ -4,6 +4,11 @@
add_library(ghc_filesystem INTERFACE)
target_include_directories(ghc_filesystem INTERFACE filesystem-1.5.2/include)
# https://github.com/Tessil/ordered-map (MIT)
add_library(ordered_map INTERFACE)
target_include_directories(ordered_map INTERFACE ordered-map-1.0.0/include)
target_compile_definitions(ordered_map INTERFACE NOMINMAX)
# https://github.com/ToruNiina/toml11 (MIT)
add_library(toml11 INTERFACE)
target_include_directories(toml11 INTERFACE toml11-3.6.0)

@ -0,0 +1,21 @@
MIT License
Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

File diff suppressed because it is too large Load Diff

@ -0,0 +1,863 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_MAP_H
#define TSL_ORDERED_MAP_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash map using open addressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash map is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the map provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be useful to communicate with C API's).
*
* The Key and T must be copy constructible and/or move constructible. To use `unordered_erase` they both
* must be swappable.
*
* The behaviour of the hash map is undefined if the destructor of Key or T throws an exception.
*
* By default the maximum size of a map is limited to 2^32 - 1 values, if needed this can be changed through
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class T,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<std::pair<Key, T>>,
class ValueTypeContainer = std::deque<std::pair<Key, T>, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_map {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.first;
}
key_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.first;
}
};
class ValueSelect {
public:
using value_type = T;
const value_type& operator()(const std::pair<Key, T>& key_value) const noexcept {
return key_value.second;
}
value_type& operator()(std::pair<Key, T>& key_value) noexcept {
return key_value.second;
}
};
using ht = detail_ordered_hash::ordered_hash<std::pair<Key, T>, KeySelect, ValueSelect,
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using mapped_type = T;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_map(): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_map(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_map(size_type bucket_count,
const Allocator& alloc): ordered_map(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_map(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_map(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_map(const Allocator& alloc): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_map(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_map(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_map(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_map(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_map& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
std::pair<iterator, bool> insert(P&& value) { return m_ht.emplace(std::forward<P>(value)); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
template<class P, typename std::enable_if<std::is_constructible<value_type, P&&>::value>::type* = nullptr>
iterator insert(const_iterator hint, P&& value) {
return m_ht.emplace_hint(hint, std::forward<P>(value));
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
template<class M>
std::pair<iterator, bool> insert_or_assign(const key_type& k, M&& obj) {
return m_ht.insert_or_assign(k, std::forward<M>(obj));
}
template<class M>
std::pair<iterator, bool> insert_or_assign(key_type&& k, M&& obj) {
return m_ht.insert_or_assign(std::move(k), std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) {
return m_ht.insert_or_assign(hint, k, std::forward<M>(obj));
}
template<class M>
iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) {
return m_ht.insert_or_assign(hint, std::move(k), std::forward<M>(obj));
}
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template <class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args) {
return m_ht.try_emplace(k, std::forward<Args>(args)...);
}
template<class... Args>
std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args) {
return m_ht.try_emplace(std::move(k), std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, k, std::forward<Args>(args)...);
}
template<class... Args>
iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) {
return m_ht.try_emplace_hint(hint, std::move(k), std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_map& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
T& at(const Key& key) { return m_ht.at(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
const T& at(const Key& key) const { return m_ht.at(key); }
/**
* @copydoc at(const Key& key, std::size_t precalculated_hash)
*/
const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key) { return m_ht.at(key); }
/**
* @copydoc at(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); }
/**
* @copydoc at(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key) const { return m_ht.at(key); }
/**
* @copydoc at(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); }
T& operator[](const Key& key) { return m_ht[key]; }
T& operator[](Key&& key) { return m_ht[std::move(key)]; }
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template<class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, const key_type& k, Args&&... args) {
return m_ht.try_emplace_at_position(pos, k, std::forward<Args>(args)...);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
template<class... Args>
std::pair<iterator, bool> try_emplace_at_position(const_iterator pos, key_type&& k, Args&&... args) {
return m_ht.try_emplace_at_position(pos, std::move(k), std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the map through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `template<typename U> void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibility is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized map through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `std::pair<Key, T>` must be supported for U.
*
* If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
* `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` and `T` of the `ordered_map` are not the same as the
* types used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibility is required.
*/
template<class Deserializer>
static ordered_map deserialize(Deserializer& deserializer, bool hash_compatible = false) {
ordered_map map(0);
map.m_ht.deserialize(deserializer, hash_compatible);
return map;
}
friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif

@ -0,0 +1,718 @@
/**
* MIT License
*
* Copyright (c) 2017 Thibaut Goetghebuer-Planchon <tessil@gmx.com>
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in all
* copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#ifndef TSL_ORDERED_SET_H
#define TSL_ORDERED_SET_H
#include <cstddef>
#include <cstdint>
#include <deque>
#include <functional>
#include <initializer_list>
#include <memory>
#include <type_traits>
#include <utility>
#include <vector>
#include "ordered_hash.h"
namespace tsl {
/**
* Implementation of an hash set using open addressing with robin hood with backshift delete to resolve collisions.
*
* The particularity of this hash set is that it remembers the order in which the elements were added and
* provide a way to access the structure which stores these values through the 'values_container()' method.
* The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but
* a std::vector may be used. In this case the set provides a 'data()' method which give a direct access
* to the memory used to store the values (which can be useful to communicate with C API's).
*
* The Key must be copy constructible and/or move constructible. To use `unordered_erase` it also must be swappable.
*
* The behaviour of the hash set is undefined if the destructor of Key throws an exception.
*
* By default the maximum size of a set is limited to 2^32 - 1 values, if needed this can be changed through
* the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each
* bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values.
*
* Iterators invalidation:
* - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()).
* - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer
* and if size() < capacity(), only end().
* Otherwise all the iterators are invalidated if an insert occurs.
* - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of
* the erased element and all the ones after the erased element (including end()).
* Otherwise all the iterators are invalidated if an erase occurs.
*/
template<class Key,
class Hash = std::hash<Key>,
class KeyEqual = std::equal_to<Key>,
class Allocator = std::allocator<Key>,
class ValueTypeContainer = std::deque<Key, Allocator>,
class IndexType = std::uint_least32_t>
class ordered_set {
private:
template<typename U>
using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent<U>;
class KeySelect {
public:
using key_type = Key;
const key_type& operator()(const Key& key) const noexcept {
return key;
}
key_type& operator()(Key& key) noexcept {
return key;
}
};
using ht = detail_ordered_hash::ordered_hash<Key, KeySelect, void,
Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>;
public:
using key_type = typename ht::key_type;
using value_type = typename ht::value_type;
using size_type = typename ht::size_type;
using difference_type = typename ht::difference_type;
using hasher = typename ht::hasher;
using key_equal = typename ht::key_equal;
using allocator_type = typename ht::allocator_type;
using reference = typename ht::reference;
using const_reference = typename ht::const_reference;
using pointer = typename ht::pointer;
using const_pointer = typename ht::const_pointer;
using iterator = typename ht::iterator;
using const_iterator = typename ht::const_iterator;
using reverse_iterator = typename ht::reverse_iterator;
using const_reverse_iterator = typename ht::const_reverse_iterator;
using values_container_type = typename ht::values_container_type;
/*
* Constructors
*/
ordered_set(): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE) {
}
explicit ordered_set(size_type bucket_count,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR)
{
}
ordered_set(size_type bucket_count,
const Allocator& alloc): ordered_set(bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(bucket_count, hash, KeyEqual(), alloc)
{
}
explicit ordered_set(const Allocator& alloc): ordered_set(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) {
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()): ordered_set(bucket_count, hash, equal, alloc)
{
insert(first, last);
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Allocator& alloc): ordered_set(first, last, bucket_count, Hash(), KeyEqual(), alloc)
{
}
template<class InputIt>
ordered_set(InputIt first, InputIt last,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc): ordered_set(first, last, bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE,
const Hash& hash = Hash(),
const KeyEqual& equal = KeyEqual(),
const Allocator& alloc = Allocator()):
ordered_set(init.begin(), init.end(), bucket_count, hash, equal, alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc)
{
}
ordered_set(std::initializer_list<value_type> init,
size_type bucket_count,
const Hash& hash,
const Allocator& alloc):
ordered_set(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc)
{
}
ordered_set& operator=(std::initializer_list<value_type> ilist) {
m_ht.clear();
m_ht.reserve(ilist.size());
m_ht.insert(ilist.begin(), ilist.end());
return *this;
}
allocator_type get_allocator() const { return m_ht.get_allocator(); }
/*
* Iterators
*/
iterator begin() noexcept { return m_ht.begin(); }
const_iterator begin() const noexcept { return m_ht.begin(); }
const_iterator cbegin() const noexcept { return m_ht.cbegin(); }
iterator end() noexcept { return m_ht.end(); }
const_iterator end() const noexcept { return m_ht.end(); }
const_iterator cend() const noexcept { return m_ht.cend(); }
reverse_iterator rbegin() noexcept { return m_ht.rbegin(); }
const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); }
const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); }
reverse_iterator rend() noexcept { return m_ht.rend(); }
const_reverse_iterator rend() const noexcept { return m_ht.rend(); }
const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); }
/*
* Capacity
*/
bool empty() const noexcept { return m_ht.empty(); }
size_type size() const noexcept { return m_ht.size(); }
size_type max_size() const noexcept { return m_ht.max_size(); }
/*
* Modifiers
*/
void clear() noexcept { m_ht.clear(); }
std::pair<iterator, bool> insert(const value_type& value) { return m_ht.insert(value); }
std::pair<iterator, bool> insert(value_type&& value) { return m_ht.insert(std::move(value)); }
iterator insert(const_iterator hint, const value_type& value) {
return m_ht.insert_hint(hint, value);
}
iterator insert(const_iterator hint, value_type&& value) {
return m_ht.insert_hint(hint, std::move(value));
}
template<class InputIt>
void insert(InputIt first, InputIt last) { m_ht.insert(first, last); }
void insert(std::initializer_list<value_type> ilist) { m_ht.insert(ilist.begin(), ilist.end()); }
/**
* Due to the way elements are stored, emplace will need to move or copy the key-value once.
* The method is equivalent to insert(value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
std::pair<iterator, bool> emplace(Args&&... args) { return m_ht.emplace(std::forward<Args>(args)...); }
/**
* Due to the way elements are stored, emplace_hint will need to move or copy the key-value once.
* The method is equivalent to insert(hint, value_type(std::forward<Args>(args)...));
*
* Mainly here for compatibility with the std::unordered_map interface.
*/
template<class... Args>
iterator emplace_hint(const_iterator hint, Args&&... args) {
return m_ht.emplace_hint(hint, std::forward<Args>(args)...);
}
/**
* When erasing an element, the insert order will be preserved and no holes will be present in the container
* returned by 'values_container()'.
*
* The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1)
* average complexity.
*/
iterator erase(iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator pos) { return m_ht.erase(pos); }
/**
* @copydoc erase(iterator pos)
*/
iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); }
/**
* @copydoc erase(iterator pos)
*/
size_type erase(const key_type& key) { return m_ht.erase(key); }
/**
* @copydoc erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup to the value if you already have the hash.
*/
size_type erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
/**
* @copydoc erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key) { return m_ht.erase(key); }
/**
* @copydoc erase(const key_type& key, std::size_t precalculated_hash)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type erase(const K& key, std::size_t precalculated_hash) {
return m_ht.erase(key, precalculated_hash);
}
void swap(ordered_set& other) { other.m_ht.swap(m_ht); }
/*
* Lookup
*/
size_type count(const Key& key) const { return m_ht.count(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type count(const Key& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key) const { return m_ht.count(key); }
/**
* @copydoc count(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type count(const K& key, std::size_t precalculated_hash) const {
return m_ht.count(key, precalculated_hash);
}
iterator find(const Key& key) { return m_ht.find(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
const_iterator find(const Key& key) const { return m_ht.find(key); }
/**
* @copydoc find(const Key& key, std::size_t precalculated_hash)
*/
const_iterator find(const Key& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key) { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); }
/**
* @copydoc find(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key) const { return m_ht.find(key); }
/**
* @copydoc find(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
const_iterator find(const K& key, std::size_t precalculated_hash) const {
return m_ht.find(key, precalculated_hash);
}
bool contains(const Key& key) const { return m_ht.contains(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
bool contains(const Key& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key) const { return m_ht.contains(key); }
/**
* @copydoc contains(const K& key) const
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
bool contains(const K& key, std::size_t precalculated_hash) const {
return m_ht.contains(key, precalculated_hash);
}
std::pair<iterator, iterator> equal_range(const Key& key) { return m_ht.equal_range(key); }
/**
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
std::pair<iterator, iterator> equal_range(const Key& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
std::pair<const_iterator, const_iterator> equal_range(const Key& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const Key& key, std::size_t precalculated_hash)
*/
std::pair<const_iterator, const_iterator> equal_range(const Key& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key) { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<iterator, iterator> equal_range(const K& key, std::size_t precalculated_hash) {
return m_ht.equal_range(key, precalculated_hash);
}
/**
* @copydoc equal_range(const K& key)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key) const { return m_ht.equal_range(key); }
/**
* @copydoc equal_range(const K& key, std::size_t precalculated_hash)
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
std::pair<const_iterator, const_iterator> equal_range(const K& key, std::size_t precalculated_hash) const {
return m_ht.equal_range(key, precalculated_hash);
}
/*
* Bucket interface
*/
size_type bucket_count() const { return m_ht.bucket_count(); }
size_type max_bucket_count() const { return m_ht.max_bucket_count(); }
/*
* Hash policy
*/
float load_factor() const { return m_ht.load_factor(); }
float max_load_factor() const { return m_ht.max_load_factor(); }
void max_load_factor(float ml) { m_ht.max_load_factor(ml); }
void rehash(size_type count) { m_ht.rehash(count); }
void reserve(size_type count) { m_ht.reserve(count); }
/*
* Observers
*/
hasher hash_function() const { return m_ht.hash_function(); }
key_equal key_eq() const { return m_ht.key_eq(); }
/*
* Other
*/
/**
* Convert a const_iterator to an iterator.
*/
iterator mutable_iterator(const_iterator pos) {
return m_ht.mutable_iterator(pos);
}
/**
* Requires index <= size().
*
* Return an iterator to the element at index. Return end() if index == size().
*/
iterator nth(size_type index) { return m_ht.nth(index); }
/**
* @copydoc nth(size_type index)
*/
const_iterator nth(size_type index) const { return m_ht.nth(index); }
/**
* Return const_reference to the first element. Requires the container to not be empty.
*/
const_reference front() const { return m_ht.front(); }
/**
* Return const_reference to the last element. Requires the container to not be empty.
*/
const_reference back() const { return m_ht.back(); }
/**
* Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'.
*/
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); }
/**
* Return the container in which the values are stored. The values are in the same order as the insertion order
* and are contiguous in the structure, no holes (size() == values_container().size()).
*/
const values_container_type& values_container() const noexcept { return m_ht.values_container(); }
template<class U = values_container_type, typename std::enable_if<tsl::detail_ordered_hash::is_vector<U>::value>::type* = nullptr>
size_type capacity() const noexcept { return m_ht.capacity(); }
void shrink_to_fit() { m_ht.shrink_to_fit(); }
/**
* Insert the value before pos shifting all the elements on the right of pos (including pos) one position
* to the right.
*
* Amortized linear time-complexity in the distance between pos and end().
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, const value_type& value) {
return m_ht.insert_at_position(pos, value);
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*/
std::pair<iterator, bool> insert_at_position(const_iterator pos, value_type&& value) {
return m_ht.insert_at_position(pos, std::move(value));
}
/**
* @copydoc insert_at_position(const_iterator pos, const value_type& value)
*
* Same as insert_at_position(pos, value_type(std::forward<Args>(args)...), mainly
* here for coherence.
*/
template<class... Args>
std::pair<iterator, bool> emplace_at_position(const_iterator pos, Args&&... args) {
return m_ht.emplace_at_position(pos, std::forward<Args>(args)...);
}
void pop_back() { m_ht.pop_back(); }
/**
* Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order.
*
* If an erasure occurs, the last element of the map will take the place of the erased element.
*/
iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); }
/**
* @copydoc unordered_erase(iterator pos)
*/
size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(iterator pos)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* @copydoc unordered_erase(iterator pos)
*
* This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists.
* If so, K must be hashable and comparable to Key.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); }
/**
* @copydoc unordered_erase(const K& key)
*
* Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same
* as hash_function()(key). Useful to speed-up the lookup if you already have the hash.
*/
template<class K, class KE = KeyEqual, typename std::enable_if<has_is_transparent<KE>::value>::type* = nullptr>
size_type unordered_erase(const K& key, std::size_t precalculated_hash) {
return m_ht.unordered_erase(key, precalculated_hash);
}
/**
* Serialize the set through the `serializer` parameter.
*
* The `serializer` parameter must be a function object that supports the following call:
* - `void operator()(const U& value);` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, ...) of the types it serializes
* in the hands of the `Serializer` function object if compatibility is required.
*/
template<class Serializer>
void serialize(Serializer& serializer) const {
m_ht.serialize(serializer);
}
/**
* Deserialize a previously serialized set through the `deserializer` parameter.
*
* The `deserializer` parameter must be a function object that supports the following calls:
* - `template<typename U> U operator()();` where the types `std::uint64_t`, `float` and `Key` must be supported for U.
*
* If the deserialized hash set type is hash compatible with the serialized set, the deserialization process can be
* sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way
* than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used
* to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with
* `hash_compatible` sets to true.
*
* The behaviour is undefined if the type `Key` of the `ordered_set` is not the same as the
* type used during serialization.
*
* The implementation leaves binary compatibility (endianness, IEEE 754 for floats, size of int, ...) of the types it
* deserializes in the hands of the `Deserializer` function object if compatibility is required.
*/
template<class Deserializer>
static ordered_set deserialize(Deserializer& deserializer, bool hash_compatible = false) {
ordered_set set(0);
set.m_ht.deserialize(deserializer, hash_compatible);
return set;
}
friend bool operator==(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht == rhs.m_ht; }
friend bool operator!=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht != rhs.m_ht; }
friend bool operator<(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht < rhs.m_ht; }
friend bool operator<=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht <= rhs.m_ht; }
friend bool operator>(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht > rhs.m_ht; }
friend bool operator>=(const ordered_set& lhs, const ordered_set& rhs) { return lhs.m_ht >= rhs.m_ht; }
friend void swap(ordered_set& lhs, ordered_set& rhs) { lhs.swap(rhs); }
private:
ht m_ht;
};
} // end namespace tsl
#endif
Loading…
Cancel
Save