/** * MIT License * * Copyright (c) 2017 Thibaut Goetghebuer-Planchon * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all * copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #ifndef TSL_ORDERED_MAP_H #define TSL_ORDERED_MAP_H #include #include #include #include #include #include #include #include #include #include "ordered_hash.h" namespace tsl { /** * Implementation of an hash map using open addressing with robin hood with backshift delete to resolve collisions. * * The particularity of this hash map is that it remembers the order in which the elements were added and * provide a way to access the structure which stores these values through the 'values_container()' method. * The used container is defined by ValueTypeContainer, by default a std::deque is used (grows faster) but * a std::vector may be used. In this case the map provides a 'data()' method which give a direct access * to the memory used to store the values (which can be useful to communicate with C API's). * * The Key and T must be copy constructible and/or move constructible. To use `unordered_erase` they both * must be swappable. * * The behaviour of the hash map is undefined if the destructor of Key or T throws an exception. * * By default the maximum size of a map is limited to 2^32 - 1 values, if needed this can be changed through * the IndexType template parameter. Using an `uint64_t` will raise this limit to 2^64 - 1 values but each * bucket will use 16 bytes instead of 8 bytes in addition to the space needed to store the values. * * Iterators invalidation: * - clear, operator=, reserve, rehash: always invalidate the iterators (also invalidate end()). * - insert, emplace, emplace_hint, operator[]: when a std::vector is used as ValueTypeContainer * and if size() < capacity(), only end(). * Otherwise all the iterators are invalidated if an insert occurs. * - erase, unordered_erase: when a std::vector is used as ValueTypeContainer invalidate the iterator of * the erased element and all the ones after the erased element (including end()). * Otherwise all the iterators are invalidated if an erase occurs. */ template, class KeyEqual = std::equal_to, class Allocator = std::allocator>, class ValueTypeContainer = std::deque, Allocator>, class IndexType = std::uint_least32_t> class ordered_map { private: template using has_is_transparent = tsl::detail_ordered_hash::has_is_transparent; class KeySelect { public: using key_type = Key; const key_type& operator()(const std::pair& key_value) const noexcept { return key_value.first; } key_type& operator()(std::pair& key_value) noexcept { return key_value.first; } }; class ValueSelect { public: using value_type = T; const value_type& operator()(const std::pair& key_value) const noexcept { return key_value.second; } value_type& operator()(std::pair& key_value) noexcept { return key_value.second; } }; using ht = detail_ordered_hash::ordered_hash, KeySelect, ValueSelect, Hash, KeyEqual, Allocator, ValueTypeContainer, IndexType>; public: using key_type = typename ht::key_type; using mapped_type = T; using value_type = typename ht::value_type; using size_type = typename ht::size_type; using difference_type = typename ht::difference_type; using hasher = typename ht::hasher; using key_equal = typename ht::key_equal; using allocator_type = typename ht::allocator_type; using reference = typename ht::reference; using const_reference = typename ht::const_reference; using pointer = typename ht::pointer; using const_pointer = typename ht::const_pointer; using iterator = typename ht::iterator; using const_iterator = typename ht::const_iterator; using reverse_iterator = typename ht::reverse_iterator; using const_reverse_iterator = typename ht::const_reverse_iterator; using values_container_type = typename ht::values_container_type; /* * Constructors */ ordered_map(): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE) { } explicit ordered_map(size_type bucket_count, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()): m_ht(bucket_count, hash, equal, alloc, ht::DEFAULT_MAX_LOAD_FACTOR) { } ordered_map(size_type bucket_count, const Allocator& alloc): ordered_map(bucket_count, Hash(), KeyEqual(), alloc) { } ordered_map(size_type bucket_count, const Hash& hash, const Allocator& alloc): ordered_map(bucket_count, hash, KeyEqual(), alloc) { } explicit ordered_map(const Allocator& alloc): ordered_map(ht::DEFAULT_INIT_BUCKETS_SIZE, alloc) { } template ordered_map(InputIt first, InputIt last, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()): ordered_map(bucket_count, hash, equal, alloc) { insert(first, last); } template ordered_map(InputIt first, InputIt last, size_type bucket_count, const Allocator& alloc): ordered_map(first, last, bucket_count, Hash(), KeyEqual(), alloc) { } template ordered_map(InputIt first, InputIt last, size_type bucket_count, const Hash& hash, const Allocator& alloc): ordered_map(first, last, bucket_count, hash, KeyEqual(), alloc) { } ordered_map(std::initializer_list init, size_type bucket_count = ht::DEFAULT_INIT_BUCKETS_SIZE, const Hash& hash = Hash(), const KeyEqual& equal = KeyEqual(), const Allocator& alloc = Allocator()): ordered_map(init.begin(), init.end(), bucket_count, hash, equal, alloc) { } ordered_map(std::initializer_list init, size_type bucket_count, const Allocator& alloc): ordered_map(init.begin(), init.end(), bucket_count, Hash(), KeyEqual(), alloc) { } ordered_map(std::initializer_list init, size_type bucket_count, const Hash& hash, const Allocator& alloc): ordered_map(init.begin(), init.end(), bucket_count, hash, KeyEqual(), alloc) { } ordered_map& operator=(std::initializer_list ilist) { m_ht.clear(); m_ht.reserve(ilist.size()); m_ht.insert(ilist.begin(), ilist.end()); return *this; } allocator_type get_allocator() const { return m_ht.get_allocator(); } /* * Iterators */ iterator begin() noexcept { return m_ht.begin(); } const_iterator begin() const noexcept { return m_ht.begin(); } const_iterator cbegin() const noexcept { return m_ht.cbegin(); } iterator end() noexcept { return m_ht.end(); } const_iterator end() const noexcept { return m_ht.end(); } const_iterator cend() const noexcept { return m_ht.cend(); } reverse_iterator rbegin() noexcept { return m_ht.rbegin(); } const_reverse_iterator rbegin() const noexcept { return m_ht.rbegin(); } const_reverse_iterator rcbegin() const noexcept { return m_ht.rcbegin(); } reverse_iterator rend() noexcept { return m_ht.rend(); } const_reverse_iterator rend() const noexcept { return m_ht.rend(); } const_reverse_iterator rcend() const noexcept { return m_ht.rcend(); } /* * Capacity */ bool empty() const noexcept { return m_ht.empty(); } size_type size() const noexcept { return m_ht.size(); } size_type max_size() const noexcept { return m_ht.max_size(); } /* * Modifiers */ void clear() noexcept { m_ht.clear(); } std::pair insert(const value_type& value) { return m_ht.insert(value); } template::value>::type* = nullptr> std::pair insert(P&& value) { return m_ht.emplace(std::forward

(value)); } std::pair insert(value_type&& value) { return m_ht.insert(std::move(value)); } iterator insert(const_iterator hint, const value_type& value) { return m_ht.insert_hint(hint, value); } template::value>::type* = nullptr> iterator insert(const_iterator hint, P&& value) { return m_ht.emplace_hint(hint, std::forward

(value)); } iterator insert(const_iterator hint, value_type&& value) { return m_ht.insert_hint(hint, std::move(value)); } template void insert(InputIt first, InputIt last) { m_ht.insert(first, last); } void insert(std::initializer_list ilist) { m_ht.insert(ilist.begin(), ilist.end()); } template std::pair insert_or_assign(const key_type& k, M&& obj) { return m_ht.insert_or_assign(k, std::forward(obj)); } template std::pair insert_or_assign(key_type&& k, M&& obj) { return m_ht.insert_or_assign(std::move(k), std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, const key_type& k, M&& obj) { return m_ht.insert_or_assign(hint, k, std::forward(obj)); } template iterator insert_or_assign(const_iterator hint, key_type&& k, M&& obj) { return m_ht.insert_or_assign(hint, std::move(k), std::forward(obj)); } /** * Due to the way elements are stored, emplace will need to move or copy the key-value once. * The method is equivalent to insert(value_type(std::forward(args)...)); * * Mainly here for compatibility with the std::unordered_map interface. */ template std::pair emplace(Args&&... args) { return m_ht.emplace(std::forward(args)...); } /** * Due to the way elements are stored, emplace_hint will need to move or copy the key-value once. * The method is equivalent to insert(hint, value_type(std::forward(args)...)); * * Mainly here for compatibility with the std::unordered_map interface. */ template iterator emplace_hint(const_iterator hint, Args&&... args) { return m_ht.emplace_hint(hint, std::forward(args)...); } template std::pair try_emplace(const key_type& k, Args&&... args) { return m_ht.try_emplace(k, std::forward(args)...); } template std::pair try_emplace(key_type&& k, Args&&... args) { return m_ht.try_emplace(std::move(k), std::forward(args)...); } template iterator try_emplace(const_iterator hint, const key_type& k, Args&&... args) { return m_ht.try_emplace_hint(hint, k, std::forward(args)...); } template iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args) { return m_ht.try_emplace_hint(hint, std::move(k), std::forward(args)...); } /** * When erasing an element, the insert order will be preserved and no holes will be present in the container * returned by 'values_container()'. * * The method is in O(n), if the order is not important 'unordered_erase(...)' method is faster with an O(1) * average complexity. */ iterator erase(iterator pos) { return m_ht.erase(pos); } /** * @copydoc erase(iterator pos) */ iterator erase(const_iterator pos) { return m_ht.erase(pos); } /** * @copydoc erase(iterator pos) */ iterator erase(const_iterator first, const_iterator last) { return m_ht.erase(first, last); } /** * @copydoc erase(iterator pos) */ size_type erase(const key_type& key) { return m_ht.erase(key); } /** * @copydoc erase(iterator pos) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup to the value if you already have the hash. */ size_type erase(const key_type& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } /** * @copydoc erase(iterator pos) * * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> size_type erase(const K& key) { return m_ht.erase(key); } /** * @copydoc erase(const key_type& key, std::size_t precalculated_hash) * * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> size_type erase(const K& key, std::size_t precalculated_hash) { return m_ht.erase(key, precalculated_hash); } void swap(ordered_map& other) { other.m_ht.swap(m_ht); } /* * Lookup */ T& at(const Key& key) { return m_ht.at(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ T& at(const Key& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } const T& at(const Key& key) const { return m_ht.at(key); } /** * @copydoc at(const Key& key, std::size_t precalculated_hash) */ const T& at(const Key& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> T& at(const K& key) { return m_ht.at(key); } /** * @copydoc at(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> T& at(const K& key, std::size_t precalculated_hash) { return m_ht.at(key, precalculated_hash); } /** * @copydoc at(const K& key) */ template::value>::type* = nullptr> const T& at(const K& key) const { return m_ht.at(key); } /** * @copydoc at(const K& key, std::size_t precalculated_hash) */ template::value>::type* = nullptr> const T& at(const K& key, std::size_t precalculated_hash) const { return m_ht.at(key, precalculated_hash); } T& operator[](const Key& key) { return m_ht[key]; } T& operator[](Key&& key) { return m_ht[std::move(key)]; } size_type count(const Key& key) const { return m_ht.count(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ size_type count(const Key& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> size_type count(const K& key) const { return m_ht.count(key); } /** * @copydoc count(const K& key) const * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> size_type count(const K& key, std::size_t precalculated_hash) const { return m_ht.count(key, precalculated_hash); } iterator find(const Key& key) { return m_ht.find(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ iterator find(const Key& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } const_iterator find(const Key& key) const { return m_ht.find(key); } /** * @copydoc find(const Key& key, std::size_t precalculated_hash) */ const_iterator find(const Key& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> iterator find(const K& key) { return m_ht.find(key); } /** * @copydoc find(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> iterator find(const K& key, std::size_t precalculated_hash) { return m_ht.find(key, precalculated_hash); } /** * @copydoc find(const K& key) */ template::value>::type* = nullptr> const_iterator find(const K& key) const { return m_ht.find(key); } /** * @copydoc find(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> const_iterator find(const K& key, std::size_t precalculated_hash) const { return m_ht.find(key, precalculated_hash); } bool contains(const Key& key) const { return m_ht.contains(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ bool contains(const Key& key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> bool contains(const K& key) const { return m_ht.contains(key); } /** * @copydoc contains(const K& key) const * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> bool contains(const K& key, std::size_t precalculated_hash) const { return m_ht.contains(key, precalculated_hash); } std::pair equal_range(const Key& key) { return m_ht.equal_range(key); } /** * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ std::pair equal_range(const Key& key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } std::pair equal_range(const Key& key) const { return m_ht.equal_range(key); } /** * @copydoc equal_range(const Key& key, std::size_t precalculated_hash) */ std::pair equal_range(const Key& key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /** * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> std::pair equal_range(const K& key) { return m_ht.equal_range(key); } /** * @copydoc equal_range(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> std::pair equal_range(const K& key, std::size_t precalculated_hash) { return m_ht.equal_range(key, precalculated_hash); } /** * @copydoc equal_range(const K& key) */ template::value>::type* = nullptr> std::pair equal_range(const K& key) const { return m_ht.equal_range(key); } /** * @copydoc equal_range(const K& key, std::size_t precalculated_hash) */ template::value>::type* = nullptr> std::pair equal_range(const K& key, std::size_t precalculated_hash) const { return m_ht.equal_range(key, precalculated_hash); } /* * Bucket interface */ size_type bucket_count() const { return m_ht.bucket_count(); } size_type max_bucket_count() const { return m_ht.max_bucket_count(); } /* * Hash policy */ float load_factor() const { return m_ht.load_factor(); } float max_load_factor() const { return m_ht.max_load_factor(); } void max_load_factor(float ml) { m_ht.max_load_factor(ml); } void rehash(size_type count) { m_ht.rehash(count); } void reserve(size_type count) { m_ht.reserve(count); } /* * Observers */ hasher hash_function() const { return m_ht.hash_function(); } key_equal key_eq() const { return m_ht.key_eq(); } /* * Other */ /** * Convert a const_iterator to an iterator. */ iterator mutable_iterator(const_iterator pos) { return m_ht.mutable_iterator(pos); } /** * Requires index <= size(). * * Return an iterator to the element at index. Return end() if index == size(). */ iterator nth(size_type index) { return m_ht.nth(index); } /** * @copydoc nth(size_type index) */ const_iterator nth(size_type index) const { return m_ht.nth(index); } /** * Return const_reference to the first element. Requires the container to not be empty. */ const_reference front() const { return m_ht.front(); } /** * Return const_reference to the last element. Requires the container to not be empty. */ const_reference back() const { return m_ht.back(); } /** * Only available if ValueTypeContainer is a std::vector. Same as calling 'values_container().data()'. */ template::value>::type* = nullptr> const typename values_container_type::value_type* data() const noexcept { return m_ht.data(); } /** * Return the container in which the values are stored. The values are in the same order as the insertion order * and are contiguous in the structure, no holes (size() == values_container().size()). */ const values_container_type& values_container() const noexcept { return m_ht.values_container(); } template::value>::type* = nullptr> size_type capacity() const noexcept { return m_ht.capacity(); } void shrink_to_fit() { m_ht.shrink_to_fit(); } /** * Insert the value before pos shifting all the elements on the right of pos (including pos) one position * to the right. * * Amortized linear time-complexity in the distance between pos and end(). */ std::pair insert_at_position(const_iterator pos, const value_type& value) { return m_ht.insert_at_position(pos, value); } /** * @copydoc insert_at_position(const_iterator pos, const value_type& value) */ std::pair insert_at_position(const_iterator pos, value_type&& value) { return m_ht.insert_at_position(pos, std::move(value)); } /** * @copydoc insert_at_position(const_iterator pos, const value_type& value) * * Same as insert_at_position(pos, value_type(std::forward(args)...), mainly * here for coherence. */ template std::pair emplace_at_position(const_iterator pos, Args&&... args) { return m_ht.emplace_at_position(pos, std::forward(args)...); } /** * @copydoc insert_at_position(const_iterator pos, const value_type& value) */ template std::pair try_emplace_at_position(const_iterator pos, const key_type& k, Args&&... args) { return m_ht.try_emplace_at_position(pos, k, std::forward(args)...); } /** * @copydoc insert_at_position(const_iterator pos, const value_type& value) */ template std::pair try_emplace_at_position(const_iterator pos, key_type&& k, Args&&... args) { return m_ht.try_emplace_at_position(pos, std::move(k), std::forward(args)...); } void pop_back() { m_ht.pop_back(); } /** * Faster erase operation with an O(1) average complexity but it doesn't preserve the insertion order. * * If an erasure occurs, the last element of the map will take the place of the erased element. */ iterator unordered_erase(iterator pos) { return m_ht.unordered_erase(pos); } /** * @copydoc unordered_erase(iterator pos) */ iterator unordered_erase(const_iterator pos) { return m_ht.unordered_erase(pos); } /** * @copydoc unordered_erase(iterator pos) */ size_type unordered_erase(const key_type& key) { return m_ht.unordered_erase(key); } /** * @copydoc unordered_erase(iterator pos) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ size_type unordered_erase(const key_type& key, std::size_t precalculated_hash) { return m_ht.unordered_erase(key, precalculated_hash); } /** * @copydoc unordered_erase(iterator pos) * * This overload only participates in the overload resolution if the typedef KeyEqual::is_transparent exists. * If so, K must be hashable and comparable to Key. */ template::value>::type* = nullptr> size_type unordered_erase(const K& key) { return m_ht.unordered_erase(key); } /** * @copydoc unordered_erase(const K& key) * * Use the hash value 'precalculated_hash' instead of hashing the key. The hash value should be the same * as hash_function()(key). Useful to speed-up the lookup if you already have the hash. */ template::value>::type* = nullptr> size_type unordered_erase(const K& key, std::size_t precalculated_hash) { return m_ht.unordered_erase(key, precalculated_hash); } /** * Serialize the map through the `serializer` parameter. * * The `serializer` parameter must be a function object that supports the following call: * - `template void operator()(const U& value);` where the types `std::uint64_t`, `float` and `std::pair` must be supported for U. * * The implementation leaves binary compatibility (endianness, IEEE 754 for floats, ...) of the types it serializes * in the hands of the `Serializer` function object if compatibility is required. */ template void serialize(Serializer& serializer) const { m_ht.serialize(serializer); } /** * Deserialize a previously serialized map through the `deserializer` parameter. * * The `deserializer` parameter must be a function object that supports the following calls: * - `template U operator()();` where the types `std::uint64_t`, `float` and `std::pair` must be supported for U. * * If the deserialized hash map type is hash compatible with the serialized map, the deserialization process can be * sped up by setting `hash_compatible` to true. To be hash compatible, the Hash and KeyEqual must behave the same way * than the ones used on the serialized map. The `std::size_t` must also be of the same size as the one on the platform used * to serialize the map, the same apply for `IndexType`. If these criteria are not met, the behaviour is undefined with * `hash_compatible` sets to true. * * The behaviour is undefined if the type `Key` and `T` of the `ordered_map` are not the same as the * types used during serialization. * * The implementation leaves binary compatibility (endianness, IEEE 754 for floats, size of int, ...) of the types it * deserializes in the hands of the `Deserializer` function object if compatibility is required. */ template static ordered_map deserialize(Deserializer& deserializer, bool hash_compatible = false) { ordered_map map(0); map.m_ht.deserialize(deserializer, hash_compatible); return map; } friend bool operator==(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht == rhs.m_ht; } friend bool operator!=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht != rhs.m_ht; } friend bool operator<(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht < rhs.m_ht; } friend bool operator<=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht <= rhs.m_ht; } friend bool operator>(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht > rhs.m_ht; } friend bool operator>=(const ordered_map& lhs, const ordered_map& rhs) { return lhs.m_ht >= rhs.m_ht; } friend void swap(ordered_map& lhs, ordered_map& rhs) { lhs.swap(rhs); } private: ht m_ht; }; } // end namespace tsl #endif