You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
vmemu/src/vmemu_t.cpp

640 lines
25 KiB

#include "vmemu_t.hpp"
namespace vm
{
emu_t::emu_t( vm::ctx_t *vm_ctx )
: g_vm_ctx( vm_ctx ), uc_ctx( nullptr ), img_base( vm_ctx->image_base ), img_size( vm_ctx->image_size )
{
}
emu_t::~emu_t()
{
if ( uc_ctx )
uc_close( uc_ctx );
}
bool emu_t::init()
{
uc_err err;
if ( ( err = uc_open( UC_ARCH_X86, UC_MODE_64, &uc_ctx ) ) )
{
std::printf( "> uc_open err = %d\n", err );
return false;
}
if ( ( err = uc_mem_map( uc_ctx, STACK_BASE, STACK_SIZE, UC_PROT_ALL ) ) )
{
std::printf( "> uc_mem_map stack err, reason = %d\n", err );
return false;
}
if ( ( err = uc_mem_map( uc_ctx, g_vm_ctx->module_base, img_size, UC_PROT_ALL ) ) )
{
std::printf( "> map memory failed, reason = %d\n", err );
return false;
}
if ( ( err = uc_mem_write( uc_ctx, g_vm_ctx->module_base, reinterpret_cast< void * >( g_vm_ctx->module_base ),
img_size ) ) )
{
std::printf( "> failed to write memory... reason = %d\n", err );
return false;
}
if ( ( err = uc_hook_add( uc_ctx, &code_exec_hook, UC_HOOK_CODE, &vm::emu_t::code_exec_callback, this,
g_vm_ctx->module_base, g_vm_ctx->module_base + img_size ) ) )
{
std::printf( "> uc_hook_add error, reason = %d\n", err );
return false;
}
if ( ( err = uc_hook_add( uc_ctx, &invalid_mem_hook,
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_FETCH_UNMAPPED |
UC_HOOK_INSN_INVALID,
&vm::emu_t::invalid_mem, this, true, false ) ) )
{
std::printf( "> uc_hook_add error, reason = %d\n", err );
return false;
}
return true;
}
bool emu_t::get_trace( std::vector< vm::instrs::code_block_t > &entries )
{
uc_err err;
std::uintptr_t rip = g_vm_ctx->vm_entry_rva + g_vm_ctx->module_base, rsp = STACK_BASE + STACK_SIZE - PAGE_4KB;
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RSP, &rsp ) ) )
{
std::printf( "> uc_reg_write error, reason = %d\n", err );
return false;
}
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RIP, &rip ) ) )
{
std::printf( "> uc_reg_write error, reason = %d\n", err );
return false;
}
// trace the first block given the vm enter...
code_block_data_t code_block{ {}, nullptr, nullptr };
cc_block = &code_block;
std::printf( "> beginning execution at = 0x%p\n", rip );
if ( ( err = uc_emu_start( uc_ctx, rip, 0ull, 0ull, 0ull ) ) )
{
std::printf( "> error starting emu... reason = %d\n", err );
return false;
}
if ( !cc_block )
return false;
code_blocks.push_back( code_block );
// code_blocks.size() will continue to grow as all branches are traced...
// when idx is > code_blocks.size() then we have traced all branches...
for ( auto idx = 0u; idx < code_blocks.size(); ++idx )
{
const auto _code_block = code_blocks[ idx ];
if ( !_code_block.code_block.jcc.has_jcc )
continue;
switch ( _code_block.code_block.jcc.type )
{
case vm::instrs::jcc_type::branching:
{
if ( std::find( vip_begins.begin(), vip_begins.end(), _code_block.code_block.jcc.block_addr[ 1 ] ) !=
vip_begins.end() )
continue;
std::uintptr_t rbp = 0ull;
std::uint32_t branch_rva =
( _code_block.code_block.jcc.block_addr[ 1 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
// setup object globals so that the tracing will work...
code_block_data_t branch_block{ {}, nullptr, nullptr };
cc_block = &branch_block;
g_vm_ctx = _code_block.g_vm_ctx.get();
// restore register values...
if ( ( err = uc_context_restore( uc_ctx, _code_block.cpu_ctx->context ) ) )
{
std::printf( "> failed to restore emu context... reason = %d\n", err );
return false;
}
// restore stack values...
if ( ( err = uc_mem_write( uc_ctx, STACK_BASE, _code_block.cpu_ctx->stack, STACK_SIZE ) ) )
{
std::printf( "> failed to restore stack... reason = %d\n", err );
return false;
}
// get the address in rbp (top of vsp)... then patch the branch rva...
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RBP, &rbp ) ) )
{
std::printf( "> failed to read rbp... reason = %d\n", err );
return false;
}
// patch the branch rva...
if ( ( err = uc_mem_write( uc_ctx, rbp, &branch_rva, sizeof branch_rva ) ) )
{
std::printf( "> failed to patch branch rva... reason = %d\n", err );
return false;
}
std::printf( "> beginning execution at = 0x%p\n", _code_block.cpu_ctx->rip );
if ( ( err = uc_emu_start( uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull, 0ull ) ) )
{
std::printf( "> error starting emu... reason = %d\n", err );
return false;
}
if ( !cc_block )
return false;
// push back new block that has been traced...
code_blocks.push_back( branch_block );
// drop down and execute the absolute case as well since that
// will trace the first branch...
}
case vm::instrs::jcc_type::absolute:
{
if ( std::find( vip_begins.begin(), vip_begins.end(), _code_block.code_block.jcc.block_addr[ 0 ] ) !=
vip_begins.end() )
continue;
std::uintptr_t rbp = 0ull;
std::uint32_t branch_rva =
( _code_block.code_block.jcc.block_addr[ 0 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
// setup object globals so that the tracing will work...
code_block_data_t branch_block{ {}, nullptr, nullptr };
cc_block = &branch_block;
g_vm_ctx = _code_block.g_vm_ctx.get();
// restore register values...
if ( ( err = uc_context_restore( uc_ctx, _code_block.cpu_ctx->context ) ) )
{
std::printf( "> failed to restore emu context... reason = %d\n", err );
return false;
}
// restore stack values...
if ( ( err = uc_mem_write( uc_ctx, STACK_BASE, _code_block.cpu_ctx->stack, STACK_SIZE ) ) )
{
std::printf( "> failed to restore stack... reason = %d\n", err );
return false;
}
// get the address in rbp (top of vsp)... then patch the branch rva...
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RBP, &rbp ) ) )
{
std::printf( "> failed to read rbp... reason = %d\n", err );
return false;
}
// patch the branch rva...
if ( ( err = uc_mem_write( uc_ctx, rbp, &branch_rva, sizeof branch_rva ) ) )
{
std::printf( "> failed to patch branch rva... reason = %d\n", err );
return false;
}
std::printf( "> beginning execution at = 0x%p\n", _code_block.cpu_ctx->rip );
if ( ( err = uc_emu_start( uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull, 0ull ) ) )
{
std::printf( "> error starting emu... reason = %d\n", err );
return false;
}
if ( !cc_block )
return false;
// push back new block that has been traced...
code_blocks.push_back( branch_block );
break;
}
case vm::instrs::jcc_type::switch_case:
{
for ( auto _idx = 0u; _idx < _code_block.code_block.jcc.block_addr.size(); ++_idx )
{
if ( std::find( vip_begins.begin(), vip_begins.end(),
_code_block.code_block.jcc.block_addr[ _idx ] ) != vip_begins.end() )
continue;
std::uintptr_t rbp = 0ull;
std::uint32_t branch_rva =
( _code_block.code_block.jcc.block_addr[ _idx ] - g_vm_ctx->module_base ) +
g_vm_ctx->image_base;
// setup object globals so that the tracing will work...
code_block_data_t branch_block{ {}, nullptr, nullptr };
cc_block = &branch_block;
g_vm_ctx = _code_block.g_vm_ctx.get();
// restore register values...
if ( ( err = uc_context_restore( uc_ctx, _code_block.cpu_ctx->context ) ) )
{
std::printf( "> failed to restore emu context... reason = %d\n", err );
return false;
}
// restore stack values...
if ( ( err = uc_mem_write( uc_ctx, STACK_BASE, _code_block.cpu_ctx->stack, STACK_SIZE ) ) )
{
std::printf( "> failed to restore stack... reason = %d\n", err );
return false;
}
// get the address in rbp (top of vsp)... then patch the branch rva...
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RBP, &rbp ) ) )
{
std::printf( "> failed to read rbp... reason = %d\n", err );
return false;
}
// patch the branch rva...
if ( ( err = uc_mem_write( uc_ctx, rbp, &branch_rva, sizeof branch_rva ) ) )
{
std::printf( "> failed to patch branch rva... reason = %d\n", err );
return false;
}
std::printf( "> beginning execution at = 0x%p\n", _code_block.cpu_ctx->rip );
if ( ( err = uc_emu_start( uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull, 0ull ) ) )
{
std::printf( "> error starting emu... reason = %d\n", err );
return false;
}
if ( !cc_block )
return false;
// push back new block that has been traced...
code_blocks.push_back( branch_block );
}
break;
}
}
}
for ( auto &[ code_block, cpu_ctx, vm_ctx ] : code_blocks )
{
// convert linear virtual addresses to image based addresses...
code_block.vip_begin = ( code_block.vip_begin - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
if ( code_block.jcc.has_jcc )
{
switch ( code_block.jcc.type )
{
case vm::instrs::jcc_type::branching:
{
code_block.jcc.block_addr[ 1 ] =
( code_block.jcc.block_addr[ 1 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
}
case vm::instrs::jcc_type::absolute:
{
code_block.jcc.block_addr[ 0 ] =
( code_block.jcc.block_addr[ 0 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
break;
}
case vm::instrs::jcc_type::switch_case:
{
for ( auto idx = 0u; idx < code_block.jcc.block_addr.size(); ++idx )
code_block.jcc.block_addr[ idx ] =
( code_block.jcc.block_addr[ idx ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
break;
}
}
}
entries.push_back( code_block );
}
return true;
}
uc_err emu_t::create_entry( vmp2::v2::entry_t *entry )
{
uc_reg_read( uc_ctx, UC_X86_REG_R15, &entry->regs.r15 );
uc_reg_read( uc_ctx, UC_X86_REG_R14, &entry->regs.r14 );
uc_reg_read( uc_ctx, UC_X86_REG_R13, &entry->regs.r13 );
uc_reg_read( uc_ctx, UC_X86_REG_R12, &entry->regs.r12 );
uc_reg_read( uc_ctx, UC_X86_REG_R11, &entry->regs.r11 );
uc_reg_read( uc_ctx, UC_X86_REG_R10, &entry->regs.r10 );
uc_reg_read( uc_ctx, UC_X86_REG_R9, &entry->regs.r9 );
uc_reg_read( uc_ctx, UC_X86_REG_R8, &entry->regs.r8 );
uc_reg_read( uc_ctx, UC_X86_REG_RBP, &entry->regs.rbp );
uc_reg_read( uc_ctx, UC_X86_REG_RDI, &entry->regs.rdi );
uc_reg_read( uc_ctx, UC_X86_REG_RSI, &entry->regs.rsi );
uc_reg_read( uc_ctx, UC_X86_REG_RDX, &entry->regs.rdx );
uc_reg_read( uc_ctx, UC_X86_REG_RCX, &entry->regs.rcx );
uc_reg_read( uc_ctx, UC_X86_REG_RBX, &entry->regs.rbx );
uc_reg_read( uc_ctx, UC_X86_REG_RAX, &entry->regs.rax );
uc_reg_read( uc_ctx, UC_X86_REG_EFLAGS, &entry->regs.rflags );
entry->vip = entry->regs.rsi;
entry->handler_idx = entry->regs.rax;
entry->decrypt_key = entry->regs.rbx;
uc_err err;
if ( ( err = uc_mem_read( uc_ctx, entry->regs.rdi, entry->vregs.raw, sizeof entry->vregs.raw ) ) )
return err;
// copy virtual stack values...
for ( auto idx = 0u; idx < sizeof( entry->vsp ) / 8; ++idx )
if ( ( err = uc_mem_read( uc_ctx, entry->regs.rbp + ( idx * 8 ), &entry->vsp.qword[ idx ],
sizeof entry->vsp.qword[ idx ] ) ) )
return err;
return UC_ERR_OK;
}
bool emu_t::code_exec_callback( uc_engine *uc, uint64_t address, uint32_t size, emu_t *obj )
{
uc_err err;
vmp2::v2::entry_t vinstr_entry;
std::uint8_t vm_handler_table_idx = 0u;
std::uintptr_t vm_handler_addr;
static std::shared_ptr< vm::ctx_t > _jmp_ctx;
static zydis_routine_t _jmp_stream;
static ZydisDecoder decoder;
static ZydisFormatter formatter;
static ZydisDecodedInstruction instr;
if ( static std::atomic< bool > once{ false }; !once.exchange( true ) )
{
ZydisDecoderInit( &decoder, ZYDIS_MACHINE_MODE_LONG_64, ZYDIS_ADDRESS_WIDTH_64 );
ZydisFormatterInit( &formatter, ZYDIS_FORMATTER_STYLE_INTEL );
}
if ( !ZYAN_SUCCESS(
ZydisDecoderDecodeBuffer( &decoder, reinterpret_cast< void * >( address ), PAGE_4KB, &instr ) ) )
{
std::printf( "> failed to decode instruction at = 0x%p\n", address );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
if ( instr.mnemonic == ZYDIS_MNEMONIC_INVALID )
{
obj->cc_block = nullptr;
uc_emu_stop( uc );
return false;
}
// if the native instruction is a jmp rcx/rdx... then AL will contain the vm handler
// table index of the vm handler that the emulator is about to jmp too...
if ( !( instr.mnemonic == ZYDIS_MNEMONIC_JMP && instr.operands[ 0 ].type == ZYDIS_OPERAND_TYPE_REGISTER &&
( instr.operands[ 0 ].reg.value == ZYDIS_REGISTER_RCX ||
instr.operands[ 0 ].reg.value == ZYDIS_REGISTER_RDX ) ) )
return true;
// extract address of vm handler table...
switch ( instr.operands[ 0 ].reg.value )
{
case ZYDIS_REGISTER_RCX:
if ( ( err = uc_reg_read( uc, UC_X86_REG_RCX, &vm_handler_addr ) ) )
{
std::printf( "> failed to read rcx... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
break;
case ZYDIS_REGISTER_RDX:
if ( ( err = uc_reg_read( uc, UC_X86_REG_RDX, &vm_handler_addr ) ) )
{
std::printf( "> failed to read rdx... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
break;
}
if ( ( err = uc_reg_read( obj->uc_ctx, UC_X86_REG_AL, &vm_handler_table_idx ) ) )
{
std::printf( "> failed to read register... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
auto &vm_handler = obj->g_vm_ctx->vm_handlers[ vm_handler_table_idx ];
if ( ( err = obj->create_entry( &vinstr_entry ) ) )
{
std::printf( "> failed to create vinstr entry... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
// quick check to ensure sanity... things can get crazy so this is good to check...
if ( vm_handler.address != vm_handler_addr ||
vinstr_entry.vip >= obj->g_vm_ctx->module_base + obj->g_vm_ctx->image_size ||
vinstr_entry.vip < obj->g_vm_ctx->module_base )
{
std::printf( "> vm handler index (%d) does not match vm handler address (%p)...\n", vm_handler_table_idx,
vm_handler_addr );
obj->cc_block = nullptr;
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
if ( !vm_handler.profile )
{
obj->cc_block = nullptr;
std::printf( "> virtual machine handler (0x%p): \n\n",
( vm_handler_addr - obj->g_vm_ctx->module_base ) + obj->g_vm_ctx->image_base );
vm::util::print( vm_handler.instrs );
std::printf( "\n\n" );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
auto vinstr = vm::instrs::get( *obj->g_vm_ctx, vinstr_entry );
if ( !vinstr.has_value() )
{
std::printf( "> failed to decode virtual instruction...\n" );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
// log this virtual blocks vip_begin...
if ( obj->cc_block->code_block.vinstrs.empty() )
{
obj->cc_block->code_block.vip_begin =
obj->g_vm_ctx->exec_type == vmp2::exec_type_t::forward ? vinstr_entry.vip - 1 : vinstr_entry.vip + 1;
obj->vip_begins.push_back( obj->cc_block->code_block.vip_begin );
}
vinstr.value().trace_data.vm_handler_rva = ( vm_handler_addr - obj->g_vm_ctx->module_base );
obj->cc_block->code_block.vinstrs.push_back( vinstr.value() );
if ( vm_handler.profile )
{
switch ( vm_handler.profile->mnemonic )
{
case vm::handler::VMEXIT:
{
obj->cc_block->code_block.jcc.has_jcc = false;
obj->cc_block->code_block.jcc.type = vm::instrs::jcc_type::none;
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
break;
}
case vm::handler::JMP:
{
// get jcc data about the virtual instruction code block that was just emulated...
auto jcc_data = vm::instrs::get_jcc_data( *obj->g_vm_ctx, obj->cc_block->code_block );
obj->cc_block->code_block.jcc = jcc_data.value();
// allocate space for the cpu context and stack...
auto new_cpu_ctx = std::make_shared< vm::emu_t::cpu_ctx_t >();
// optimize so that we dont need to create a new vm::ctx_t every single virtual JMP...
if ( obj->vm_ctxs.find( vm_handler_addr ) == obj->vm_ctxs.end() )
{
obj->vm_ctxs[ vm_handler_addr ] =
std::make_shared< vm::ctx_t >( obj->g_vm_ctx->module_base, obj->img_base, obj->img_size,
vm_handler_addr - obj->g_vm_ctx->module_base );
if ( !obj->vm_ctxs[ vm_handler_addr ]->init() )
{
std::printf( "> failed to init vm::ctx_t for virtual jmp... vip = 0x%p, jmp handler = 0x%p\n",
vinstr_entry.vip, vm_handler_addr );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
}
_jmp_ctx = obj->vm_ctxs[ vm_handler_addr ];
if ( ( err = uc_context_alloc( uc, &new_cpu_ctx->context ) ) )
{
std::printf( "> failed to allocate a unicorn context... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
// save the cpu's registers...
new_cpu_ctx->rip = vm_handler_addr;
if ( ( err = uc_context_save( uc, new_cpu_ctx->context ) ) )
{
std::printf( "> failed to save emulator context... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
// save the entire stack...
if ( ( err = uc_mem_read( uc, STACK_BASE, new_cpu_ctx->stack, STACK_SIZE ) ) )
{
std::printf( "> failed to read stack... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
return false;
}
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
exit( 0 );
}
obj->cc_block->cpu_ctx = new_cpu_ctx;
obj->cc_block->g_vm_ctx = _jmp_ctx;
break;
}
default:
break;
}
}
return true;
}
void emu_t::invalid_mem( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value, emu_t *obj )
{
switch ( type )
{
case UC_MEM_READ_UNMAPPED:
{
uc_mem_map( uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL );
std::printf( ">>> reading invalid memory at address = 0x%p, size = 0x%x\n", address, size );
break;
}
case UC_MEM_WRITE_UNMAPPED:
{
uc_mem_map( uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL );
std::printf( ">>> writing invalid memory at address = 0x%p, size = 0x%x, val = 0x%x\n", address, size,
value );
break;
}
case UC_MEM_FETCH_UNMAPPED:
{
std::printf( ">>> fetching invalid instructions at address = 0x%p\n", address );
break;
}
default:
break;
}
}
} // namespace vm