#include #include #include #include #include "vmtracer.hpp" #include "vmp2.hpp" #define NT_HEADER(x) \ reinterpret_cast( \ reinterpret_cast(x)->e_lfanew + x) inline std::vector traces; inline vmp2::file_header trace_header; int __cdecl main(int argc, char** argv) { /* the vm_handlers are encrypted/encoded with a basic math operation... typically a NOT, XOR, NEG, etc... You can determine what type of encryption your binary is using by first finding where the LEA r12, vm_handlers is located, then follow the usage of r12 until you see MOV GP, [r12 + rax * 8], then follow the usage of the GP... For example: .vmp1:00000001401D1015 lea r12, vm_handlers .vmp1:00000001401D0C0A mov rdx, [r12+rax*8] .vmp1:00000001401D0C10 ror rdx, 25h Note: R12 and RAX always seem to be used for this vm handler index... You could signature scan for LEA r12, ? ? ? ? and find the vm handler table really easily by manually inspecting each result... */ vm::decrypt_handler_t _decrypt_handler = [](u64 val) -> u64 { return val ^ 0x7F3D2149; }; vm::encrypt_handler_t _encrypt_handler = [](u64 val) -> u64 { return val ^ 0x7F3D2149; }; vm::handler::edit_entry_t _edit_entry = [](u64* entry_ptr, u64 val) -> void { DWORD old_prot; VirtualProtect(entry_ptr, sizeof val, PAGE_EXECUTE_READWRITE, &old_prot); *entry_ptr = val; VirtualProtect(entry_ptr, sizeof val, old_prot, &old_prot); }; const auto handler_table_rva = std::strtoull(argv[3], nullptr, 16); const auto image_base = std::strtoull(argv[2], nullptr, 16); const auto module_base = reinterpret_cast( LoadLibraryExA(argv[1], NULL, DONT_RESOLVE_DLL_REFERENCES)); const auto handler_table_ptr = reinterpret_cast( module_base + handler_table_rva); /* the VM handler table is an array of 256 QWORD's... each encrypted differently per-binary... each one of these is an encrypted RVA to a virtual instruction... .vmp1:00000001401D25D3 vm_handlers dq 3A28FA000000028h, 3A40E4000000028h, 3A2F5C000000028h .vmp1:00000001401D25D3 dq 3A1096000000028h, 3A3DBC000000028h, 3A1DDA000000028h .vmp1:00000001401D25D3 dq 3A6032000000028h, 2 dup(3A40E4000000028h), 3A2B5A000000028h .vmp1:00000001401D25D3 dq 3A4004000000028h, 3A2810000000028h, 3A446A000000028h .vmp1:00000001401D25D3 dq 3A39B6000000028h, 3A6728000000028h, 3A6032000000028h .vmp1:00000001401D25D3 dq 3A34F0000000028h, 3A46F2000000028h, 3A0170000000028h .vmp1:00000001401D25D3 dq 3A0952000000028h, 3A4004000000028h, 3A494E000000028h .vmp1:00000001401D25D3 dq 3A35C2000000028h, 3A4A1E000000028h, 3A37D8000000028h .vmp1:00000001401D25D3 dq 3A1482000000028h, 3A6492000000028h, 3A2948000000028h .vmp1:00000001401D25D3 dq 3A2D1C000000028h, 2 dup(3A6ABE000000028h), 3A068A000000028h .vmp1:00000001401D25D3 dq 3A3F52000000028h, 3A118E000000028h, 3A27BE000000028h // .... many more ... */ vm::handler::table_t handler_table(handler_table_ptr, _edit_entry); // set all vm handler callbacks to just // print the rolling decrypt key and handler idx... for (auto idx = 0u; idx < 256; ++idx) { handler_table.set_callback(idx, [](vm::registers* regs, u8 handler_idx) -> void { vmp2::entry_t entry; entry.decrypt_key = regs->rbx; entry.handler_idx = handler_idx; entry.vip = regs->rsi; entry.regs = *reinterpret_cast(®s->r15); entry.vregs = *reinterpret_cast(regs->rdi); // stack grows down... so we gotta load the values in reverse... for (auto idx = 0u; idx < sizeof(entry.vsp) / 8; ++idx) entry.vsp.qword[idx] = *(reinterpret_cast(regs->rbp) - idx); traces.push_back(entry); std::printf("> TID = %d, handler idx = %d, decryption key = 0x%p\n", GetCurrentThreadId(), handler_idx, regs->rbx); } ); } vm::tracer_t tracer( module_base, image_base, _decrypt_handler, _encrypt_handler, &handler_table ); std::ofstream vmp2_file("output.vmp2", std::ios::binary); memcpy(&trace_header.magic, "VMP2!", sizeof "VMP2!" - 1); trace_header.epoch_time = time(nullptr); trace_header.entry_offset = sizeof trace_header; trace_header.advancement = vmp2::exec_type_t::forward; trace_header.version = vmp2::version_t::v1; trace_header.module_base = module_base; // patch vm handler table... tracer.start(); // call entry point... reinterpret_cast( NT_HEADER(module_base)->OptionalHeader.AddressOfEntryPoint + module_base)(); // unpatch vm handler table... tracer.stop(); // write vmp2 file to disk... trace_header.entry_count = traces.size(); vmp2_file.write((char*)&trace_header, sizeof trace_header); for (auto& trace : traces) vmp2_file.write((char*)&trace, sizeof trace); vmp2_file.close(); std::printf("> finished vm trace...\n"); std::getchar(); }