You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

648 lines
24 KiB

//===- HexagonMCInstrInfo.cpp - Hexagon sub-class of MCInst ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This class extends MCInstrInfo to allow Hexagon specific MCInstr queries
//
//===----------------------------------------------------------------------===//
#include "HexagonMCInstrInfo.h"
#include "Hexagon.h"
#include "HexagonBaseInfo.h"
#include "HexagonMCChecker.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
namespace llvm_ks {
void HexagonMCInstrInfo::addConstant(MCInst &MI, uint64_t Value,
MCContext &Context) {
MI.addOperand(MCOperand::createExpr(MCConstantExpr::create(Value, Context)));
}
void HexagonMCInstrInfo::addConstExtender(MCContext &Context,
MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI) {
assert(HexagonMCInstrInfo::isBundle(MCB));
MCOperand const &exOp =
MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
// Create the extender.
MCInst *XMCI =
new (Context) MCInst(HexagonMCInstrInfo::deriveExtender(MCII, MCI, exOp));
MCB.addOperand(MCOperand::createInst(XMCI));
}
iterator_range<MCInst::const_iterator>
HexagonMCInstrInfo::bundleInstructions(MCInst const &MCI) {
assert(isBundle(MCI));
return make_range(MCI.begin() + bundleInstructionsOffset, MCI.end());
}
size_t HexagonMCInstrInfo::bundleSize(MCInst const &MCI) {
if (HexagonMCInstrInfo::isBundle(MCI))
return (MCI.size() - bundleInstructionsOffset);
else
return (1);
}
bool HexagonMCInstrInfo::canonicalizePacket(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCContext &Context, MCInst &MCB,
HexagonMCChecker *Check) {
// Examine the packet and convert pairs of instructions to compound
// instructions when possible.
if (!HexagonDisableCompound)
HexagonMCInstrInfo::tryCompound(MCII, Context, MCB);
// Check the bundle for errors.
bool CheckOk = Check ? Check->check() : true;
if (!CheckOk)
return false;
HexagonMCShuffle(MCII, STI, MCB);
// Examine the packet and convert pairs of instructions to duplex
// instructions when possible.
MCInst InstBundlePreDuplex = MCInst(MCB);
if (!HexagonDisableDuplex) {
SmallVector<DuplexCandidate, 8> possibleDuplexes;
possibleDuplexes = HexagonMCInstrInfo::getDuplexPossibilties(MCII, MCB);
HexagonMCShuffle(MCII, STI, Context, MCB, possibleDuplexes);
}
// Examines packet and pad the packet, if needed, when an
// end-loop is in the bundle.
HexagonMCInstrInfo::padEndloop(Context, MCB);
// If compounding and duplexing didn't reduce the size below
// 4 or less we have a packet that is too big.
if (HexagonMCInstrInfo::bundleSize(MCB) > HEXAGON_PACKET_SIZE)
return false;
HexagonMCShuffle(MCII, STI, MCB);
return true;
}
void HexagonMCInstrInfo::clampExtended(MCInstrInfo const &MCII,
MCContext &Context, MCInst &MCI) {
assert(HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI));
MCOperand &exOp =
MCI.getOperand(HexagonMCInstrInfo::getExtendableOp(MCII, MCI));
// If the extended value is a constant, then use it for the extended and
// for the extender instructions, masking off the lower 6 bits and
// including the assumed bits.
int64_t Value;
if (exOp.getExpr()->evaluateAsAbsolute(Value)) {
unsigned Shift = HexagonMCInstrInfo::getExtentAlignment(MCII, MCI);
exOp.setExpr(MCConstantExpr::create((Value & 0x3f) << Shift, Context));
}
}
MCInst HexagonMCInstrInfo::createBundle() {
MCInst Result;
Result.setOpcode(Hexagon::BUNDLE);
Result.addOperand(MCOperand::createImm(0));
return Result;
}
MCInst *HexagonMCInstrInfo::deriveDuplex(MCContext &Context, unsigned iClass,
MCInst const &inst0,
MCInst const &inst1) {
assert((iClass <= 0xf) && "iClass must have range of 0 to 0xf");
MCInst *duplexInst = new (Context) MCInst;
duplexInst->setOpcode(Hexagon::DuplexIClass0 + iClass);
MCInst *SubInst0 = new (Context) MCInst(deriveSubInst(inst0));
MCInst *SubInst1 = new (Context) MCInst(deriveSubInst(inst1));
duplexInst->addOperand(MCOperand::createInst(SubInst0));
duplexInst->addOperand(MCOperand::createInst(SubInst1));
return duplexInst;
}
MCInst HexagonMCInstrInfo::deriveExtender(MCInstrInfo const &MCII,
MCInst const &Inst,
MCOperand const &MO) {
assert(HexagonMCInstrInfo::isExtendable(MCII, Inst) ||
HexagonMCInstrInfo::isExtended(MCII, Inst));
MCInstrDesc const &Desc = HexagonMCInstrInfo::getDesc(MCII, Inst);
MCInst XMI;
XMI.setOpcode((Desc.isBranch() || Desc.isCall() ||
HexagonMCInstrInfo::getType(MCII, Inst) == HexagonII::TypeCR)
? Hexagon::A4_ext_b
: Hexagon::A4_ext);
if (MO.isImm())
XMI.addOperand(MCOperand::createImm(MO.getImm() & (~0x3f)));
else if (MO.isExpr())
XMI.addOperand(MCOperand::createExpr(MO.getExpr()));
else
llvm_unreachable("invalid extendable operand");
return XMI;
}
MCInst const *HexagonMCInstrInfo::extenderForIndex(MCInst const &MCB,
size_t Index) {
assert(Index <= bundleSize(MCB));
if (Index == 0)
return nullptr;
MCInst const *Inst =
MCB.getOperand(Index + bundleInstructionsOffset - 1).getInst();
if (isImmext(*Inst))
return Inst;
return nullptr;
}
void HexagonMCInstrInfo::extendIfNeeded(MCContext &Context,
MCInstrInfo const &MCII, MCInst &MCB,
MCInst const &MCI, bool MustExtend) {
if (isConstExtended(MCII, MCI) || MustExtend)
addConstExtender(Context, MCII, MCB, MCI);
}
HexagonII::MemAccessSize
HexagonMCInstrInfo::getAccessSize(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (HexagonII::MemAccessSize((F >> HexagonII::MemAccessSizePos) &
HexagonII::MemAccesSizeMask));
}
unsigned HexagonMCInstrInfo::getBitCount(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
// Return constant extended operand number.
unsigned short HexagonMCInstrInfo::getCExtOpNum(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
MCInstrDesc const &HexagonMCInstrInfo::getDesc(MCInstrInfo const &MCII,
MCInst const &MCI) {
return (MCII.get(MCI.getOpcode()));
}
unsigned short HexagonMCInstrInfo::getExtendableOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
}
MCOperand const &
HexagonMCInstrInfo::getExtendableOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getExtendableOp(MCII, MCI);
MCOperand const &MO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isExtendable(MCII, MCI) ||
HexagonMCInstrInfo::isExtended(MCII, MCI)) &&
(MO.isImm() || MO.isExpr()));
return (MO);
}
unsigned HexagonMCInstrInfo::getExtentAlignment(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentAlignPos) & HexagonII::ExtentAlignMask);
}
unsigned HexagonMCInstrInfo::getExtentBits(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask);
}
// Return the max value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMaxValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned isSigned =
(F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return ~(-1U << (bits - 1));
else
return ~(-1U << bits);
}
// Return the min value that a constant extendable operand can have
// without being extended.
int HexagonMCInstrInfo::getMinValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned isSigned =
(F >> HexagonII::ExtentSignedPos) & HexagonII::ExtentSignedMask;
unsigned bits = (F >> HexagonII::ExtentBitsPos) & HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
return -1U << (bits - 1);
else
return 0;
}
char const *HexagonMCInstrInfo::getName(MCInstrInfo const &MCII,
MCInst const &MCI) {
return MCII.getName(MCI.getOpcode());
}
unsigned short HexagonMCInstrInfo::getNewValueOp(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask);
}
MCOperand const &HexagonMCInstrInfo::getNewValueOperand(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
unsigned const O =
(F >> HexagonII::NewValueOpPos) & HexagonII::NewValueOpMask;
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
/// Return the new value or the newly produced value.
unsigned short HexagonMCInstrInfo::getNewValueOp2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValueOpPos2) & HexagonII::NewValueOpMask2);
}
MCOperand const &
HexagonMCInstrInfo::getNewValueOperand2(MCInstrInfo const &MCII,
MCInst const &MCI) {
unsigned O = HexagonMCInstrInfo::getNewValueOp2(MCII, MCI);
MCOperand const &MCO = MCI.getOperand(O);
assert((HexagonMCInstrInfo::isNewValue(MCII, MCI) ||
HexagonMCInstrInfo::hasNewValue2(MCII, MCI)) &&
MCO.isReg());
return (MCO);
}
int HexagonMCInstrInfo::getSubTarget(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
HexagonII::SubTarget Target = static_cast<HexagonII::SubTarget>(
(F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask);
switch (Target) {
default:
return Hexagon::ArchV4;
case HexagonII::HasV5SubT:
return Hexagon::ArchV5;
}
}
// Return the Hexagon ISA class for the insn.
unsigned HexagonMCInstrInfo::getType(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
}
unsigned HexagonMCInstrInfo::getUnits(MCInstrInfo const &MCII,
MCSubtargetInfo const &STI,
MCInst const &MCI) {
const InstrItinerary *II = STI.getSchedModel().InstrItineraries;
int SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
return ((II[SchedClass].FirstStage + HexagonStages)->getUnits());
}
bool HexagonMCInstrInfo::hasImmExt(MCInst const &MCI) {
if (!HexagonMCInstrInfo::isBundle(MCI))
return false;
for (const auto &I : HexagonMCInstrInfo::bundleInstructions(MCI)) {
auto MI = I.getInst();
if (isImmext(*MI))
return true;
}
return false;
}
bool HexagonMCInstrInfo::hasExtenderForIndex(MCInst const &MCB, size_t Index) {
return extenderForIndex(MCB, Index) != nullptr;
}
// Return whether the instruction is a legal new-value producer.
bool HexagonMCInstrInfo::hasNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos) & HexagonII::hasNewValueMask);
}
/// Return whether the insn produces a second value.
bool HexagonMCInstrInfo::hasNewValue2(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::hasNewValuePos2) & HexagonII::hasNewValueMask2);
}
MCInst const &HexagonMCInstrInfo::instruction(MCInst const &MCB, size_t Index) {
assert(isBundle(MCB));
assert(Index < HEXAGON_PACKET_SIZE);
return *MCB.getOperand(bundleInstructionsOffset + Index).getInst();
}
bool HexagonMCInstrInfo::isBundle(MCInst const &MCI) {
auto Result = Hexagon::BUNDLE == MCI.getOpcode();
assert(!Result || (MCI.size() > 0 && MCI.getOperand(0).isImm()));
return Result;
}
// Return whether the insn is an actual insn.
bool HexagonMCInstrInfo::isCanon(MCInstrInfo const &MCII, MCInst const &MCI) {
return (!HexagonMCInstrInfo::getDesc(MCII, MCI).isPseudo() &&
!HexagonMCInstrInfo::isPrefix(MCII, MCI) &&
HexagonMCInstrInfo::getType(MCII, MCI) != HexagonII::TypeENDLOOP);
}
bool HexagonMCInstrInfo::isCompound(MCInstrInfo const &MCII,
MCInst const &MCI) {
return (getType(MCII, MCI) == HexagonII::TypeCOMPOUND);
}
bool HexagonMCInstrInfo::isDblRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::D0 && Reg <= Hexagon::D3) ||
(Reg >= Hexagon::D8 && Reg <= Hexagon::D11));
}
bool HexagonMCInstrInfo::isDuplex(MCInstrInfo const &MCII, MCInst const &MCI) {
return HexagonII::TypeDUPLEX == HexagonMCInstrInfo::getType(MCII, MCI);
}
// Return whether the instruction needs to be constant extended.
// 1) Always return true if the instruction has 'isExtended' flag set.
//
// isExtendable:
// 2) For immediate extended operands, return true only if the value is
// out-of-range.
// 3) For global address, always return true.
bool HexagonMCInstrInfo::isConstExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::isExtended(MCII, MCI))
return true;
// Branch insns are handled as necessary by relaxation.
if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeJ) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCOMPOUND &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()) ||
(HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeNV &&
HexagonMCInstrInfo::getDesc(MCII, MCI).isBranch()))
return false;
// Otherwise loop instructions and other CR insts are handled by relaxation
else if ((HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR) &&
(MCI.getOpcode() != Hexagon::C4_addipc))
return false;
else if (!HexagonMCInstrInfo::isExtendable(MCII, MCI))
return false;
MCOperand const &MO = HexagonMCInstrInfo::getExtendableOperand(MCII, MCI);
// We could be using an instruction with an extendable immediate and shoehorn
// a global address into it. If it is a global address it will be constant
// extended. We do this for COMBINE.
// We currently only handle isGlobal() because it is the only kind of
// object we are going to end up with here for now.
// In the future we probably should add isSymbol(), etc.
assert(!MO.isImm());
int64_t Value;
if (!MO.getExpr()->evaluateAsAbsolute(Value))
return true;
int MinValue = HexagonMCInstrInfo::getMinValue(MCII, MCI);
int MaxValue = HexagonMCInstrInfo::getMaxValue(MCII, MCI);
return (MinValue > Value || Value > MaxValue);
}
bool HexagonMCInstrInfo::isExtendable(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
}
bool HexagonMCInstrInfo::isExtended(MCInstrInfo const &MCII,
MCInst const &MCI) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
}
bool HexagonMCInstrInfo::isFloat(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::FPPos) & HexagonII::FPMask);
}
bool HexagonMCInstrInfo::isImmext(MCInst const &MCI) {
auto Op = MCI.getOpcode();
return (Op == Hexagon::A4_ext_b || Op == Hexagon::A4_ext_c ||
Op == Hexagon::A4_ext_g || Op == Hexagon::A4_ext);
}
bool HexagonMCInstrInfo::isInnerLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & innerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isIntReg(unsigned Reg) {
return (Reg >= Hexagon::R0 && Reg <= Hexagon::R31);
}
bool HexagonMCInstrInfo::isIntRegForSubInst(unsigned Reg) {
return ((Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
(Reg >= Hexagon::R16 && Reg <= Hexagon::R23));
}
// Return whether the insn is a new-value consumer.
bool HexagonMCInstrInfo::isNewValue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
}
// Return whether the operand can be constant extended.
bool HexagonMCInstrInfo::isOperandExtended(MCInstrInfo const &MCII,
MCInst const &MCI,
unsigned short OperandNum) {
uint64_t const F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask) ==
OperandNum;
}
bool HexagonMCInstrInfo::isOuterLoop(MCInst const &MCI) {
assert(isBundle(MCI));
int64_t Flags = MCI.getOperand(0).getImm();
return (Flags & outerLoopMask) != 0;
}
bool HexagonMCInstrInfo::isPredicated(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
}
bool HexagonMCInstrInfo::isPredicateLate(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (F >> HexagonII::PredicateLatePos & HexagonII::PredicateLateMask);
}
/// Return whether the insn is newly predicated.
bool HexagonMCInstrInfo::isPredicatedNew(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
}
bool HexagonMCInstrInfo::isPredicatedTrue(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return (
!((F >> HexagonII::PredicatedFalsePos) & HexagonII::PredicatedFalseMask));
}
bool HexagonMCInstrInfo::isPredReg(unsigned Reg) {
return (Reg >= Hexagon::P0 && Reg <= Hexagon::P3_0);
}
bool HexagonMCInstrInfo::isPrefix(MCInstrInfo const &MCII, MCInst const &MCI) {
return (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypePREFIX);
}
bool HexagonMCInstrInfo::isSolo(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloPos) & HexagonII::SoloMask);
}
bool HexagonMCInstrInfo::isMemReorderDisabled(MCInst const &MCI) {
assert(isBundle(MCI));
auto Flags = MCI.getOperand(0).getImm();
return (Flags & memReorderDisabledMask) != 0;
}
bool HexagonMCInstrInfo::isMemStoreReorderEnabled(MCInst const &MCI) {
assert(isBundle(MCI));
auto Flags = MCI.getOperand(0).getImm();
return (Flags & memStoreReorderEnabledMask) != 0;
}
bool HexagonMCInstrInfo::isSoloAX(MCInstrInfo const &MCII, MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAXPos) & HexagonII::SoloAXMask);
}
bool HexagonMCInstrInfo::isSoloAin1(MCInstrInfo const &MCII,
MCInst const &MCI) {
const uint64_t F = HexagonMCInstrInfo::getDesc(MCII, MCI).TSFlags;
return ((F >> HexagonII::SoloAin1Pos) & HexagonII::SoloAin1Mask);
}
bool HexagonMCInstrInfo::isVector(MCInstrInfo const &MCII, MCInst const &MCI) {
if ((getType(MCII, MCI) <= HexagonII::TypeCVI_LAST) &&
(getType(MCII, MCI) >= HexagonII::TypeCVI_FIRST))
return true;
return false;
}
int64_t HexagonMCInstrInfo::minConstant(MCInst const &MCI, size_t Index) {
auto Sentinal = static_cast<int64_t>(std::numeric_limits<uint32_t>::max())
<< 8;
if (MCI.size() <= Index)
return Sentinal;
MCOperand const &MCO = MCI.getOperand(Index);
if (!MCO.isExpr())
return Sentinal;
int64_t Value;
if (!MCO.getExpr()->evaluateAsAbsolute(Value))
return Sentinal;
return Value;
}
void HexagonMCInstrInfo::padEndloop(MCContext &Context, MCInst &MCB) {
MCInst Nop;
Nop.setOpcode(Hexagon::A2_nop);
assert(isBundle(MCB));
while ((HexagonMCInstrInfo::isInnerLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_INNER_SIZE)) ||
((HexagonMCInstrInfo::isOuterLoop(MCB) &&
(HexagonMCInstrInfo::bundleSize(MCB) < HEXAGON_PACKET_OUTER_SIZE))))
MCB.addOperand(MCOperand::createInst(new (Context) MCInst(Nop)));
}
bool HexagonMCInstrInfo::prefersSlot3(MCInstrInfo const &MCII,
MCInst const &MCI) {
if (HexagonMCInstrInfo::getType(MCII, MCI) == HexagonII::TypeCR)
return false;
unsigned SchedClass = HexagonMCInstrInfo::getDesc(MCII, MCI).getSchedClass();
switch (SchedClass) {
case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
case Hexagon::Sched::ALU64_tc_2_SLOT23:
case Hexagon::Sched::ALU64_tc_3x_SLOT23:
case Hexagon::Sched::M_tc_2_SLOT23:
case Hexagon::Sched::M_tc_3x_SLOT23:
case Hexagon::Sched::S_2op_tc_2_SLOT23:
case Hexagon::Sched::S_3op_tc_2_SLOT23:
case Hexagon::Sched::S_3op_tc_3x_SLOT23:
return true;
}
return false;
}
void HexagonMCInstrInfo::replaceDuplex(MCContext &Context, MCInst &MCB,
DuplexCandidate Candidate) {
assert(Candidate.packetIndexI < MCB.size());
assert(Candidate.packetIndexJ < MCB.size());
assert(isBundle(MCB));
MCInst *Duplex =
deriveDuplex(Context, Candidate.iClass,
*MCB.getOperand(Candidate.packetIndexJ).getInst(),
*MCB.getOperand(Candidate.packetIndexI).getInst());
assert(Duplex != nullptr);
MCB.getOperand(Candidate.packetIndexI).setInst(Duplex);
MCB.erase(MCB.begin() + Candidate.packetIndexJ);
}
void HexagonMCInstrInfo::setInnerLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | innerLoopMask);
}
void HexagonMCInstrInfo::setMemReorderDisabled(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | memReorderDisabledMask);
assert(isMemReorderDisabled(MCI));
}
void HexagonMCInstrInfo::setMemStoreReorderEnabled(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | memStoreReorderEnabledMask);
assert(isMemStoreReorderEnabled(MCI));
}
void HexagonMCInstrInfo::setOuterLoop(MCInst &MCI) {
assert(isBundle(MCI));
MCOperand &Operand = MCI.getOperand(0);
Operand.setImm(Operand.getImm() | outerLoopMask);
}
}