added clang format file and image_size

master
_xeroxz 3 years ago
parent 7c32517322
commit 99a1fc74e1

@ -0,0 +1,18 @@
---
BasedOnStyle: Microsoft
AlignAfterOpenBracket: Align
AllowAllArgumentsOnNextLine: 'true'
AllowAllParametersOfDeclarationOnNextLine: 'true'
AllowShortIfStatementsOnASingleLine: Never
BreakBeforeBraces: Allman
IndentWidth: '4'
Language: Cpp
NamespaceIndentation: All
SpacesInAngles: 'true'
SpacesInCStyleCastParentheses: 'true'
SpacesInContainerLiterals: 'true'
SpacesInParentheses: 'true'
SpacesInSquareBrackets: 'true'
UseTab: Never
...

@ -1,31 +1,31 @@
#pragma once #pragma once
#define _CRT_SECURE_NO_WARNINGS #define _CRT_SECURE_NO_WARNINGS
#pragma comment(lib, "ntdll.lib") #pragma comment( lib, "ntdll.lib" )
#include <algorithm>
#include <cstdint> #include <cstdint>
#include <string> #include <fstream>
#include <functional>
#include <map> #include <map>
#include <memory> #include <memory>
#include <algorithm> #include <string>
#include <functional>
#include <fstream>
#include <Windows.h> #include <Windows.h>
#include <tlhelp32.h> #include <ntstatus.h>
#include <psapi.h> #include <psapi.h>
#include <tlhelp32.h>
#include <winternl.h> #include <winternl.h>
#include <ntstatus.h>
#define LOG_SIG "[xtils]" #define LOG_SIG "[xtils]"
#define LOG(...) \ #define LOG( ... ) \
{ \ { \
char buff[256]; \ char buff[ 256 ]; \
snprintf(buff, sizeof buff, LOG_SIG ## __VA_ARGS__); \ snprintf( buff, sizeof buff, LOG_SIG##__VA_ARGS__ ); \
OutputDebugStringA(buff); \ OutputDebugStringA( buff ); \
} }
#define NT_HEADER(x) reinterpret_cast<PIMAGE_NT_HEADERS>( \ #define NT_HEADER( x ) \
uint64_t(x) + reinterpret_cast<PIMAGE_DOS_HEADER>(x)->e_lfanew ) reinterpret_cast< PIMAGE_NT_HEADERS >( uint64_t( x ) + reinterpret_cast< PIMAGE_DOS_HEADER >( x )->e_lfanew )
#define PAGE_4K 0x1000 #define PAGE_4K 0x1000
#define PAGE_2MB PAGE_4K * 512 #define PAGE_2MB PAGE_4K * 512
@ -42,175 +42,176 @@ typedef struct _RTL_PROCESS_MODULE_INFORMATION
USHORT InitOrderIndex; USHORT InitOrderIndex;
USHORT LoadCount; USHORT LoadCount;
USHORT OffsetToFileName; USHORT OffsetToFileName;
UCHAR FullPathName[256]; UCHAR FullPathName[ 256 ];
} RTL_PROCESS_MODULE_INFORMATION, * PRTL_PROCESS_MODULE_INFORMATION; } RTL_PROCESS_MODULE_INFORMATION, *PRTL_PROCESS_MODULE_INFORMATION;
typedef struct _RTL_PROCESS_MODULES typedef struct _RTL_PROCESS_MODULES
{ {
ULONG NumberOfModules; ULONG NumberOfModules;
RTL_PROCESS_MODULE_INFORMATION Modules[1]; RTL_PROCESS_MODULE_INFORMATION Modules[ 1 ];
} RTL_PROCESS_MODULES, * PRTL_PROCESS_MODULES; } RTL_PROCESS_MODULES, *PRTL_PROCESS_MODULES;
namespace xtils namespace xtils
{ {
using uq_handle = std::unique_ptr<void, decltype(&CloseHandle)>; using uq_handle = std::unique_ptr< void, decltype( &CloseHandle ) >;
class um_t class um_t
{ {
using module_callback_t = std::function<bool(std::wstring, std::uintptr_t)>; using module_callback_t = std::function< bool( std::wstring, std::uintptr_t ) >;
using module_map_t = std::map<std::wstring, std::uintptr_t>; using module_map_t = std::map< std::wstring, std::uintptr_t >;
public: public:
static auto get_instance() -> um_t* { static um_t obj; return &obj; } static auto get_instance() -> um_t *
{
static um_t obj;
return &obj;
}
auto image_base(const char* image_path) -> std::uintptr_t auto image_base( const char *image_path ) -> std::uintptr_t
{ {
char image_header[PAGE_4K]; char image_header[ PAGE_4K ];
std::ifstream file(image_path, std::ios::binary); std::ifstream file( image_path, std::ios::binary );
file.read(image_header, PAGE_4K); file.read( image_header, PAGE_4K );
file.close(); file.close();
return NT_HEADER(image_header)->OptionalHeader.ImageBase; return NT_HEADER( image_header )->OptionalHeader.ImageBase;
} }
auto sigscan(void* base, std::uint32_t size, const char* pattern, const char* mask) -> void* auto image_size(const char* image_path) -> std::uintptr_t
{ {
static const auto check_mask = char image_header[ PAGE_4K ];
[&](const char* base, const char* pattern, const char* mask) -> bool std::ifstream file( image_path, std::ios::binary );
file.read( image_header, PAGE_4K );
file.close();
return NT_HEADER( image_header )->OptionalHeader.SizeOfImage;
}
auto sigscan( void *base, std::uint32_t size, const char *pattern, const char *mask ) -> void *
{ {
for (; *mask; ++base, ++pattern, ++mask) static const auto check_mask = [ & ]( const char *base, const char *pattern, const char *mask ) -> bool {
if (*mask == 'x' && *base != *pattern) for ( ; *mask; ++base, ++pattern, ++mask )
if ( *mask == 'x' && *base != *pattern )
return false; return false;
return true; return true;
}; };
size -= strlen(mask); size -= strlen( mask );
for (auto i = 0; i <= size; ++i) for ( auto i = 0; i <= size; ++i )
{ {
void* addr = (void*)&(((char*)base)[i]); void *addr = ( void * )&( ( ( char * )base )[ i ] );
if (check_mask((char*)addr, pattern, mask)) if ( check_mask( ( char * )addr, pattern, mask ) )
return addr; return addr;
} }
return nullptr; return nullptr;
} }
auto get_modules(std::uint32_t pid, module_map_t& module_map) -> bool auto get_modules( std::uint32_t pid, module_map_t &module_map ) -> bool
{ {
uq_handle snapshot = { CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid), &CloseHandle }; uq_handle snapshot = { CreateToolhelp32Snapshot( TH32CS_SNAPMODULE, pid ), &CloseHandle };
if (snapshot.get() == INVALID_HANDLE_VALUE) if ( snapshot.get() == INVALID_HANDLE_VALUE )
return false; return false;
MODULEENTRY32 module_info = { sizeof MODULEENTRY32 }; MODULEENTRY32 module_info = { sizeof MODULEENTRY32 };
Module32First(snapshot.get(), &module_info); Module32First( snapshot.get(), &module_info );
// lowercase the module name... // lowercase the module name...
std::for_each(module_info.szModule, std::for_each( module_info.szModule, module_info.szModule + wcslen( module_info.szModule ) * 2,
module_info.szModule + wcslen(module_info.szModule) * 2, []( wchar_t &c ) { c = ::towlower( c ); } );
[](wchar_t& c) { c = ::towlower(c); });
module_map[module_info.szModule] = reinterpret_cast<std::uintptr_t>(module_info.modBaseAddr); module_map[ module_info.szModule ] = reinterpret_cast< std::uintptr_t >( module_info.modBaseAddr );
for (Module32First(snapshot.get(), &module_info); Module32Next(snapshot.get(), &module_info);) for ( Module32First( snapshot.get(), &module_info ); Module32Next( snapshot.get(), &module_info ); )
{ {
// lowercase the module name... // lowercase the module name...
std::for_each(module_info.szModule, std::for_each( module_info.szModule, module_info.szModule + wcslen( module_info.szModule ) * 2,
module_info.szModule + wcslen(module_info.szModule) * 2, []( wchar_t &c ) { c = ::towlower( c ); } );
[](wchar_t& c) { c = ::towlower(c); });
module_map[module_info.szModule] = module_map[ module_info.szModule ] = reinterpret_cast< std::uintptr_t >( module_info.modBaseAddr );
reinterpret_cast<std::uintptr_t>(module_info.modBaseAddr);
} }
return true; return true;
} }
void each_module(std::uint32_t pid, module_callback_t callback) void each_module( std::uint32_t pid, module_callback_t callback )
{ {
module_map_t module_map; module_map_t module_map;
if (!get_modules(pid, module_map)) if ( !get_modules( pid, module_map ) )
return; return;
for (auto& [module_name, module_base] : module_map) for ( auto &[ module_name, module_base ] : module_map )
if (!callback(module_name, module_base)) if ( !callback( module_name, module_base ) )
break; break;
} }
// https://github.com/PierreCiholas/GetBaseAddress/blob/master/main.cpp#L7 // https://github.com/PierreCiholas/GetBaseAddress/blob/master/main.cpp#L7
auto get_process_base(HANDLE proc_handle)->std::uintptr_t auto get_process_base( HANDLE proc_handle ) -> std::uintptr_t
{ {
HMODULE lph_modules[1024]; HMODULE lph_modules[ 1024 ];
DWORD needed = 0u; DWORD needed = 0u;
if (!EnumProcessModules(proc_handle, lph_modules, sizeof(lph_modules), &needed)) if ( !EnumProcessModules( proc_handle, lph_modules, sizeof( lph_modules ), &needed ) )
return {}; return {};
TCHAR mod_name[MAX_PATH]; TCHAR mod_name[ MAX_PATH ];
if (!GetModuleFileNameEx(proc_handle, lph_modules[0], mod_name, sizeof(mod_name) / sizeof(TCHAR))) if ( !GetModuleFileNameEx( proc_handle, lph_modules[ 0 ], mod_name, sizeof( mod_name ) / sizeof( TCHAR ) ) )
return {}; return {};
return reinterpret_cast<std::uintptr_t>(lph_modules[0]); return reinterpret_cast< std::uintptr_t >( lph_modules[ 0 ] );
} }
auto get_pid(const wchar_t* proc_name) -> std::uint32_t auto get_pid( const wchar_t *proc_name ) -> std::uint32_t
{ {
uq_handle snapshot = { CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, NULL), &CloseHandle }; uq_handle snapshot = { CreateToolhelp32Snapshot( TH32CS_SNAPPROCESS, NULL ), &CloseHandle };
if (snapshot.get() == INVALID_HANDLE_VALUE) if ( snapshot.get() == INVALID_HANDLE_VALUE )
return {}; return {};
PROCESSENTRY32W process_entry{ sizeof(PROCESSENTRY32W) }; PROCESSENTRY32W process_entry{ sizeof( PROCESSENTRY32W ) };
Process32FirstW(snapshot.get(), &process_entry); Process32FirstW( snapshot.get(), &process_entry );
if (!std::wcscmp(proc_name, process_entry.szExeFile)) if ( !std::wcscmp( proc_name, process_entry.szExeFile ) )
return process_entry.th32ProcessID; return process_entry.th32ProcessID;
for (Process32FirstW(snapshot.get(), &process_entry); Process32NextW(snapshot.get(), &process_entry); ) for ( Process32FirstW( snapshot.get(), &process_entry ); Process32NextW( snapshot.get(), &process_entry ); )
if (!std::wcscmp(proc_name, process_entry.szExeFile)) if ( !std::wcscmp( proc_name, process_entry.szExeFile ) )
return process_entry.th32ProcessID; return process_entry.th32ProcessID;
return {}; return {};
} }
auto get_handle(const wchar_t* proc_name, DWORD access = PROCESS_ALL_ACCESS) -> uq_handle auto get_handle( const wchar_t *proc_name, DWORD access = PROCESS_ALL_ACCESS ) -> uq_handle
{ {
std::uint32_t pid = 0u; std::uint32_t pid = 0u;
if (!(pid = get_pid(proc_name))) if ( !( pid = get_pid( proc_name ) ) )
return { NULL, &CloseHandle }; return { NULL, &CloseHandle };
return { OpenProcess(access, FALSE, pid), &CloseHandle }; return { OpenProcess( access, FALSE, pid ), &CloseHandle };
} }
auto get_handle(std::uint32_t pid, DWORD access = PROCESS_ALL_ACCESS)->uq_handle auto get_handle( std::uint32_t pid, DWORD access = PROCESS_ALL_ACCESS ) -> uq_handle
{ {
if (!pid) return { NULL, &CloseHandle }; if ( !pid )
return { OpenProcess(access, FALSE, pid), &CloseHandle }; return { NULL, &CloseHandle };
return { OpenProcess( access, FALSE, pid ), &CloseHandle };
} }
auto load_lib(HANDLE proc_handle, const char* dll_path) -> std::uintptr_t auto load_lib( HANDLE proc_handle, const char *dll_path ) -> std::uintptr_t
{ {
const auto dll_path_page = const auto dll_path_page =
VirtualAllocEx( VirtualAllocEx( proc_handle, nullptr, 0x1000, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
proc_handle,
nullptr, if ( !dll_path_page )
0x1000,
MEM_COMMIT | MEM_RESERVE,
PAGE_READWRITE
);
if (!dll_path_page)
return {}; return {};
SIZE_T handled_bytes; SIZE_T handled_bytes;
if (!WriteProcessMemory(proc_handle, dll_path_page, if ( !WriteProcessMemory( proc_handle, dll_path_page, dll_path, strlen( dll_path ), &handled_bytes ) )
dll_path, strlen(dll_path), &handled_bytes))
return {}; return {};
// +6 for string address // +6 for string address
// +16 for LoadLibrary address... // +16 for LoadLibrary address...
unsigned char jmp_code[] = unsigned char jmp_code[] = {
{
0x48, 0x83, 0xEC, 0x28, // sub rsp, 0x28 0x48, 0x83, 0xEC, 0x28, // sub rsp, 0x28
0x48, 0xB9, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, // mov rcx, &dllpath 0x48, 0xB9, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, // mov rcx, &dllpath
0x48, 0xB8, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, // mov rax, &LoadLibraryA 0x48, 0xB8, 0x88, 0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11, // mov rax, &LoadLibraryA
@ -220,342 +221,306 @@ namespace xtils
0xC3 // ret 0xC3 // ret
}; };
*reinterpret_cast<std::uintptr_t*>(&jmp_code[6]) = *reinterpret_cast< std::uintptr_t * >( &jmp_code[ 6 ] ) =
reinterpret_cast<std::uintptr_t>(dll_path_page); reinterpret_cast< std::uintptr_t >( dll_path_page );
*reinterpret_cast<std::uintptr_t*>(&jmp_code[16]) = *reinterpret_cast< std::uintptr_t * >( &jmp_code[ 16 ] ) =
reinterpret_cast<std::uintptr_t>(&LoadLibraryA); reinterpret_cast< std::uintptr_t >( &LoadLibraryA );
const auto jmp_code_page = const auto jmp_code_page =
VirtualAllocEx( VirtualAllocEx( proc_handle, nullptr, 0x1000, MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE );
proc_handle,
nullptr, if ( !jmp_code_page )
0x1000,
MEM_COMMIT | MEM_RESERVE,
PAGE_EXECUTE_READWRITE
);
if (!jmp_code_page)
return {}; return {};
if (!WriteProcessMemory(proc_handle, if ( !WriteProcessMemory( proc_handle, jmp_code_page, jmp_code, sizeof jmp_code, &handled_bytes ) )
jmp_code_page, jmp_code, sizeof jmp_code, &handled_bytes))
return {}; return {};
DWORD tid = 0u; DWORD tid = 0u;
auto thandle = CreateRemoteThread(proc_handle, nullptr, auto thandle = CreateRemoteThread( proc_handle, nullptr, NULL, ( LPTHREAD_START_ROUTINE )jmp_code_page,
NULL, (LPTHREAD_START_ROUTINE)jmp_code_page, nullptr, NULL, &tid); nullptr, NULL, &tid );
if (thandle == INVALID_HANDLE_VALUE) if ( thandle == INVALID_HANDLE_VALUE )
return {}; return {};
WaitForSingleObject(thandle, INFINITE); WaitForSingleObject( thandle, INFINITE );
// read the base address out of the shellcode... // read the base address out of the shellcode...
std::uintptr_t module_base = 0u; std::uintptr_t module_base = 0u;
if (!ReadProcessMemory(proc_handle, reinterpret_cast<void*>( if ( !ReadProcessMemory( proc_handle,
reinterpret_cast<std::uintptr_t>(jmp_code_page) + sizeof jmp_code), reinterpret_cast< void * >( reinterpret_cast< std::uintptr_t >( jmp_code_page ) +
&module_base, sizeof module_base, &handled_bytes)) sizeof jmp_code ),
&module_base, sizeof module_base, &handled_bytes ) )
return {}; return {};
return module_base; return module_base;
} }
auto start_exec(const char* image_path, char* cmdline = nullptr, auto start_exec( const char *image_path, char *cmdline = nullptr, bool suspend = false )
bool suspend = false) -> std::tuple<HANDLE, std::uint32_t, std::uintptr_t> -> std::tuple< HANDLE, std::uint32_t, std::uintptr_t >
{ {
STARTUPINFOA info = { sizeof info }; STARTUPINFOA info = { sizeof info };
PROCESS_INFORMATION proc_info; PROCESS_INFORMATION proc_info;
if (!CreateProcessA(image_path, cmdline, nullptr, if ( !CreateProcessA( image_path, cmdline, nullptr, nullptr, false,
nullptr, false, suspend ? CREATE_SUSPENDED | CREATE_NEW_CONSOLE : CREATE_NEW_CONSOLE, nullptr,
suspend ? CREATE_SUSPENDED | CREATE_NEW_CONSOLE : CREATE_NEW_CONSOLE, nullptr, &info, &proc_info ) )
nullptr, nullptr, &info, &proc_info
))
return { {}, {}, {} }; return { {}, {}, {} };
Sleep(1); // sleep just for a tiny amount of time so that get_process_base works... Sleep( 1 ); // sleep just for a tiny amount of time so that get_process_base works...
return { proc_info.hProcess, proc_info.dwProcessId, get_process_base(proc_info.hProcess) }; return { proc_info.hProcess, proc_info.dwProcessId, get_process_base( proc_info.hProcess ) };
} }
std::uintptr_t scan(std::uintptr_t base, std::uint32_t size, const char* pattern, const char* mask) std::uintptr_t scan( std::uintptr_t base, std::uint32_t size, const char *pattern, const char *mask )
{
static const auto check_mask =
[&](const char* base, const char* pattern, const char* mask) -> bool
{ {
for (; *mask; ++base, ++pattern, ++mask) static const auto check_mask = [ & ]( const char *base, const char *pattern, const char *mask ) -> bool {
if (*mask == 'x' && *base != *pattern) for ( ; *mask; ++base, ++pattern, ++mask )
if ( *mask == 'x' && *base != *pattern )
return false; return false;
return true; return true;
}; };
size -= strlen(mask); size -= strlen( mask );
for (auto i = 0; i <= size; ++i) for ( auto i = 0; i <= size; ++i )
{ {
void* addr = (void*)&(((char*)base)[i]); void *addr = ( void * )&( ( ( char * )base )[ i ] );
if (check_mask((char*)addr, pattern, mask)) if ( check_mask( ( char * )addr, pattern, mask ) )
return reinterpret_cast<std::uintptr_t>(addr); return reinterpret_cast< std::uintptr_t >( addr );
} }
return {}; return {};
} }
private: private:
explicit um_t() {} explicit um_t()
{
}
}; };
class km_t class km_t
{ {
using kmodule_callback_t = std::function<bool(PRTL_PROCESS_MODULE_INFORMATION, const char*)>; using kmodule_callback_t = std::function< bool( PRTL_PROCESS_MODULE_INFORMATION, const char * ) >;
public: public:
static auto get_instance() -> km_t* { static km_t obj; return &obj; }; static auto get_instance() -> km_t *
auto get_base(const char* drv_name)->std::uintptr_t {
static km_t obj;
return &obj;
};
auto get_base( const char *drv_name ) -> std::uintptr_t
{ {
void* buffer = nullptr; void *buffer = nullptr;
DWORD buffer_size = NULL; DWORD buffer_size = NULL;
auto status = NtQuerySystemInformation( auto status = NtQuerySystemInformation( static_cast< SYSTEM_INFORMATION_CLASS >( 0xB ), buffer, buffer_size,
static_cast<SYSTEM_INFORMATION_CLASS>(0xB), &buffer_size );
buffer, buffer_size, &buffer_size);
while (status == STATUS_INFO_LENGTH_MISMATCH) while ( status == STATUS_INFO_LENGTH_MISMATCH )
{ {
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
buffer = VirtualAlloc(nullptr, buffer_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); buffer = VirtualAlloc( nullptr, buffer_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
status = NtQuerySystemInformation( status = NtQuerySystemInformation( static_cast< SYSTEM_INFORMATION_CLASS >( 0xB ), buffer, buffer_size,
static_cast<SYSTEM_INFORMATION_CLASS>(0xB), &buffer_size );
buffer, buffer_size, &buffer_size);
} }
if (!NT_SUCCESS(status)) if ( !NT_SUCCESS( status ) )
{ {
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return NULL; return NULL;
} }
const auto modules = static_cast<PRTL_PROCESS_MODULES>(buffer); const auto modules = static_cast< PRTL_PROCESS_MODULES >( buffer );
for (auto idx = 0u; idx < modules->NumberOfModules; ++idx) for ( auto idx = 0u; idx < modules->NumberOfModules; ++idx )
{ {
const auto current_module_name = const auto current_module_name =
std::string(reinterpret_cast<char*>( std::string( reinterpret_cast< char * >( modules->Modules[ idx ].FullPathName ) +
modules->Modules[idx].FullPathName) + modules->Modules[ idx ].OffsetToFileName );
modules->Modules[idx].OffsetToFileName);
if (!_stricmp(current_module_name.c_str(), drv_name)) if ( !_stricmp( current_module_name.c_str(), drv_name ) )
{ {
const auto result = const auto result = reinterpret_cast< std::uint64_t >( modules->Modules[ idx ].ImageBase );
reinterpret_cast<std::uint64_t>(
modules->Modules[idx].ImageBase);
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return result; return result;
} }
} }
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return NULL; return NULL;
} }
void each_module(kmodule_callback_t callback) void each_module( kmodule_callback_t callback )
{ {
void* buffer = nullptr; void *buffer = nullptr;
DWORD buffer_size = NULL; DWORD buffer_size = NULL;
auto status = NtQuerySystemInformation( auto status = NtQuerySystemInformation( static_cast< SYSTEM_INFORMATION_CLASS >( 0xB ), buffer, buffer_size,
static_cast<SYSTEM_INFORMATION_CLASS>(0xB), &buffer_size );
buffer, buffer_size, &buffer_size);
while (status == STATUS_INFO_LENGTH_MISMATCH) while ( status == STATUS_INFO_LENGTH_MISMATCH )
{ {
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
buffer = VirtualAlloc(nullptr, buffer_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); buffer = VirtualAlloc( nullptr, buffer_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
status = NtQuerySystemInformation( status = NtQuerySystemInformation( static_cast< SYSTEM_INFORMATION_CLASS >( 0xB ), buffer, buffer_size,
static_cast<SYSTEM_INFORMATION_CLASS>(0xB), &buffer_size );
buffer, buffer_size, &buffer_size);
} }
if (!NT_SUCCESS(status)) if ( !NT_SUCCESS( status ) )
{ {
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return; return;
} }
const auto modules = static_cast<PRTL_PROCESS_MODULES>(buffer); const auto modules = static_cast< PRTL_PROCESS_MODULES >( buffer );
for (auto idx = 0u; idx < modules->NumberOfModules; ++idx) for ( auto idx = 0u; idx < modules->NumberOfModules; ++idx )
{ {
auto full_path = std::string( auto full_path = std::string( reinterpret_cast< char * >( modules->Modules[ idx ].FullPathName ) );
reinterpret_cast<char*>(
modules->Modules[idx].FullPathName));
if (full_path.find("\\SystemRoot\\") != std::string::npos) if ( full_path.find( "\\SystemRoot\\" ) != std::string::npos )
full_path.replace(full_path.find("\\SystemRoot\\"), full_path.replace( full_path.find( "\\SystemRoot\\" ), sizeof( "\\SystemRoot\\" ) - 1,
sizeof("\\SystemRoot\\") - 1, std::string(getenv("SYSTEMROOT")).append("\\")); std::string( getenv( "SYSTEMROOT" ) ).append( "\\" ) );
else if (full_path.find("\\??\\") != std::string::npos) else if ( full_path.find( "\\??\\" ) != std::string::npos )
full_path.replace(full_path.find("\\??\\"), full_path.replace( full_path.find( "\\??\\" ), sizeof( "\\??\\" ) - 1, "" );
sizeof("\\??\\") - 1, "");
if (!callback(&modules->Modules[idx], full_path.c_str())) if ( !callback( &modules->Modules[ idx ], full_path.c_str() ) )
{ {
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return; return;
} }
} }
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return; return;
} }
auto get_export( const char *drv_name, const char *export_name ) -> std::uintptr_t
auto get_export(const char* drv_name, const char* export_name)->std::uintptr_t
{ {
void* buffer = nullptr; void *buffer = nullptr;
DWORD buffer_size = NULL; DWORD buffer_size = NULL;
NTSTATUS status = NtQuerySystemInformation( NTSTATUS status = NtQuerySystemInformation( static_cast< SYSTEM_INFORMATION_CLASS >( 0xB ), buffer,
static_cast<SYSTEM_INFORMATION_CLASS>(0xB), buffer_size, &buffer_size );
buffer,
buffer_size,
&buffer_size
);
while (status == STATUS_INFO_LENGTH_MISMATCH) while ( status == STATUS_INFO_LENGTH_MISMATCH )
{ {
VirtualFree(buffer, 0, MEM_RELEASE); VirtualFree( buffer, 0, MEM_RELEASE );
buffer = VirtualAlloc(nullptr, buffer_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE); buffer = VirtualAlloc( nullptr, buffer_size, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE );
status = NtQuerySystemInformation( status = NtQuerySystemInformation( static_cast< SYSTEM_INFORMATION_CLASS >( 0xB ), buffer, buffer_size,
static_cast<SYSTEM_INFORMATION_CLASS>(0xB), &buffer_size );
buffer,
buffer_size,
&buffer_size
);
} }
if (!NT_SUCCESS(status)) if ( !NT_SUCCESS( status ) )
{ {
VirtualFree(buffer, 0, MEM_RELEASE); VirtualFree( buffer, 0, MEM_RELEASE );
return NULL; return NULL;
} }
const auto modules = static_cast<PRTL_PROCESS_MODULES>(buffer); const auto modules = static_cast< PRTL_PROCESS_MODULES >( buffer );
for (auto idx = 0u; idx < modules->NumberOfModules; ++idx) for ( auto idx = 0u; idx < modules->NumberOfModules; ++idx )
{ {
// find module and then load library it // find module and then load library it
const std::string current_module_name = const std::string current_module_name =
std::string(reinterpret_cast<char*>( std::string( reinterpret_cast< char * >( modules->Modules[ idx ].FullPathName ) +
modules->Modules[idx].FullPathName) + modules->Modules[ idx ].OffsetToFileName );
modules->Modules[idx].OffsetToFileName
);
if (!_stricmp(current_module_name.c_str(), drv_name)) if ( !_stricmp( current_module_name.c_str(), drv_name ) )
{ {
auto full_path = std::string( auto full_path = std::string( reinterpret_cast< char * >( modules->Modules[ idx ].FullPathName ) );
reinterpret_cast<char*>(
modules->Modules[idx].FullPathName));
full_path.replace(full_path.find("\\SystemRoot\\"), full_path.replace( full_path.find( "\\SystemRoot\\" ), sizeof( "\\SystemRoot\\" ) - 1,
sizeof("\\SystemRoot\\") - 1, std::string(getenv("SYSTEMROOT")).append("\\")); std::string( getenv( "SYSTEMROOT" ) ).append( "\\" ) );
const auto module_base = const auto module_base = LoadLibraryExA( full_path.c_str(), NULL, DONT_RESOLVE_DLL_REFERENCES );
LoadLibraryExA(
full_path.c_str(),
NULL,
DONT_RESOLVE_DLL_REFERENCES
);
const auto image_base = const auto image_base = reinterpret_cast< std::uintptr_t >( modules->Modules[ idx ].ImageBase );
reinterpret_cast<std::uintptr_t>(
modules->Modules[idx].ImageBase);
// free the RTL_PROCESS_MODULES buffer... // free the RTL_PROCESS_MODULES buffer...
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
const auto rva = const auto rva = reinterpret_cast< std::uintptr_t >( GetProcAddress( module_base, export_name ) ) -
reinterpret_cast<std::uintptr_t>( reinterpret_cast< std::uintptr_t >( module_base );
GetProcAddress(module_base, export_name)) -
reinterpret_cast<std::uintptr_t>(module_base);
return image_base + rva; return image_base + rva;
} }
} }
VirtualFree(buffer, NULL, MEM_RELEASE); VirtualFree( buffer, NULL, MEM_RELEASE );
return NULL; return NULL;
} }
private: private:
explicit km_t() {} explicit km_t()
{
}
}; };
class pe_t class pe_t
{ {
using section_callback_t = std::function<bool(PIMAGE_SECTION_HEADER, std::uintptr_t)>; using section_callback_t = std::function< bool( PIMAGE_SECTION_HEADER, std::uintptr_t ) >;
public: public:
static auto get_instance() -> pe_t* { static pe_t obj; return &obj; } static auto get_instance() -> pe_t *
{
static pe_t obj;
return &obj;
}
// returns an std::vector containing all of the bytes of the section // returns an std::vector containing all of the bytes of the section
// and also the RVA from the image base to the beginning of the section... // and also the RVA from the image base to the beginning of the section...
auto get_section(std::uintptr_t module_base, auto get_section( std::uintptr_t module_base, const char *section_name )
const char* section_name) -> std::pair<std::vector<std::uint8_t>, std::uint32_t> -> std::pair< std::vector< std::uint8_t >, std::uint32_t >
{ {
const auto nt_headers = reinterpret_cast<PIMAGE_NT_HEADERS>( const auto nt_headers = reinterpret_cast< PIMAGE_NT_HEADERS >(
reinterpret_cast<PIMAGE_DOS_HEADER>(module_base)->e_lfanew + module_base); reinterpret_cast< PIMAGE_DOS_HEADER >( module_base )->e_lfanew + module_base );
const auto section_header = const auto section_header = reinterpret_cast< PIMAGE_SECTION_HEADER >(
reinterpret_cast<PIMAGE_SECTION_HEADER>( reinterpret_cast< std::uintptr_t >( nt_headers ) + sizeof( DWORD ) + sizeof( IMAGE_FILE_HEADER ) +
reinterpret_cast<std::uintptr_t>(nt_headers) + sizeof(DWORD) nt_headers->FileHeader.SizeOfOptionalHeader );
+ sizeof(IMAGE_FILE_HEADER) + nt_headers->FileHeader.SizeOfOptionalHeader);
for (auto idx = 0u; idx < nt_headers->FileHeader.NumberOfSections; ++idx) for ( auto idx = 0u; idx < nt_headers->FileHeader.NumberOfSections; ++idx )
{ {
const auto _section_name = const auto _section_name = reinterpret_cast< char * >( section_header[ idx ].Name );
reinterpret_cast<char*>(
section_header[idx].Name);
// sometimes section names are not null terminated... // sometimes section names are not null terminated...
if (!strncmp(_section_name, section_name, strlen(section_name) - 1)) if ( !strncmp( _section_name, section_name, strlen( section_name ) - 1 ) )
{ {
const auto section_base = const auto section_base =
reinterpret_cast<std::uint8_t*>( reinterpret_cast< std::uint8_t * >( module_base + section_header[ idx ].VirtualAddress );
module_base + section_header[idx].VirtualAddress);
const auto section_end = const auto section_end =
reinterpret_cast<std::uint8_t*>( reinterpret_cast< std::uint8_t * >( section_base + section_header[ idx ].Misc.VirtualSize );
section_base + section_header[idx].Misc.VirtualSize);
std::vector<std::uint8_t> section_bin(section_base, section_end); std::vector< std::uint8_t > section_bin( section_base, section_end );
return { section_bin, section_header[idx].VirtualAddress }; return { section_bin, section_header[ idx ].VirtualAddress };
} }
} }
return { {}, {} }; return { {}, {} };
} }
void each_section(section_callback_t callback, std::uintptr_t module_base) void each_section( section_callback_t callback, std::uintptr_t module_base )
{ {
if (!module_base) if ( !module_base )
return; return;
const auto nt_headers = reinterpret_cast<PIMAGE_NT_HEADERS>( const auto nt_headers = reinterpret_cast< PIMAGE_NT_HEADERS >(
reinterpret_cast<PIMAGE_DOS_HEADER>(module_base)->e_lfanew + module_base); reinterpret_cast< PIMAGE_DOS_HEADER >( module_base )->e_lfanew + module_base );
const auto section_header = const auto section_header = reinterpret_cast< PIMAGE_SECTION_HEADER >(
reinterpret_cast<PIMAGE_SECTION_HEADER>( reinterpret_cast< std::uintptr_t >( nt_headers ) + sizeof( DWORD ) + sizeof( IMAGE_FILE_HEADER ) +
reinterpret_cast<std::uintptr_t>(nt_headers) + sizeof(DWORD) nt_headers->FileHeader.SizeOfOptionalHeader );
+ sizeof(IMAGE_FILE_HEADER) + nt_headers->FileHeader.SizeOfOptionalHeader);
for (auto idx = 0u; idx < nt_headers->FileHeader.NumberOfSections; ++idx) for ( auto idx = 0u; idx < nt_headers->FileHeader.NumberOfSections; ++idx )
{ {
const auto _section_name = const auto _section_name = reinterpret_cast< char * >( section_header[ idx ].Name );
reinterpret_cast<char*>(
section_header[idx].Name);
// keep looping until the callback returns false... // keep looping until the callback returns false...
if (!callback(&section_header[idx], module_base)) if ( !callback( &section_header[ idx ], module_base ) )
return; return;
} }
} }
private: private:
explicit pe_t() {}; explicit pe_t(){};
}; };
} } // namespace xtils
Loading…
Cancel
Save