You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
401 lines
9.8 KiB
401 lines
9.8 KiB
/* BEGIN_LEGAL
|
|
|
|
Copyright (c) 2021 Intel Corporation
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License.
|
|
|
|
END_LEGAL */
|
|
|
|
#include "avltree.h"
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <stdint.h>
|
|
#include <assert.h>
|
|
|
|
typedef struct avl_node_s {
|
|
avl_key_t key;
|
|
void* data;
|
|
int32_t balance_factor;
|
|
uint32_t height;
|
|
struct avl_node_s* left;
|
|
struct avl_node_s* right;
|
|
} avl_node_t;
|
|
|
|
static void pad(int d) {
|
|
int i;
|
|
for(i=0;i<d;i++)
|
|
fputs(" ", stdout);
|
|
}
|
|
static void print_node(avl_node_t* n, int cur_depth) // recursive
|
|
{
|
|
|
|
pad(cur_depth);
|
|
if (n) {
|
|
#if defined(__GNUC__) && defined(__LP64__) && !defined(__APPLE__)
|
|
# define AVL_FMT_LU "%lu"
|
|
#else
|
|
# define AVL_FMT_LU "%llu"
|
|
#endif
|
|
fprintf(stdout, "H%u B%d (" AVL_FMT_LU ", %p)\n",
|
|
n->height,
|
|
n->balance_factor,
|
|
(uint64_t) n->key,
|
|
n->data);
|
|
print_node(n->left, cur_depth+1);
|
|
print_node(n->right, cur_depth+1);
|
|
}
|
|
else
|
|
fprintf(stdout, "*empty*\n");
|
|
|
|
}
|
|
#if 0
|
|
static void print_tree(avl_tree_t* tree) {
|
|
printf("=============\n");
|
|
if (tree->top)
|
|
print_node(tree->top, 0);
|
|
else
|
|
fprintf(stdout, "*empty tree*\n");
|
|
printf("=============\n");
|
|
}
|
|
#endif
|
|
|
|
void avl_tree_init(avl_tree_t* tree)
|
|
{
|
|
tree->top = 0;
|
|
}
|
|
|
|
static void clear(avl_node_t* n, int free_data) // recursive
|
|
{
|
|
if (n->left)
|
|
clear(n->left, free_data);
|
|
if (n->right)
|
|
clear(n->right, free_data);
|
|
if (free_data && n->data)
|
|
free((void*)n->data);
|
|
free((void*)n);
|
|
}
|
|
void avl_tree_clear(avl_tree_t* tree, int free_data)
|
|
{
|
|
if (tree->top) {
|
|
clear(tree->top, free_data);
|
|
}
|
|
tree->top = 0;
|
|
}
|
|
|
|
static avl_node_t* find_node(avl_node_t* n, avl_key_t key) //recursive
|
|
{
|
|
if (n->key == key)
|
|
return n;
|
|
else if (n->key > key && n->left)
|
|
return find_node(n->left, key);
|
|
else if (n->right)
|
|
return find_node(n->right, key);
|
|
return 0;
|
|
}
|
|
|
|
static void* find(avl_node_t* n, avl_key_t key) //recursive
|
|
{
|
|
if (n)
|
|
{
|
|
avl_node_t* x = find_node(n,key);
|
|
if (x)
|
|
return x->data;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void* avl_find (avl_tree_t* tree, avl_key_t key)
|
|
{
|
|
return find(tree->top, key);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static avl_node_t* find_node_lower_bound(avl_node_t* n, avl_key_t key,
|
|
avl_node_t** lb) //recursive
|
|
{
|
|
//printf("NODE KEY=%lld\n", n->key);
|
|
if (n->key == key){
|
|
*lb = n;
|
|
return n;
|
|
}
|
|
else if (n->key > key && n->left) {
|
|
//printf("\tGO LEFT\n");
|
|
return find_node_lower_bound(n->left, key, lb);
|
|
}
|
|
|
|
if (n->key < key) {
|
|
// store the max lower bound we encounter when node key is < search
|
|
// key.
|
|
if (*lb && (*lb)->key < n->key)
|
|
*lb = n;
|
|
else if (*lb == 0)
|
|
*lb = n;
|
|
}
|
|
|
|
if (n->right) {
|
|
//printf("\tGO RIGHT\n");
|
|
return find_node_lower_bound(n->right, key, lb);
|
|
}
|
|
return *lb;
|
|
}
|
|
|
|
static void* find_lower_bound(avl_node_t* n, avl_key_t key,
|
|
avl_key_t* lbkey) // output
|
|
{
|
|
avl_node_t* lbound = 0;
|
|
if (n)
|
|
{
|
|
(void) find_node_lower_bound(n,key, &lbound);
|
|
if (lbound) {
|
|
*lbkey = lbound->key;
|
|
return lbound->data;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
void* avl_find_lower_bound (avl_tree_t* tree, avl_key_t key,
|
|
avl_key_t* lbkey) // output
|
|
{
|
|
return find_lower_bound(tree->top, key, lbkey);
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static avl_node_t* make_node(avl_key_t key, void* value)
|
|
{
|
|
avl_node_t* n = (avl_node_t*) malloc(sizeof(avl_node_t));
|
|
assert(n != 0);
|
|
n->key = key;
|
|
n->data = value;
|
|
n->balance_factor = 0;
|
|
n->height = 1;
|
|
n->left = n->right = 0;
|
|
return n;
|
|
}
|
|
|
|
static uint32_t mmax(uint32_t a, uint32_t b) {
|
|
return (a>b)?a:b;
|
|
}
|
|
|
|
static uint32_t update_height(avl_node_t* n)
|
|
{
|
|
avl_node_t* a = n->left;
|
|
avl_node_t* b = n->right;
|
|
return 1 + mmax((a?a->height:0), (b?b->height:0));
|
|
}
|
|
static int32_t update_balance(avl_node_t* n)
|
|
{
|
|
avl_node_t* a = n->left;
|
|
avl_node_t* b = n->right;
|
|
return (int32_t)(a?a->height:0) - (int32_t)(b?b->height:0);
|
|
}
|
|
static void update_height_and_balance(avl_node_t* n)
|
|
{
|
|
n->height = update_height(n);
|
|
n->balance_factor = update_balance(n);
|
|
}
|
|
static avl_node_t* left_left(avl_node_t* n) // changes top node
|
|
{
|
|
// knock the tree over to the right, making n->left in to the new top node.
|
|
// juggle subtrees
|
|
|
|
avl_node_t* new_top = n->left;
|
|
avl_node_t* old_top = n;
|
|
old_top->left = new_top->right;
|
|
new_top->right = old_top;
|
|
update_height_and_balance(old_top);
|
|
update_height_and_balance(new_top);
|
|
return new_top;
|
|
}
|
|
static avl_node_t* left_right(avl_node_t* n)
|
|
{
|
|
// replace n->left with n->left->right, juggle subtrees
|
|
avl_node_t* l_node = n->left;
|
|
avl_node_t* lr_node = n->left->right;
|
|
n->left = lr_node;
|
|
l_node->right = lr_node->left;
|
|
lr_node->left = l_node;
|
|
update_height_and_balance(l_node);
|
|
update_height_and_balance(lr_node);
|
|
return n;
|
|
}
|
|
static avl_node_t* right_left(avl_node_t* n)
|
|
{
|
|
// replace n->right with n->right->left, juggle subtrees
|
|
avl_node_t* r_node = n->right;
|
|
avl_node_t* rl_node = n->right->left;
|
|
n->right = rl_node;
|
|
r_node->left = rl_node->right;
|
|
rl_node->right = r_node;
|
|
update_height_and_balance(r_node);
|
|
update_height_and_balance(rl_node);
|
|
return n;
|
|
}
|
|
static avl_node_t* right_right(avl_node_t* n) // changes top node
|
|
{
|
|
// knock the tree over to the left, making n->right in to the new top node.
|
|
// juggle subtrees
|
|
avl_node_t* new_top = n->right;
|
|
avl_node_t* old_top = n;
|
|
old_top->right = new_top->left;
|
|
new_top->left = old_top;
|
|
update_height_and_balance(old_top);
|
|
update_height_and_balance(new_top);
|
|
return new_top;
|
|
}
|
|
|
|
static avl_node_t* insert(avl_node_t* n,
|
|
avl_key_t key, void* value, int free_data)
|
|
{
|
|
if (n->key == key) {
|
|
if (n->data && free_data)
|
|
free((void*)n->data);
|
|
n->data = value;
|
|
}
|
|
else if (n->key > key) {
|
|
if (n->left) {
|
|
n->left = insert(n->left, key, value, free_data);
|
|
update_height_and_balance(n);
|
|
}
|
|
else {
|
|
n->left = make_node(key,value);
|
|
update_height_and_balance(n);
|
|
}
|
|
}
|
|
else if (n->key < key) {
|
|
if (n->right) {
|
|
n->right = insert(n->right, key, value, free_data);
|
|
update_height_and_balance(n);
|
|
}
|
|
else {
|
|
n->right = make_node(key,value);
|
|
update_height_and_balance(n);
|
|
}
|
|
}
|
|
// rebalancing might change the current node
|
|
if (n->balance_factor >= 2) // heavy on the left
|
|
{
|
|
if (n->left->balance_factor == -1) {
|
|
// subtree is heavy right, make it heavy left, then knock it over
|
|
n = left_right(n);
|
|
n = left_left(n);
|
|
}
|
|
else if (n->left->balance_factor == 1) {
|
|
// subtree is heavy left, knock it over
|
|
n = left_left(n);
|
|
}
|
|
}
|
|
else if (n->balance_factor <= -2) // heavy on the right
|
|
{
|
|
if (n->right->balance_factor == 1) {
|
|
// subtree is heavy left, make it heavy right, then knock it over
|
|
n = right_left(n);
|
|
n = right_right(n);
|
|
}
|
|
else if (n->right->balance_factor == -1) {
|
|
// subtree is heavy right, knock it over
|
|
n = right_right(n);
|
|
}
|
|
}
|
|
update_height_and_balance(n); // FIXME: redundant, remove this
|
|
if (n->balance_factor <= -2 || n->balance_factor >= 2) {
|
|
printf("FAIL\n");
|
|
print_node(n, 0);
|
|
assert (n->balance_factor < 2 && n->balance_factor > -2);
|
|
}
|
|
return n;
|
|
}
|
|
|
|
void avl_insert(avl_tree_t* tree, avl_key_t key, void* value, int free_data)
|
|
{
|
|
//rebalancing can change what the 'tree' points to as its top node.
|
|
if (tree->top)
|
|
tree->top = insert(tree->top, key, value, free_data);
|
|
else
|
|
tree->top = make_node(key,value);
|
|
//print_tree(tree);
|
|
}
|
|
|
|
|
|
typedef struct avl_link_node_s {
|
|
avl_node_t* node;
|
|
struct avl_link_node_s* next;
|
|
} avl_link_node_t;
|
|
|
|
void avl_iter_begin( avl_iter_t* iter, avl_tree_t* tree)
|
|
{
|
|
iter->head = 0;
|
|
iter->tail = 0;
|
|
if (tree->top) {
|
|
avl_link_node_t* n = (avl_link_node_t*)malloc(sizeof(avl_link_node_t));
|
|
assert(n != 0);
|
|
n->node = tree->top;
|
|
n->next = 0;
|
|
iter->head = n;
|
|
iter->tail = n;
|
|
}
|
|
|
|
}
|
|
|
|
void* avl_iter_current(avl_iter_t* iter)
|
|
{
|
|
return iter->head->node->data;
|
|
}
|
|
|
|
static void add_link_node(avl_iter_t* iter, avl_node_t* anode)
|
|
{
|
|
if (anode)
|
|
{
|
|
avl_link_node_t* n = (avl_link_node_t*)malloc(sizeof(avl_link_node_t));
|
|
assert(n != 0);
|
|
n->next = 0;
|
|
n->node = anode;
|
|
iter->tail->next = n;
|
|
iter->tail = n;
|
|
}
|
|
}
|
|
void avl_iter_increment(avl_iter_t* iter)
|
|
{
|
|
avl_link_node_t* p;
|
|
add_link_node(iter, iter->head->node->left);
|
|
add_link_node(iter, iter->head->node->right);
|
|
p = iter->head;
|
|
iter->head = p->next;
|
|
free(p);
|
|
}
|
|
int avl_iter_done(avl_iter_t* iter)
|
|
{
|
|
return (iter->head == 0);
|
|
}
|
|
|
|
void avl_iter_cleanup(avl_iter_t* iter) // call if end iteration early
|
|
{
|
|
struct avl_link_node_s* p = iter->head;
|
|
while(p) {
|
|
struct avl_link_node_s* t = p;
|
|
p = t->next;
|
|
free(t);
|
|
}
|
|
}
|