You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

981 lines
23 KiB

/*****************************************************************************\
Snes9x - Portable Super Nintendo Entertainment System (TM) emulator.
This file is licensed under the Snes9x License.
For further information, consult the LICENSE file in the root directory.
\*****************************************************************************/
#include "snes9x.h"
#include "memmap.h"
uint8 SA1OpenBus;
static void S9xSA1SetBWRAMMemMap (uint8);
static void S9xSetSA1MemMap (uint32, uint8);
static void S9xSA1CharConv2 (void);
static void S9xSA1DMA (void);
static void S9xSA1ReadVariableLengthData (bool8, bool8);
void S9xSA1Init (void)
{
SA1.Cycles = 0;
SA1.PrevCycles = 0;
SA1.Flags = 0;
SA1.WaitingForInterrupt = FALSE;
memset(&Memory.FillRAM[0x2200], 0, 0x200);
Memory.FillRAM[0x2200] = 0x20;
Memory.FillRAM[0x2220] = 0x00;
Memory.FillRAM[0x2221] = 0x01;
Memory.FillRAM[0x2222] = 0x02;
Memory.FillRAM[0x2223] = 0x03;
Memory.FillRAM[0x2228] = 0x0f;
SA1.in_char_dma = FALSE;
SA1.TimerIRQLastState = FALSE;
SA1.HTimerIRQPos = 0;
SA1.VTimerIRQPos = 0;
SA1.HCounter = 0;
SA1.VCounter = 0;
SA1.PrevHCounter = 0;
SA1.arithmetic_op = 0;
SA1.op1 = 0;
SA1.op2 = 0;
SA1.sum = 0;
SA1.overflow = FALSE;
SA1.VirtualBitmapFormat = 4;
SA1.variable_bit_pos = 0;
SA1Registers.PBPC = 0;
SA1Registers.PB = 0;
SA1Registers.PCw = 0;
SA1Registers.D.W = 0;
SA1Registers.DB = 0;
SA1Registers.SH = 1;
SA1Registers.SL = 0xFF;
SA1Registers.XH = 0;
SA1Registers.YH = 0;
SA1Registers.P.W = 0;
SA1.ShiftedPB = 0;
SA1.ShiftedDB = 0;
SA1SetFlags(MemoryFlag | IndexFlag | IRQ | Emulation);
SA1ClearFlags(Decimal);
SA1.MemSpeed = ONE_CYCLE;
SA1.MemSpeedx2 = ONE_CYCLE * 2;
SA1.S9xOpcodes = S9xSA1OpcodesM1X1;
SA1.S9xOpLengths = S9xOpLengthsM1X1;
S9xSA1SetPCBase(SA1Registers.PBPC);
S9xSA1UnpackStatus();
S9xSA1FixCycles();
SA1.BWRAM = Memory.SRAM;
CPU.IRQExternal = FALSE;
}
static void S9xSA1SetBWRAMMemMap (uint8 val)
{
if (val & 0x80)
{
for (int c = 0; c < 0x400; c += 16)
{
SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM_BITMAP2;
}
SA1.BWRAM = Memory.SRAM + (val & 0x7f) * 0x2000 / 4;
}
else
{
for (int c = 0; c < 0x400; c += 16)
{
SA1.Map[c + 6] = SA1.Map[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM;
SA1.Map[c + 7] = SA1.Map[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM;
SA1.WriteMap[c + 6] = SA1.WriteMap[c + 0x806] = (uint8 *) CMemory::MAP_BWRAM;
SA1.WriteMap[c + 7] = SA1.WriteMap[c + 0x807] = (uint8 *) CMemory::MAP_BWRAM;
}
SA1.BWRAM = Memory.SRAM + (val & 0x1f) * 0x2000;
}
}
void S9xSA1PostLoadState (void)
{
SA1.ShiftedPB = (uint32) SA1Registers.PB << 16;
SA1.ShiftedDB = (uint32) SA1Registers.DB << 16;
S9xSA1SetPCBase(SA1Registers.PBPC);
S9xSA1UnpackStatus();
S9xSA1FixCycles();
SA1.VirtualBitmapFormat = (Memory.FillRAM[0x223f] & 0x80) ? 2 : 4;
Memory.BWRAM = Memory.SRAM + (Memory.FillRAM[0x2224] & 0x1f) * 0x2000;
S9xSA1SetBWRAMMemMap(Memory.FillRAM[0x2225]);
#if 0
S9xSetSA1(Memory.FillRAM[0x2220], 0x2220);
S9xSetSA1(Memory.FillRAM[0x2221], 0x2221);
S9xSetSA1(Memory.FillRAM[0x2222], 0x2222);
S9xSetSA1(Memory.FillRAM[0x2223], 0x2223);
#endif
}
static void S9xSetSA1MemMap (uint32 which1, uint8 map)
{
int start = which1 * 0x100 + 0xc00;
int start2 = which1 * 0x200;
if (which1 >= 2)
start2 += 0x400;
for (int c = 0; c < 0x100; c += 16)
{
uint8 *block;
if (Multi.cartType != 5)
block = &Memory.ROM[(map & 7) * 0x100000 + (c << 12)];
else
{
if ((map & 7) < 4)
block = Memory.ROM + Multi.cartOffsetA + ((map & 7) * 0x100000 + (c << 12));
else
block = Memory.ROM + Multi.cartOffsetB + (((map & 7) - 4) * 0x100000 + (c << 12));
}
for (int i = c; i < c + 16; i++)
Memory.Map[start + i] = SA1.Map[start + i] = block;
}
for (int c = 0; c < 0x200; c += 16)
{
// conversion to int is needed here - map is promoted but which1 is not
int32 offset;
uint8 *block;
if (Multi.cartType != 5)
{
offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = &Memory.ROM[offset];
}
else
{
if ((map & 7) < 4)
{
offset = (((map & 0x80) ? map : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = Memory.ROM + Multi.cartOffsetA + offset;
}
else
{
offset = (((map & 0x80) ? (map - 4) : which1) & 7) * 0x100000 + (c << 11) - 0x8000;
block = Memory.ROM + Multi.cartOffsetB + offset;
}
}
for (int i = c + 8; i < c + 16; i++)
Memory.Map[start2 + i] = SA1.Map[start2 + i] = block;
}
}
uint8 S9xGetSA1 (uint32 address)
{
switch (address)
{
case 0x2300: // S-CPU flag
return ((Memory.FillRAM[0x2209] & 0x5f) | (Memory.FillRAM[0x2300] & 0xa0));
case 0x2301: // SA-1 flag
return ((Memory.FillRAM[0x2200] & 0x0f) | (Memory.FillRAM[0x2301] & 0xf0));
case 0x2302: // H counter (L)
SA1.HTimerIRQPos = SA1.HCounter / ONE_DOT_CYCLE;
SA1.VTimerIRQPos = SA1.VCounter;
return ((uint8) SA1.HTimerIRQPos);
case 0x2303: // H counter (H)
return ((uint8) (SA1.HTimerIRQPos >> 8));
case 0x2304: // V counter (L)
return ((uint8) SA1.VTimerIRQPos);
case 0x2305: // V counter (H)
return ((uint8) (SA1.VTimerIRQPos >> 8));
case 0x2306: // arithmetic result (LLL)
return ((uint8) SA1.sum);
case 0x2307: // arithmetic result (LLH)
return ((uint8) (SA1.sum >> 8));
case 0x2308: // arithmetic result (LHL)
return ((uint8) (SA1.sum >> 16));
case 0x2309: // arithmetic result (LLH)
return ((uint8) (SA1.sum >> 24));
case 0x230a: // arithmetic result (HLL)
return ((uint8) (SA1.sum >> 32));
case 0x230b: // arithmetic overflow
return (SA1.overflow ? 0x80 : 0);
case 0x230c: // variable-length data read port (L)
return (Memory.FillRAM[0x230c]);
case 0x230d: // variable-length data read port (H)
{
uint8 byte = Memory.FillRAM[0x230d];
if (Memory.FillRAM[0x2258] & 0x80)
S9xSA1ReadVariableLengthData(TRUE, FALSE);
return (byte);
}
case 0x230e: // version code register
return (0x23);
default:
break;
}
return (Memory.FillRAM[address]);
}
void S9xSetSA1 (uint8 byte, uint32 address)
{
switch (address)
{
case 0x2200: // SA-1 control
#ifdef DEBUGGER
if (byte & 0x60)
printf("SA-1 sleep\n");
#endif
// SA-1 reset
if (!(byte & 0x80) && (Memory.FillRAM[0x2200] & 0x20))
{
#ifdef DEBUGGER
printf("SA-1 reset\n");
#endif
SA1Registers.PBPC = 0;
SA1Registers.PB = 0;
SA1Registers.PCw = Memory.FillRAM[0x2203] | (Memory.FillRAM[0x2204] << 8);
S9xSA1SetPCBase(SA1Registers.PBPC);
}
// SA-1 IRQ control
if (byte & 0x80)
{
Memory.FillRAM[0x2301] |= 0x80;
if (Memory.FillRAM[0x220a] & 0x80)
Memory.FillRAM[0x220b] &= ~0x80;
}
// SA-1 NMI control
if (byte & 0x10)
{
Memory.FillRAM[0x2301] |= 0x10;
if (Memory.FillRAM[0x220a] & 0x10)
Memory.FillRAM[0x220b] &= ~0x10;
}
break;
case 0x2201: // S-CPU interrupt enable
// S-CPU IRQ enable
if (((byte ^ Memory.FillRAM[0x2201]) & 0x80) && (Memory.FillRAM[0x2300] & byte & 0x80))
{
Memory.FillRAM[0x2202] &= ~0x80;
CPU.IRQExternal = TRUE;
}
// S-CPU CHDMA IRQ enable
if (((byte ^ Memory.FillRAM[0x2201]) & 0x20) && (Memory.FillRAM[0x2300] & byte & 0x20))
{
Memory.FillRAM[0x2202] &= ~0x20;
CPU.IRQExternal = TRUE;
}
break;
case 0x2202: // S-CPU interrupt clear
// S-CPU IRQ clear
if (byte & 0x80)
Memory.FillRAM[0x2300] &= ~0x80;
// S-CPU CHDMA IRQ clear
if (byte & 0x20)
Memory.FillRAM[0x2300] &= ~0x20;
if (!(Memory.FillRAM[0x2300] & 0xa0))
CPU.IRQExternal = FALSE;
break;
case 0x2203: // SA-1 reset vector (L)
case 0x2204: // SA-1 reset vector (H)
case 0x2205: // SA-1 NMI vector (L)
case 0x2206: // SA-1 NMI vector (H)
case 0x2207: // SA-1 IRQ vector (L)
case 0x2208: // SA-1 IRQ vector (H)
break;
case 0x2209: // S-CPU control
// 0x40: S-CPU IRQ overwrite
// 0x20: S-CPU NMI overwrite
// S-CPU IRQ control
if (byte & 0x80)
{
Memory.FillRAM[0x2300] |= 0x80;
if (Memory.FillRAM[0x2201] & 0x80)
{
Memory.FillRAM[0x2202] &= ~0x80;
CPU.IRQExternal = TRUE;
}
}
break;
case 0x220a: // SA-1 interrupt enable
// SA-1 IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x80) && (Memory.FillRAM[0x2301] & byte & 0x80))
Memory.FillRAM[0x220b] &= ~0x80;
// SA-1 timer IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x40) && (Memory.FillRAM[0x2301] & byte & 0x40))
Memory.FillRAM[0x220b] &= ~0x40;
// SA-1 DMA IRQ enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x20) && (Memory.FillRAM[0x2301] & byte & 0x20))
Memory.FillRAM[0x220b] &= ~0x20;
// SA-1 NMI enable
if (((byte ^ Memory.FillRAM[0x220a]) & 0x10) && (Memory.FillRAM[0x2301] & byte & 0x10))
Memory.FillRAM[0x220b] &= ~0x10;
break;
case 0x220b: // SA-1 interrupt clear
// SA-1 IRQ clear
if (byte & 0x80)
Memory.FillRAM[0x2301] &= ~0x80;
// SA-1 timer IRQ clear
if (byte & 0x40)
Memory.FillRAM[0x2301] &= ~0x40;
// SA-1 DMA IRQ clear
if (byte & 0x20)
Memory.FillRAM[0x2301] &= ~0x20;
// SA-1 NMI clear
if (byte & 0x10)
Memory.FillRAM[0x2301] &= ~0x10;
break;
case 0x220c: // S-CPU NMI vector (L)
case 0x220d: // S-CPU NMI vector (H)
case 0x220e: // S-CPU IRQ vector (L)
case 0x220f: // S-CPU IRQ vector (H)
break;
case 0x2210: // SA-1 timer control
// 0x80: mode (linear / HV)
// 0x02: V timer enable
// 0x01: H timer enable
#ifdef DEBUGGER
printf("SA-1 timer control write:%02x\n", byte);
#endif
break;
case 0x2211: // SA-1 timer reset
SA1.HCounter = 0;
SA1.VCounter = 0;
break;
case 0x2212: // SA-1 H-timer (L)
SA1.HTimerIRQPos = byte | (Memory.FillRAM[0x2213] << 8);
break;
case 0x2213: // SA-1 H-timer (H)
SA1.HTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2212];
break;
case 0x2214: // SA-1 V-timer (L)
SA1.VTimerIRQPos = byte | (Memory.FillRAM[0x2215] << 8);
break;
case 0x2215: // SA-1 V-timer (H)
SA1.VTimerIRQPos = (byte << 8) | Memory.FillRAM[0x2214];
break;
case 0x2220: // MMC bank C
case 0x2221: // MMC bank D
case 0x2222: // MMC bank E
case 0x2223: // MMC bank F
S9xSetSA1MemMap(address - 0x2220, byte);
break;
case 0x2224: // S-CPU BW-RAM mapping
Memory.BWRAM = Memory.SRAM + (byte & 0x1f) * 0x2000;
break;
case 0x2225: // SA-1 BW-RAM mapping
if (byte != Memory.FillRAM[0x2225])
S9xSA1SetBWRAMMemMap(byte);
break;
case 0x2226: // S-CPU BW-RAM write enable
case 0x2227: // SA-1 BW-RAM write enable
case 0x2228: // BW-RAM write-protected area
case 0x2229: // S-CPU I-RAM write protection
case 0x222a: // SA-1 I-RAM write protection
break;
case 0x2230: // DMA control
// 0x80: enable
// 0x40: priority (DMA / SA-1)
// 0x20: character conversion / normal
// 0x10: BW-RAM -> I-RAM / SA-1 -> I-RAM
// 0x04: destinatin (BW-RAM / I-RAM)
// 0x03: source
break;
case 0x2231: // character conversion DMA parameters
// 0x80: CHDEND (complete / incomplete)
// 0x03: color mode
// (byte >> 2) & 7: virtual VRAM width
if (byte & 0x80)
SA1.in_char_dma = FALSE;
break;
case 0x2232: // DMA source start address (LL)
case 0x2233: // DMA source start address (LH)
case 0x2234: // DMA source start address (HL)
break;
case 0x2235: // DMA destination start address (LL)
break;
case 0x2236: // DMA destination start address (LH)
Memory.FillRAM[0x2236] = byte;
if ((Memory.FillRAM[0x2230] & 0xa4) == 0x80) // Normal DMA to I-RAM
S9xSA1DMA();
else
if ((Memory.FillRAM[0x2230] & 0xb0) == 0xb0) // CC1
{
SA1.in_char_dma = TRUE;
Memory.FillRAM[0x2300] |= 0x20;
if (Memory.FillRAM[0x2201] & 0x20)
{
Memory.FillRAM[0x2202] &= ~0x20;
CPU.IRQExternal = TRUE;
}
}
break;
case 0x2237: // DMA destination start address (HL)
Memory.FillRAM[0x2237] = byte;
if ((Memory.FillRAM[0x2230] & 0xa4) == 0x84) // Normal DMA to BW-RAM
S9xSA1DMA();
break;
case 0x2238: // DMA terminal counter (L)
case 0x2239: // DMA terminal counter (H)
break;
case 0x223f: // BW-RAM bitmap format
SA1.VirtualBitmapFormat = (byte & 0x80) ? 2 : 4;
break;
case 0x2240: // bitmap register 0
case 0x2241: // bitmap register 1
case 0x2242: // bitmap register 2
case 0x2243: // bitmap register 3
case 0x2244: // bitmap register 4
case 0x2245: // bitmap register 5
case 0x2246: // bitmap register 6
case 0x2247: // bitmap register 7
case 0x2248: // bitmap register 8
case 0x2249: // bitmap register 9
case 0x224a: // bitmap register A
case 0x224b: // bitmap register B
case 0x224c: // bitmap register C
case 0x224d: // bitmap register D
case 0x224e: // bitmap register E
break;
case 0x224f: // bitmap register F
Memory.FillRAM[0x224f] = byte;
if ((Memory.FillRAM[0x2230] & 0xb0) == 0xa0) // CC2
{
memmove(&Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + SA1.in_char_dma * 16, &Memory.FillRAM[0x2240], 16);
SA1.in_char_dma = (SA1.in_char_dma + 1) & 7;
if ((SA1.in_char_dma & 3) == 0)
S9xSA1CharConv2();
}
break;
case 0x2250: // arithmetic control
if (byte & 2)
SA1.sum = 0;
SA1.arithmetic_op = byte & 3;
break;
case 0x2251: // multiplicand / dividend (L)
SA1.op1 = (SA1.op1 & 0xff00) | byte;
break;
case 0x2252: // multiplicand / dividend (H)
SA1.op1 = (SA1.op1 & 0x00ff) | (byte << 8);
break;
case 0x2253: // multiplier / divisor (L)
SA1.op2 = (SA1.op2 & 0xff00) | byte;
break;
case 0x2254: // multiplier / divisor (H)
SA1.op2 = (SA1.op2 & 0x00ff) | (byte << 8);
switch (SA1.arithmetic_op)
{
case 0: // signed multiplication
SA1.sum = (int16) SA1.op1 * (int16) SA1.op2;
SA1.op2 = 0;
break;
case 1: // unsigned division
if (SA1.op2 == 0)
SA1.sum = 0;
else
{
int16 dividend = (int16) SA1.op1;
uint16 divisor = (uint16) SA1.op2;
uint16 remainder = (dividend >= 0) ? dividend % divisor : (dividend % divisor) + divisor;
uint16 quotient = (dividend - remainder) / divisor;
SA1.sum = (remainder << 16) | quotient;
}
SA1.op1 = 0;
SA1.op2 = 0;
break;
case 2: // cumulative sum
default:
SA1.sum += (int16) SA1.op1 * (int16) SA1.op2;
SA1.overflow = (SA1.sum >= (1ULL << 40));
SA1.sum &= (1ULL << 40) - 1;
SA1.op2 = 0;
break;
}
break;
case 0x2258: // variable bit-field length / auto inc / start
Memory.FillRAM[0x2258] = byte;
S9xSA1ReadVariableLengthData(TRUE, FALSE);
return;
case 0x2259: // variable bit-field start address (LL)
case 0x225a: // variable bit-field start address (LH)
case 0x225b: // variable bit-field start address (HL)
Memory.FillRAM[address] = byte;
// XXX: ???
SA1.variable_bit_pos = 0;
S9xSA1ReadVariableLengthData(FALSE, TRUE);
return;
default:
break;
}
if (address >= 0x2200 && address <= 0x22ff)
Memory.FillRAM[address] = byte;
}
static void S9xSA1CharConv2 (void)
{
uint32 dest = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8);
uint32 offset = (SA1.in_char_dma & 7) ? 0 : 1;
int depth = (Memory.FillRAM[0x2231] & 3) == 0 ? 8 : (Memory.FillRAM[0x2231] & 3) == 1 ? 4 : 2;
int bytes_per_char = 8 * depth;
uint8 *p = &Memory.FillRAM[0x3000] + (dest & 0x7ff) + offset * bytes_per_char;
uint8 *q = &Memory.ROM[CMemory::MAX_ROM_SIZE - 0x10000] + offset * 64;
switch (depth)
{
case 2:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
}
p += 2;
}
break;
case 4:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
}
p += 2;
}
break;
case 8:
for (int l = 0; l < 8; l++, q += 8)
{
for (int b = 0; b < 8; b++)
{
uint8 r = *(q + b);
*(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1);
*(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1);
*(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1);
*(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1);
*(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1);
*(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1);
*(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1);
*(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1);
}
p += 2;
}
break;
}
}
static void S9xSA1DMA (void)
{
uint32 src = Memory.FillRAM[0x2232] | (Memory.FillRAM[0x2233] << 8) | (Memory.FillRAM[0x2234] << 16);
uint32 dst = Memory.FillRAM[0x2235] | (Memory.FillRAM[0x2236] << 8) | (Memory.FillRAM[0x2237] << 16);
uint32 len = Memory.FillRAM[0x2238] | (Memory.FillRAM[0x2239] << 8);
uint8 *s, *d;
switch (Memory.FillRAM[0x2230] & 3)
{
case 0: // ROM
s = SA1.Map[((src & 0xffffff) >> MEMMAP_SHIFT)];
if (s >= (uint8 *) CMemory::MAP_LAST)
s += (src & 0xffff);
else
s = Memory.ROM + (src & 0xffff);
break;
case 1: // BW-RAM
src &= Memory.SRAMMask;
len &= Memory.SRAMMask;
s = Memory.SRAM + src;
break;
default:
case 2:
src &= 0x3ff;
len &= 0x3ff;
s = &Memory.FillRAM[0x3000] + src;
break;
}
if (Memory.FillRAM[0x2230] & 4)
{
dst &= Memory.SRAMMask;
len &= Memory.SRAMMask;
d = Memory.SRAM + dst;
}
else
{
dst &= 0x3ff;
len &= 0x3ff;
d = &Memory.FillRAM[0x3000] + dst;
}
memmove(d, s, len);
// SA-1 DMA IRQ control
Memory.FillRAM[0x2301] |= 0x20;
if (Memory.FillRAM[0x220a] & 0x20)
Memory.FillRAM[0x220b] &= ~0x20;
}
static void S9xSA1ReadVariableLengthData (bool8 inc, bool8 no_shift)
{
uint32 addr = Memory.FillRAM[0x2259] | (Memory.FillRAM[0x225a] << 8) | (Memory.FillRAM[0x225b] << 16);
uint8 shift = Memory.FillRAM[0x2258] & 15;
if (no_shift)
shift = 0;
else
if (shift == 0)
shift = 16;
uint8 s = shift + SA1.variable_bit_pos;
if (s >= 16)
{
addr += (s >> 4) << 1;
s &= 15;
}
uint32 data = S9xSA1GetWord(addr) | (S9xSA1GetWord(addr + 2) << 16);
data >>= s;
Memory.FillRAM[0x230c] = (uint8) data;
Memory.FillRAM[0x230d] = (uint8) (data >> 8);
if (inc)
{
SA1.variable_bit_pos = (SA1.variable_bit_pos + shift) & 15;
Memory.FillRAM[0x2259] = (uint8) addr;
Memory.FillRAM[0x225a] = (uint8) (addr >> 8);
Memory.FillRAM[0x225b] = (uint8) (addr >> 16);
}
}
uint8 S9xSA1GetByte (uint32 address)
{
uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *)CMemory::MAP_LAST)
{
SA1.Cycles += SA1.MemSpeed;
return (*(GetAddress + (address & 0xffff)));
}
switch ((pint) GetAddress)
{
case CMemory::MAP_PPU:
SA1.Cycles += ONE_CYCLE;
return (S9xGetSA1(address & 0xffff));
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_SA1RAM:
SA1.Cycles += ONE_CYCLE * 2;
return (*(Memory.SRAM + (address & 0x3ffff)));
case CMemory::MAP_BWRAM:
SA1.Cycles += ONE_CYCLE * 2;
return (*(SA1.BWRAM + (address & 0x1fff)));
case CMemory::MAP_BWRAM_BITMAP:
SA1.Cycles += ONE_CYCLE * 2;
address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
return ((Memory.SRAM[(address >> 2) & 0x3ffff] >> ((address & 3) << 1)) & 3);
else
return ((Memory.SRAM[(address >> 1) & 0x3ffff] >> ((address & 1) << 2)) & 15);
case CMemory::MAP_BWRAM_BITMAP2:
SA1.Cycles += ONE_CYCLE * 2;
address = (address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
return ((SA1.BWRAM[(address >> 2) & 0x3ffff] >> ((address & 3) << 1)) & 3);
else
return ((SA1.BWRAM[(address >> 1) & 0x3ffff] >> ((address & 1) << 2)) & 15);
default:
SA1.Cycles += ONE_CYCLE;
return (SA1OpenBus);
}
}
uint16 S9xSA1GetWord (uint32 address, s9xwrap_t w)
{
PC_t a;
SA1OpenBus = S9xSA1GetByte(address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = address;
a.B.xPCl++;
return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8));
case WRAP_BANK:
a.xPBPC = address;
a.W.xPC++;
return (SA1OpenBus | (S9xSA1GetByte(a.xPBPC) << 8));
case WRAP_NONE:
default:
return (SA1OpenBus | (S9xSA1GetByte(address + 1) << 8));
}
}
void S9xSA1SetByte (uint8 byte, uint32 address)
{
uint8 *SetAddress = SA1.WriteMap[(address & 0xffffff) >> MEMMAP_SHIFT];
if (SetAddress >= (uint8 *) CMemory::MAP_LAST)
{
*(SetAddress + (address & 0xffff)) = byte;
return;
}
switch ((pint) SetAddress)
{
case CMemory::MAP_PPU:
S9xSetSA1(byte, address & 0xffff);
return;
case CMemory::MAP_LOROM_SRAM:
case CMemory::MAP_HIROM_SRAM:
case CMemory::MAP_SA1RAM:
*(Memory.SRAM + (address & 0x3ffff)) = byte;
return;
case CMemory::MAP_BWRAM:
*(SA1.BWRAM + (address & 0x1fff)) = byte;
return;
case CMemory::MAP_BWRAM_BITMAP:
address -= 0x600000;
if (SA1.VirtualBitmapFormat == 2)
{
uint8 *ptr = &Memory.SRAM[(address >> 2) & 0x3ffff];
*ptr &= ~(3 << ((address & 3) << 1));
*ptr |= (byte & 3) << ((address & 3) << 1);
}
else
{
uint8 *ptr = &Memory.SRAM[(address >> 1) & 0x3ffff];
*ptr &= ~(15 << ((address & 1) << 2));
*ptr |= (byte & 15) << ((address & 1) << 2);
}
return;
case CMemory::MAP_BWRAM_BITMAP2:
address = (address & 0xffff) - 0x6000;
if (SA1.VirtualBitmapFormat == 2)
{
uint8 *ptr = &SA1.BWRAM[(address >> 2) & 0x3ffff];
*ptr &= ~(3 << ((address & 3) << 1));
*ptr |= (byte & 3) << ((address & 3) << 1);
}
else
{
uint8 *ptr = &SA1.BWRAM[(address >> 1) & 0x3ffff];
*ptr &= ~(15 << ((address & 1) << 2));
*ptr |= (byte & 15) << ((address & 1) << 2);
}
return;
default:
return;
}
}
void S9xSA1SetWord (uint16 Word, uint32 address, enum s9xwrap_t w, enum s9xwriteorder_t o)
{
PC_t a;
if (!o)
S9xSA1SetByte((uint8) Word, address);
switch (w)
{
case WRAP_PAGE:
a.xPBPC = address;
a.B.xPCl++;
S9xSA1SetByte(Word >> 8, a.xPBPC);
break;
case WRAP_BANK:
a.xPBPC = address;
a.W.xPC++;
S9xSA1SetByte(Word >> 8, a.xPBPC);
break;
case WRAP_NONE:
default:
S9xSA1SetByte(Word >> 8, address + 1);
break;
}
if (o)
S9xSA1SetByte((uint8) Word, address);
}
void S9xSA1SetPCBase (uint32 address)
{
SA1Registers.PBPC = address & 0xffffff;
SA1.ShiftedPB = address & 0xff0000;
// FIXME
SA1.MemSpeed = ONE_CYCLE;
if ((address & 0xc00000) == 0x400000 || (address & 0x40e000) == 0x6000)
{
SA1.MemSpeed = TWO_CYCLES;
}
SA1.MemSpeedx2 = SA1.MemSpeed << 1;
uint8 *GetAddress = SA1.Map[(address & 0xffffff) >> MEMMAP_SHIFT];
if (GetAddress >= (uint8 *) CMemory::MAP_LAST)
{
SA1.PCBase = GetAddress;
return;
}
switch ((pint) GetAddress)
{
case CMemory::MAP_LOROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
SA1.PCBase = NULL;
else
SA1.PCBase = (Memory.SRAM + ((((address & 0xff0000) >> 1) | (address & 0x7fff)) & Memory.SRAMMask)) - (address & 0xffff);
return;
case CMemory::MAP_HIROM_SRAM:
if ((Memory.SRAMMask & MEMMAP_MASK) != MEMMAP_MASK)
SA1.PCBase = NULL;
else
SA1.PCBase = (Memory.SRAM + (((address & 0x7fff) - 0x6000 + ((address & 0xf0000) >> 3)) & Memory.SRAMMask)) - (address & 0xffff);
return;
case CMemory::MAP_BWRAM:
SA1.PCBase = SA1.BWRAM - 0x6000 - (address & 0x8000);
return;
case CMemory::MAP_SA1RAM:
SA1.PCBase = Memory.SRAM;
return;
default:
SA1.PCBase = NULL;
return;
}
}