porting project to support linux... std::vector<std::uint8_t> module_data is not page aligned and so qemu shits itself. going to need to re-write some stuff...

dev
IDontCode 3 years ago
parent 1385a7cfe2
commit 0549d95b5d

@ -1 +1 @@
Subproject commit 1b6875d18825529907289bc87990fed5d99e7f96
Subproject commit dd7d3777ad10373d0eeb23c118e4bdcfc7464494

@ -1,14 +1,14 @@
#pragma once
#include <functional>
#include <Zydis/Zydis.h>
#include <unicorn/unicorn.h>
#include <Zydis/Zydis.h>
#include <atomic>
#include <fstream>
#include <functional>
#include <map>
#include <nt/image.hpp>
#include <vector>
#include <xtils.hpp>
#include <vmprofiler.hpp>
#define PAGE_4KB 0x1000
#define STACK_SIZE PAGE_4KB * 512
@ -27,12 +27,11 @@
#define MOV_RAX_0_SIG "\x48\xB8\x00\x00\x00\x00\x00\x00\x00\x00"
#define MOV_RAX_0_MASK "xxxxxxxxxx"
static_assert( sizeof MOV_RAX_0_SIG == sizeof MOV_RAX_0_MASK, "signature and mask sizes are wrong..." );
static_assert(sizeof MOV_RAX_0_SIG == sizeof MOV_RAX_0_MASK,
"signature and mask sizes are wrong...");
namespace engine
{
class unpack_t
{
namespace engine {
class unpack_t {
public:
explicit unpack_t(const std::vector<std::uint8_t> &bin);
~unpack_t(void);
@ -55,15 +54,20 @@ namespace engine
static void load_library_hook(uc_engine *, unpack_t *);
static void uc_strcpy(uc_engine *, char *buff, std::uintptr_t addr);
static bool iat_dispatcher( uc_engine *uc, uint64_t address, uint32_t size, unpack_t *unpack );
static bool unpack_section_callback( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value,
static bool iat_dispatcher(uc_engine *uc, uint64_t address, uint32_t size,
unpack_t *unpack);
static bool code_exec_callback( uc_engine *uc, uint64_t address, uint32_t size, unpack_t *unpack );
static void invalid_mem( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value,
static bool unpack_section_callback(uc_engine *uc, uc_mem_type type,
uint64_t address, int size, int64_t value,
unpack_t *unpack);
std::vector< std::uintptr_t > loaded_modules;
static bool code_exec_callback(uc_engine *uc, uint64_t address, uint32_t size,
unpack_t *unpack);
static void invalid_mem(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, unpack_t *unpack);
std::map<std::string, std::uintptr_t> loaded_modules;
std::map<std::string, std::pair<std::uint32_t, iat_hook_t> > iat_hooks = {
{"LocalAlloc", {LOCAL_ALLOC_VECTOR, &local_alloc_hook}},
{"LocalFree", {LOCAL_FREE_VECTOR, &local_free_hook}},

@ -1,6 +1,7 @@
#pragma once
#include <unicorn/unicorn.h>
#include <atomic>
#include <nt/image.hpp>
#include <vmprofiler.hpp>
@ -10,21 +11,17 @@
#define STACK_BASE 0xFFFF000000000000
#define IAT_VECTOR_TABLE 0xFFFFF00000000000
namespace vm
{
namespace vm {
inline bool g_force_emu = false;
class emu_t
{
struct cpu_ctx_t
{
class emu_t {
struct cpu_ctx_t {
std::uintptr_t rip;
uc_context *context;
std::uint8_t stack[STACK_SIZE];
};
struct code_block_data_t
{
struct code_block_data_t {
vm::instrs::code_block_t code_block;
std::shared_ptr<cpu_ctx_t> cpu_ctx;
std::shared_ptr<vm::ctx_t> g_vm_ctx;
@ -51,8 +48,9 @@ namespace vm
uc_err create_entry(vmp2::v2::entry_t *entry);
static void int_callback(uc_engine *uc, std::uint32_t intno, emu_t *obj);
static bool code_exec_callback( uc_engine *uc, uint64_t address, uint32_t size, emu_t *obj );
static void invalid_mem( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value,
static bool code_exec_callback(uc_engine *uc, uint64_t address, uint32_t size,
emu_t *obj);
static void invalid_mem(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, emu_t *obj);
};
} // namespace vm

@ -1,121 +1,139 @@
#include "unpacker.hpp"
#include "vmemu_t.hpp"
#include <cli-parser.hpp>
#include <fstream>
#include <iostream>
#include <xtils.hpp>
int __cdecl main( int argc, const char *argv[] )
{
argparse::argument_parser_t parser( "VMEmu", "VMProtect 2 VM Handler Emulator" );
parser.add_argument().name( "--vmentry" ).description( "relative virtual address to a vm entry..." );
parser.add_argument().name( "--bin" ).description( "path to unpacked virtualized binary..." );
parser.add_argument().name( "--out" ).description( "output file name..." );
#include "unpacker.hpp"
#include "vmemu_t.hpp"
int __cdecl main(int argc, const char *argv[]) {
argparse::argument_parser_t parser("VMEmu",
"VMProtect 2 VM Handler Emulator");
parser.add_argument()
.name("--vmentry")
.description("relative virtual address to a vm entry...");
parser.add_argument()
.name("--bin")
.description("path to unpacked virtualized binary...")
.required(true);
parser.add_argument()
.name("--out")
.description("output file name...")
.required(true);
parser.add_argument().name("--unpack").description("unpack a vmp2 binary...");
parser.add_argument().names( { "-f", "--force" } ).description( "force emulation of unknown vm handlers...\n" );
parser.add_argument()
.name( "--emuall" )
.description( "scan for all vm enters and trace all of them... this may take a few minutes..." );
.names({"-f", "--force"})
.description("force emulation of unknown vm handlers...");
parser.add_argument()
.name( "--locateconst" )
.description( "scan all vm enters for a specific constant value...\n" );
.name("--emuall")
.description(
"scan for all vm enters and trace all of them... this may take a few "
"minutes...");
parser.enable_help();
auto result = parser.parse(argc, argv);
if ( result )
{
std::printf( "[!] error parsing commandline arguments... reason = %s\n", result.what().c_str() );
if (result) {
std::printf("[!] error parsing commandline arguments... reason = %s\n",
result.what().c_str());
return -1;
}
if ( parser.exists( "help" ) )
{
if (parser.exists("help")) {
parser.print_help();
return 0;
}
auto umtils = xtils::um_t::get_instance();
vm::util::init();
vm::g_force_emu = parser.exists("force");
if ( !parser.exists( "unpack" ) && parser.exists( "vmentry" ) && parser.exists( "bin" ) && parser.exists( "out" ) )
{
const auto module_base = reinterpret_cast< std::uintptr_t >(
LoadLibraryExA( parser.get< std::string >( "bin" ).c_str(), NULL, DONT_RESOLVE_DLL_REFERENCES ) );
if ( !module_base )
{
std::vector<std::uint8_t> module_data, tmp, unpacked_bin;
if (!vm::util::open_binary_file(parser.get<std::string>("bin"),
module_data)) {
std::printf("[!] failed to open binary file...\n");
return -1;
}
const auto vm_entry_rva = std::strtoull( parser.get< std::string >( "vmentry" ).c_str(), nullptr, 16 );
const auto image_base = umtils->image_base( parser.get< std::string >( "bin" ).c_str() );
const auto image_size = NT_HEADER( module_base )->OptionalHeader.SizeOfImage;
auto img = reinterpret_cast<win::image_t<> *>(module_data.data());
auto image_size = img->get_nt_headers()->optional_header.size_image;
std::printf( "> image base = %p, image size = %p, module base = %p\n", image_base, image_size, module_base );
tmp.resize(image_size);
std::memcpy(tmp.data(), module_data.data(), 0x1000);
std::for_each(img->get_nt_headers()->get_sections(),
img->get_nt_headers()->get_sections() +
img->get_nt_headers()->file_header.num_sections,
[&](const auto &section_header) {
std::memcpy(tmp.data() + section_header.virtual_address,
module_data.data() + section_header.ptr_raw_data,
section_header.size_raw_data);
});
if ( !image_base || !image_size || !module_base )
{
const auto module_base = reinterpret_cast<std::uintptr_t>(tmp.data());
const auto image_base = img->get_nt_headers()->optional_header.image_base;
std::printf("> image base = %p, image size = %p, module base = %p\n",
image_base, image_size, module_base);
if (!image_base || !image_size || !module_base) {
std::printf("[!] failed to open binary on disk...\n");
return -1;
}
if (parser.exists("vmentry")) {
const auto vm_entry_rva =
std::strtoull(parser.get<std::string>("vmentry").c_str(), nullptr, 16);
std::vector<vm::instrs::code_block_t> code_blocks;
vm::ctx_t vmctx(module_base, image_base, image_size, vm_entry_rva);
if ( !vmctx.init() )
{
std::printf( "[!] failed to init vmctx... this can be for many reasons..."
" try validating your vm entry rva... make sure the binary is unpacked and is"
if (!vmctx.init()) {
std::printf(
"[!] failed to init vmctx... this can be for many reasons..."
" try validating your vm entry rva... make sure the binary is "
"unpacked and is"
"protected with VMProtect 2...\n");
return -1;
}
vm::emu_t emu(&vmctx);
if ( !emu.init() )
{
if (!emu.init()) {
std::printf("[!] failed to init emulator...\n");
return -1;
}
if ( !emu.get_trace( code_blocks ) )
{
std::printf( "[!] something failed during tracing, review the console for more information...\n" );
if (!emu.get_trace(code_blocks)) {
std::printf(
"[!] something failed during tracing, review the console for more "
"information...\n");
return -1;
}
std::printf("> number of blocks = %d\n", code_blocks.size());
for ( auto &code_block : code_blocks )
{
for (auto &code_block : code_blocks) {
std::printf("> code block starts at = %p\n", code_block.vip_begin);
std::printf( "> number of virtual instructions = %d\n", code_block.vinstrs.size() );
std::printf( "> does this code block have a jcc? %s\n", code_block.jcc.has_jcc ? "yes" : "no" );
if ( code_block.jcc.has_jcc )
{
switch ( code_block.jcc.type )
{
case vm::instrs::jcc_type::branching:
{
std::printf( "> branch 1 = %p, branch 2 = %p\n", code_block.jcc.block_addr[ 0 ],
std::printf("> number of virtual instructions = %d\n",
code_block.vinstrs.size());
std::printf("> does this code block have a jcc? %s\n",
code_block.jcc.has_jcc ? "yes" : "no");
if (code_block.jcc.has_jcc) {
switch (code_block.jcc.type) {
case vm::instrs::jcc_type::branching: {
std::printf("> branch 1 = %p, branch 2 = %p\n",
code_block.jcc.block_addr[0],
code_block.jcc.block_addr[1]);
break;
}
case vm::instrs::jcc_type::absolute:
{
case vm::instrs::jcc_type::absolute: {
std::printf("> branch 1 = %p\n", code_block.jcc.block_addr[0]);
break;
}
case vm::instrs::jcc_type::switch_case:
{
case vm::instrs::jcc_type::switch_case: {
std::printf("> switch case blocks:\n");
for (auto idx = 0u; idx < code_block.jcc.block_addr.size(); ++idx)
std::printf( " case block at = 0x%p\n", code_block.jcc.block_addr[ idx ] );
std::printf(" case block at = 0x%p\n",
code_block.jcc.block_addr[idx]);
break;
}
}
@ -137,14 +155,16 @@ int __cdecl main( int argc, const char *argv[] )
vmp2::v4::rtn_t rtn;
std::ofstream output(parser.get<std::string>("out"), std::ios::binary);
output.write( reinterpret_cast< const char * >( &file_header ), sizeof file_header );
output.write(reinterpret_cast<const char *>(&file_header),
sizeof file_header);
output.write(reinterpret_cast<const char *>(module_base), image_size);
std::vector<vmp2::v4::code_block_t *> vmp2_blocks;
for ( const auto &code_block : code_blocks )
{
const auto _code_block_size = sizeof vmp2::v4::code_block_t + ( code_block.jcc.block_addr.size() * 8 ) +
code_block.vinstrs.size() * sizeof vm::instrs::virt_instr_t;
for (const auto &code_block : code_blocks) {
const auto _code_block_size =
sizeof(vmp2::v4::code_block_t) +
(code_block.jcc.block_addr.size() * 8) +
code_block.vinstrs.size() * sizeof(vm::instrs::virt_instr_t);
vmp2::v4::code_block_t *_code_block =
reinterpret_cast<vmp2::v4::code_block_t *>(malloc(_code_block_size));
@ -162,7 +182,8 @@ int __cdecl main( int argc, const char *argv[] )
_code_block->branch_addr[idx] = code_block.jcc.block_addr[idx];
auto block_vinstrs = reinterpret_cast<vm::instrs::virt_instr_t *>(
reinterpret_cast< std::uintptr_t >( _code_block ) + sizeof vmp2::v4::code_block_t +
reinterpret_cast<std::uintptr_t>(_code_block) +
sizeof(vmp2::v4::code_block_t) +
(code_block.jcc.block_addr.size() * 8));
for (auto idx = 0u; idx < code_block.vinstrs.size(); ++idx)
@ -171,10 +192,12 @@ int __cdecl main( int argc, const char *argv[] )
vmp2_blocks.push_back(_code_block);
}
std::size_t code_blocks_size = sizeof( vmp2::v4::rtn_t::size ) + sizeof( vmp2::v4::rtn_t::code_block_count ) +
std::size_t code_blocks_size = sizeof(vmp2::v4::rtn_t::size) +
sizeof(vmp2::v4::rtn_t::code_block_count) +
sizeof(vmp2::v4::rtn_t::vm_enter_offset);
std::for_each( vmp2_blocks.begin(), vmp2_blocks.end(), [ & ]( vmp2::v4::code_block_t *vmp2_block ) -> void {
std::for_each(vmp2_blocks.begin(), vmp2_blocks.end(),
[&](vmp2::v4::code_block_t *vmp2_block) -> void {
code_blocks_size += vmp2_block->next_block_offset;
});
@ -182,82 +205,72 @@ int __cdecl main( int argc, const char *argv[] )
rtn.code_block_count = vmp2_blocks.size();
rtn.vm_enter_offset = vm_entry_rva;
output.write( reinterpret_cast< const char * >( &rtn ), sizeof( vmp2::v4::rtn_t::size ) +
output.write(reinterpret_cast<const char *>(&rtn),
sizeof(vmp2::v4::rtn_t::size) +
sizeof(vmp2::v4::rtn_t::code_block_count) +
sizeof(vmp2::v4::rtn_t::vm_enter_offset));
std::for_each( vmp2_blocks.begin(), vmp2_blocks.end(), [ & ]( vmp2::v4::code_block_t *vmp2_block ) -> void {
output.write( reinterpret_cast< const char * >( vmp2_block ), vmp2_block->next_block_offset );
std::for_each(vmp2_blocks.begin(), vmp2_blocks.end(),
[&](vmp2::v4::code_block_t *vmp2_block) -> void {
output.write(reinterpret_cast<const char *>(vmp2_block),
vmp2_block->next_block_offset);
free(vmp2_block);
});
output.close();
}
else if ( parser.exists( "unpack" ) && parser.exists( "out" ) )
{
std::vector< std::uint8_t > packed_bin, unpacked_bin;
if ( !umtils->open_binary_file( parser.get< std::string >( "unpack" ), packed_bin ) )
{
std::printf( "> failed to read bin off disk...\n" );
return -1;
}
engine::unpack_t unpacker( packed_bin );
} else if (parser.exists("unpack")) {
engine::unpack_t unpacker(module_data);
if ( !unpacker.init() )
{
if (!unpacker.init()) {
std::printf("> failed to init unpacker...\n");
return -1;
}
if ( !unpacker.unpack( unpacked_bin ) )
{
if (!unpacker.unpack(unpacked_bin)) {
std::printf("> failed to unpack binary... refer to log above...\n");
return -1;
}
std::printf( "> writing result to = %s\n", parser.get< std::string >( "out" ).c_str() );
std::printf("> writing result to = %s\n",
parser.get<std::string>("out").c_str());
std::ofstream output(parser.get<std::string>("out"), std::ios::binary);
output.write( reinterpret_cast< char * >( unpacked_bin.data() ), unpacked_bin.size() );
output.close();
}
else if ( parser.exists( "bin" ) && parser.exists( "emuall" ) && parser.exists( "out" ) )
{
const auto module_base = reinterpret_cast< std::uintptr_t >(
LoadLibraryExA( parser.get< std::string >( "bin" ).c_str(), NULL, DONT_RESOLVE_DLL_REFERENCES ) );
output.write(reinterpret_cast<char *>(unpacked_bin.data()),
unpacked_bin.size());
const auto image_base = umtils->image_base( parser.get< std::string >( "bin" ).c_str() );
const auto image_size = NT_HEADER( module_base )->OptionalHeader.SizeOfImage;
output.close();
} else if (parser.exists("emuall")) {
auto entries = vm::locate::get_vm_entries(module_base, image_size);
auto vm_handler_tables = vm::locate::all_handler_tables( module_base );
auto vm_enters = vm::locate::all_vm_enters( module_base, vm_handler_tables );
std::vector<
std::pair<std::uintptr_t, std::vector<vm::instrs::code_block_t> > >
virt_rtns;
std::vector< std::pair< std::uintptr_t, std::vector< vm::instrs::code_block_t > > > virt_rtns;
for ( const auto &[ vm_enter_offset, encrypted_rva ] : vm_enters )
{
for (const auto &[vm_enter_offset, encrypted_rva, hndlr_tble] : entries) {
std::printf("> emulating vm enter at rva = 0x%x\n", vm_enter_offset);
vm::ctx_t vm_ctx(module_base, image_base, image_size, vm_enter_offset);
if ( !vm_ctx.init() )
{
std::printf( "[!] failed to init vmctx... this can be for many reasons..."
" try validating your vm entry rva... make sure the binary is unpacked and is"
if (!vm_ctx.init()) {
std::printf(
"[!] failed to init vmctx... this can be for many reasons..."
" try validating your vm entry rva... make sure the binary is "
"unpacked and is"
"protected with VMProtect 2...\n");
return -1;
}
vm::emu_t emu(&vm_ctx);
if ( !emu.init() )
{
if (!emu.init()) {
std::printf("[!] failed to init emulator...\n");
return -1;
}
std::vector<vm::instrs::code_block_t> code_blocks;
if ( !emu.get_trace( code_blocks ) )
{
std::printf( "[!] something failed during tracing, review the console for more information...\n" );
if (!emu.get_trace(code_blocks)) {
std::printf(
"[!] something failed during tracing, review the console for more "
"information...\n");
continue;
}
@ -281,21 +294,23 @@ int __cdecl main( int argc, const char *argv[] )
file_header.rtn_offset = image_size + sizeof file_header;
std::ofstream output(parser.get<std::string>("out"), std::ios::binary);
output.write( reinterpret_cast< const char * >( &file_header ), sizeof file_header );
output.write(reinterpret_cast<const char *>(&file_header),
sizeof file_header);
output.write(reinterpret_cast<const char *>(module_base), image_size);
for ( auto &[ vm_enter_offset, virt_rtn ] : virt_rtns )
{
vmp2::v4::rtn_t rtn{ virt_rtn.size() };
for (auto &[vm_enter_offset, virt_rtn] : virt_rtns) {
vmp2::v4::rtn_t rtn{(u32)virt_rtn.size()};
std::vector<vmp2::v4::code_block_t *> vmp2_blocks;
for ( const auto &code_block : virt_rtn )
{
const auto _code_block_size = sizeof vmp2::v4::code_block_t + ( code_block.jcc.block_addr.size() * 8 ) +
code_block.vinstrs.size() * sizeof vm::instrs::virt_instr_t;
for (const auto &code_block : virt_rtn) {
const auto _code_block_size =
sizeof(vmp2::v4::code_block_t) +
(code_block.jcc.block_addr.size() * 8) +
code_block.vinstrs.size() * sizeof(vm::instrs::virt_instr_t);
vmp2::v4::code_block_t *_code_block =
reinterpret_cast< vmp2::v4::code_block_t * >( malloc( _code_block_size ) );
reinterpret_cast<vmp2::v4::code_block_t *>(
malloc(_code_block_size));
// serialize block meta data...
_code_block->vip_begin = code_block.vip_begin;
@ -310,7 +325,8 @@ int __cdecl main( int argc, const char *argv[] )
_code_block->branch_addr[idx] = code_block.jcc.block_addr[idx];
auto block_vinstrs = reinterpret_cast<vm::instrs::virt_instr_t *>(
reinterpret_cast< std::uintptr_t >( _code_block ) + sizeof vmp2::v4::code_block_t +
reinterpret_cast<std::uintptr_t>(_code_block) +
sizeof(vmp2::v4::code_block_t) +
(code_block.jcc.block_addr.size() * 8));
for (auto idx = 0u; idx < code_block.vinstrs.size(); ++idx)
@ -323,7 +339,8 @@ int __cdecl main( int argc, const char *argv[] )
sizeof(vmp2::v4::rtn_t::vm_enter_offset) +
sizeof(vmp2::v4::rtn_t::code_block_count);
std::for_each( vmp2_blocks.begin(), vmp2_blocks.end(), [ & ]( vmp2::v4::code_block_t *vmp2_block ) -> void {
std::for_each(vmp2_blocks.begin(), vmp2_blocks.end(),
[&](vmp2::v4::code_block_t *vmp2_block) -> void {
code_blocks_size += vmp2_block->next_block_offset;
});
@ -331,72 +348,18 @@ int __cdecl main( int argc, const char *argv[] )
rtn.code_block_count = vmp2_blocks.size();
rtn.vm_enter_offset = vm_enter_offset;
output.write( reinterpret_cast< const char * >( &rtn ), sizeof( vmp2::v4::rtn_t::size ) +
output.write(reinterpret_cast<const char *>(&rtn),
sizeof(vmp2::v4::rtn_t::size) +
sizeof(vmp2::v4::rtn_t::code_block_count) +
sizeof(vmp2::v4::rtn_t::vm_enter_offset));
std::for_each( vmp2_blocks.begin(), vmp2_blocks.end(), [ & ]( vmp2::v4::code_block_t *vmp2_block ) -> void {
output.write( reinterpret_cast< const char * >( vmp2_block ), vmp2_block->next_block_offset );
std::for_each(vmp2_blocks.begin(), vmp2_blocks.end(),
[&](vmp2::v4::code_block_t *vmp2_block) -> void {
output.write(reinterpret_cast<const char *>(vmp2_block),
vmp2_block->next_block_offset);
free(vmp2_block);
});
}
output.close();
}
else if ( parser.exists( "bin" ) && parser.exists( "locateconst" ) )
{
const auto module_base = reinterpret_cast< std::uintptr_t >(
LoadLibraryExA( parser.get< std::string >( "bin" ).c_str(), NULL, DONT_RESOLVE_DLL_REFERENCES ) );
const auto const_val = std::strtoull( parser.get< std::string >( "locateconst" ).c_str(), nullptr, 16 );
const auto image_base = umtils->image_base( parser.get< std::string >( "bin" ).c_str() );
const auto image_size = NT_HEADER( module_base )->OptionalHeader.SizeOfImage;
auto vm_handler_tables = vm::locate::all_handler_tables( module_base );
auto vm_enters = vm::locate::all_vm_enters( module_base, vm_handler_tables );
std::printf( "> number of vm enters = %d\n", vm_enters.size() );
for ( const auto &[ vm_enter_offset, encrypted_rva ] : vm_enters )
{
std::printf( "> emulating vm enter at rva = 0x%x\n", vm_enter_offset );
vm::ctx_t vm_ctx( module_base, image_base, image_size, vm_enter_offset );
if ( !vm_ctx.init() )
{
std::printf( "[!] failed to init vmctx... this can be for many reasons..."
" try validating your vm entry rva... make sure the binary is unpacked and is"
"protected with VMProtect 2...\n" );
return -1;
}
vm::emu_t emu( &vm_ctx );
if ( !emu.init() )
{
std::printf( "[!] failed to init emulator...\n" );
return -1;
}
std::vector< vm::instrs::code_block_t > code_blocks;
if ( !emu.get_trace( code_blocks ) )
{
std::printf( "[!] something failed during tracing, review the console for more information...\n" );
return -1;
}
std::printf( "> number of blocks = %d\n", code_blocks.size() );
for ( auto &code_block : code_blocks )
{
for ( const auto &vinstr : code_block.vinstrs )
{
if ( vinstr.operand.has_imm && vinstr.operand.imm.u == const_val )
{
std::printf( "> found constant in vm enter at = 0x%x\n", vm_enter_offset );
std::getchar();
}
}
}
}
}
}

@ -1,49 +1,42 @@
#include <unpacker.hpp>
namespace engine
{
namespace engine {
unpack_t::unpack_t(const std::vector<std::uint8_t> &packed_bin)
: bin( packed_bin ), uc_ctx( nullptr ), heap_offset( 0ull ), pack_section_offset( 0ull )
{
: bin(packed_bin),
uc_ctx(nullptr),
heap_offset(0ull),
pack_section_offset(0ull) {
win_img = reinterpret_cast<win::image_t<> *>(bin.data());
img_base = win_img->get_nt_headers()->optional_header.image_base;
img_size = win_img->get_nt_headers()->optional_header.size_image;
std::printf("> image base = 0x%p, image size = 0x%x\n", img_base, img_size);
}
unpack_t::~unpack_t( void )
{
if ( uc_ctx )
uc_close( uc_ctx );
unpack_t::~unpack_t(void) {
if (uc_ctx) uc_close(uc_ctx);
for (auto &ptr : uc_hooks)
if ( ptr )
delete ptr;
if (ptr) delete ptr;
}
bool unpack_t::init( void )
{
bool unpack_t::init(void) {
uc_err err;
if ( ( err = uc_open( UC_ARCH_X86, UC_MODE_64, &uc_ctx ) ) )
{
if ((err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc_ctx))) {
std::printf("> uc_open err = %d\n", err);
return false;
}
if ( ( err = uc_mem_map( uc_ctx, IAT_VECTOR_TABLE, PAGE_4KB, UC_PROT_ALL ) ) )
{
if ((err = uc_mem_map(uc_ctx, IAT_VECTOR_TABLE, PAGE_4KB, UC_PROT_ALL))) {
std::printf("> uc_mem_map iat vector table err = %d\n", err);
return false;
}
if ( ( err = uc_mem_map( uc_ctx, STACK_BASE, STACK_SIZE, UC_PROT_ALL ) ) )
{
if ((err = uc_mem_map(uc_ctx, STACK_BASE, STACK_SIZE, UC_PROT_ALL))) {
std::printf("> uc_mem_map stack err, reason = %d\n", err);
return false;
}
if ( ( err = uc_mem_map( uc_ctx, img_base, img_size, UC_PROT_ALL ) ) )
{
if ((err = uc_mem_map(uc_ctx, img_base, img_size, UC_PROT_ALL))) {
std::printf("> map memory failed, reason = %d\n", err);
return false;
}
@ -53,8 +46,7 @@ namespace engine
{
memset(c3_page, 0xC3, PAGE_4KB);
if ( ( err = uc_mem_write( uc_ctx, IAT_VECTOR_TABLE, c3_page, PAGE_4KB ) ) )
{
if ((err = uc_mem_write(uc_ctx, IAT_VECTOR_TABLE, c3_page, PAGE_4KB))) {
std::printf("> failed to init iat vector table...\n");
free(c3_page);
return false;
@ -63,31 +55,36 @@ namespace engine
free(c3_page);
map_bin.resize(img_size);
memcpy( map_bin.data(), bin.data(), // copies pe headers (includes section headers)
memcpy(map_bin.data(),
bin.data(), // copies pe headers (includes section headers)
win_img->get_nt_headers()->optional_header.size_headers);
win::section_header_t *sec_begin = win_img->get_nt_headers()->get_sections(),
*sec_end = sec_begin + win_img->get_nt_headers()->file_header.num_sections;
std::for_each( sec_begin, sec_end, [ & ]( const win::section_header_t &sec_header ) {
memcpy( map_bin.data() + sec_header.virtual_address, bin.data() + sec_header.ptr_raw_data,
sec_header.size_raw_data );
*sec_end =
sec_begin +
win_img->get_nt_headers()->file_header.num_sections;
std::for_each(
sec_begin, sec_end, [&](const win::section_header_t &sec_header) {
memcpy(map_bin.data() + sec_header.virtual_address,
bin.data() + sec_header.ptr_raw_data, sec_header.size_raw_data);
});
auto basereloc_dir = win_img->get_directory( win::directory_id::directory_entry_basereloc );
auto reloc_dir = reinterpret_cast< win::reloc_directory_t * >( basereloc_dir->rva + map_bin.data() );
auto basereloc_dir =
win_img->get_directory(win::directory_id::directory_entry_basereloc);
auto reloc_dir = reinterpret_cast<win::reloc_directory_t *>(
basereloc_dir->rva + map_bin.data());
win::reloc_block_t *reloc_block = &reloc_dir->first_block;
// apply relocations to all sections...
while ( reloc_block->base_rva && reloc_block->size_block )
{
std::for_each( reloc_block->begin(), reloc_block->end(), [ & ]( win::reloc_entry_t &entry ) {
switch ( entry.type )
{
case win::reloc_type_id::rel_based_dir64:
{
auto reloc_at =
reinterpret_cast< std::uintptr_t * >( entry.offset + reloc_block->base_rva + map_bin.data() );
while (reloc_block->base_rva && reloc_block->size_block) {
std::for_each(
reloc_block->begin(), reloc_block->end(),
[&](win::reloc_entry_t &entry) {
switch (entry.type) {
case win::reloc_type_id::rel_based_dir64: {
auto reloc_at = reinterpret_cast<std::uintptr_t *>(
entry.offset + reloc_block->base_rva + map_bin.data());
*reloc_at = img_base + ((*reloc_at) - img_base);
break;
@ -102,75 +99,76 @@ namespace engine
// iat hook specific function...
for (auto import_dir = reinterpret_cast<win::import_directory_t *>(
win_img->get_directory( win::directory_id::directory_entry_import )->rva + map_bin.data() );
import_dir->rva_name; ++import_dir )
{
for ( auto iat_thunk =
reinterpret_cast< win::image_thunk_data_t<> * >( import_dir->rva_first_thunk + map_bin.data() );
iat_thunk->address; ++iat_thunk )
{
if ( iat_thunk->is_ordinal )
continue;
auto iat_name = reinterpret_cast< win::image_named_import_t * >( iat_thunk->address + map_bin.data() );
win_img->get_directory(win::directory_id::directory_entry_import)
->rva +
map_bin.data());
import_dir->rva_name; ++import_dir) {
for (auto iat_thunk = reinterpret_cast<win::image_thunk_data_t<> *>(
import_dir->rva_first_thunk + map_bin.data());
iat_thunk->address; ++iat_thunk) {
if (iat_thunk->is_ordinal) continue;
auto iat_name = reinterpret_cast<win::image_named_import_t *>(
iat_thunk->address + map_bin.data());
if (iat_hooks.find(iat_name->name) != iat_hooks.end())
iat_thunk->function = iat_hooks[ iat_name->name ].first + IAT_VECTOR_TABLE;
iat_thunk->function =
iat_hooks[iat_name->name].first + IAT_VECTOR_TABLE;
}
}
// map the entire map buffer into unicorn-engine since we have set everything else up...
if ( ( err = uc_mem_write( uc_ctx, img_base, map_bin.data(), map_bin.size() ) ) )
{
// map the entire map buffer into unicorn-engine since we have set everything
// else up...
if ((err = uc_mem_write(uc_ctx, img_base, map_bin.data(), map_bin.size()))) {
std::printf("> failed to write memory... reason = %d\n", err);
return false;
}
// setup unicorn-engine hooks on IAT vector table, sections with 0 raw size/ptr, and an invalid memory
// handler...
// setup unicorn-engine hooks on IAT vector table, sections with 0 raw
// size/ptr, and an invalid memory handler...
uc_hooks.push_back(new uc_hook);
if ( ( err = uc_hook_add( uc_ctx, uc_hooks.back(), UC_HOOK_CODE, &engine::unpack_t::iat_dispatcher, this,
IAT_VECTOR_TABLE, IAT_VECTOR_TABLE + PAGE_4KB ) ) )
{
if ((err = uc_hook_add(uc_ctx, uc_hooks.back(), UC_HOOK_CODE,
(void *)&engine::unpack_t::iat_dispatcher, this,
IAT_VECTOR_TABLE, IAT_VECTOR_TABLE + PAGE_4KB))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
uc_hooks.push_back(new uc_hook);
if ( ( err = uc_hook_add( uc_ctx, uc_hooks.back(),
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_FETCH_UNMAPPED |
UC_HOOK_INSN_INVALID,
&engine::unpack_t::invalid_mem, this, true, false ) ) )
{
if ((err = uc_hook_add(
uc_ctx, uc_hooks.back(),
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED |
UC_HOOK_MEM_FETCH_UNMAPPED | UC_HOOK_INSN_INVALID,
(void *)&engine::unpack_t::invalid_mem, this, true, false))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
// execution break points on all sections that are executable but have no physical size on disk...
// execution break points on all sections that are executable but have no
// physical size on disk...
std::for_each(sec_begin, sec_end, [&](win::section_header_t &header) {
if ( !header.ptr_raw_data && !header.size_raw_data && header.characteristics.mem_execute &&
header.characteristics.mem_write && !header.is_discardable() )
{
if (!header.ptr_raw_data && !header.size_raw_data &&
header.characteristics.mem_execute &&
header.characteristics.mem_write && !header.is_discardable()) {
uc_hooks.push_back(new uc_hook);
if ( ( err = uc_hook_add( uc_ctx, uc_hooks.back(), UC_HOOK_CODE | UC_HOOK_MEM_WRITE,
&engine::unpack_t::unpack_section_callback, this,
if ((err = uc_hook_add(
uc_ctx, uc_hooks.back(), UC_HOOK_CODE | UC_HOOK_MEM_WRITE,
(void *)&engine::unpack_t::unpack_section_callback, this,
header.virtual_address + img_base,
header.virtual_address + header.virtual_size + img_base ) ) )
{
header.virtual_address + header.virtual_size + img_base))) {
std::printf("> failed to add hook... reason = %d\n", err);
return false;
}
pack_section_offset = header.virtual_address + header.virtual_size;
}
else if ( header.characteristics.mem_execute )
{
} else if (header.characteristics.mem_execute) {
uc_hooks.push_back(new uc_hook);
if ( ( err = uc_hook_add( uc_ctx, uc_hooks.back(), UC_HOOK_CODE, &engine::unpack_t::code_exec_callback,
this, header.virtual_address + img_base,
header.virtual_address + header.virtual_size + img_base ) ) )
{
if ((err = uc_hook_add(
uc_ctx, uc_hooks.back(), UC_HOOK_CODE,
(void *)&engine::unpack_t::code_exec_callback, this,
header.virtual_address + img_base,
header.virtual_address + header.virtual_size + img_base))) {
std::printf("> failed to add hook... reason = %d\n", err);
return false;
}
@ -180,35 +178,31 @@ namespace engine
return true;
}
bool unpack_t::unpack( std::vector< std::uint8_t > &output )
{
bool unpack_t::unpack(std::vector<std::uint8_t> &output) {
uc_err err;
auto nt_headers = win_img->get_nt_headers();
std::uintptr_t rip = nt_headers->optional_header.entry_point + img_base, rsp = STACK_BASE + STACK_SIZE;
std::uintptr_t rip = nt_headers->optional_header.entry_point + img_base,
rsp = STACK_BASE + STACK_SIZE;
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RSP, &rsp ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RSP, &rsp))) {
std::printf("> uc_reg_write error, reason = %d\n", err);
return false;
}
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RIP, &rip ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RIP, &rip))) {
std::printf("> uc_reg_write error, reason = %d\n", err);
return false;
}
std::printf("> beginning execution at = 0x%p\n", rip);
if ( ( err = uc_emu_start( uc_ctx, rip, 0ull, 0ull, 0ull ) ) )
{
if ((err = uc_emu_start(uc_ctx, rip, 0ull, 0ull, 0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
output.resize(img_size);
if ( ( err = uc_mem_read( uc_ctx, img_base, output.data(), output.size() ) ) )
{
if ((err = uc_mem_read(uc_ctx, img_base, output.data(), output.size()))) {
std::printf("> uc_mem_read failed... err = %d\n", err);
return false;
}
@ -221,30 +215,30 @@ namespace engine
std::map<std::uint32_t, std::vector<std::uint16_t> > new_relocs;
// search executable sections for MOV RAX, 00 00 00 00 00 00 00 00...
std::for_each( sections, sections + section_cnt, [ & ]( win::section_header_t &header ) {
if ( header.characteristics.mem_execute )
{
std::for_each(
sections, sections + section_cnt, [&](win::section_header_t &header) {
if (header.characteristics.mem_execute) {
auto result = output.data() + header.virtual_address;
do
{
result = reinterpret_cast< std::uint8_t * >( xtils::um_t::get_instance()->sigscan(
do {
result = reinterpret_cast<std::uint8_t *>(vm::locate::sigscan(
result,
header.virtual_size -
(reinterpret_cast<std::uintptr_t>(result) -
( header.virtual_address + reinterpret_cast< std::uintptr_t >( output.data() ) ) ),
(header.virtual_address +
reinterpret_cast<std::uintptr_t>(output.data()))),
MOV_RAX_0_SIG, MOV_RAX_0_MASK));
if ( result )
{
if (result) {
result += 2; // advance ahead of the 0x48 0xB8...
// offset from section begin...
auto reloc_offset =
( reinterpret_cast< std::uintptr_t >( result ) ) -
reinterpret_cast< std::uintptr_t >( output.data() + header.virtual_address );
auto reloc_offset = (reinterpret_cast<std::uintptr_t>(result)) -
reinterpret_cast<std::uintptr_t>(
output.data() + header.virtual_address);
new_relocs[ ( header.virtual_address + reloc_offset ) & ~0xFFFull ].push_back( reloc_offset );
new_relocs[(header.virtual_address + reloc_offset) & ~0xFFFull]
.push_back(reloc_offset);
}
} while (result);
@ -260,14 +254,14 @@ namespace engine
auto sections = img->get_nt_headers()->get_sections();
auto section_cnt = img->get_file_header()->num_sections;
auto basereloc_dir = img->get_directory( win::directory_id::directory_entry_basereloc );
auto reloc_dir = reinterpret_cast< win::reloc_directory_t * >( basereloc_dir->rva + output.data() );
auto basereloc_dir =
img->get_directory(win::directory_id::directory_entry_basereloc);
auto reloc_dir = reinterpret_cast<win::reloc_directory_t *>(
basereloc_dir->rva + output.data());
win::reloc_block_t *reloc_block = &reloc_dir->first_block;
while ( reloc_block->base_rva && reloc_block->size_block )
{
if ( reloc_block->base_rva == page )
return true;
while (reloc_block->base_rva && reloc_block->size_block) {
if (reloc_block->base_rva == page) return true;
reloc_block = reloc_block->next();
}
@ -279,36 +273,36 @@ namespace engine
std::size_t resize_cnt = 0ull;
for (const auto &[reloc_rva, relocs] : new_relocs)
if (!has_reloc_page(reloc_rva))
resize_cnt += sizeof( win::reloc_block_t ) + ( relocs.size() * sizeof( win::reloc_entry_t ) );
resize_cnt += sizeof(win::reloc_block_t) +
(relocs.size() * sizeof(win::reloc_entry_t));
// last block needs to contain 0 for block_rva and size_block...
if ( resize_cnt )
resize_cnt += sizeof win::reloc_block_t;
if (resize_cnt) resize_cnt += sizeof(win::reloc_block_t);
output.resize(output.size() + resize_cnt);
output_img = reinterpret_cast<win::image_t<> *>(output.data());
auto basereloc_dir = output_img->get_directory( win::directory_id::directory_entry_basereloc );
auto reloc_dir = reinterpret_cast< win::reloc_directory_t * >( basereloc_dir->rva + output.data() );
auto basereloc_dir =
output_img->get_directory(win::directory_id::directory_entry_basereloc);
auto reloc_dir = reinterpret_cast<win::reloc_directory_t *>(
basereloc_dir->rva + output.data());
basereloc_dir->size += resize_cnt;
for ( const auto &[ reloc_rva, relocs ] : new_relocs )
{
if ( has_reloc_page( reloc_rva ) )
continue;
for (const auto &[reloc_rva, relocs] : new_relocs) {
if (has_reloc_page(reloc_rva)) continue;
win::reloc_block_t *reloc_block = &reloc_dir->first_block;
while (reloc_block->base_rva && reloc_block->size_block)
reloc_block = reloc_block->next();
reloc_block->base_rva = reloc_rva;
reloc_block->size_block = relocs.size() * sizeof( win::reloc_entry_t ) + sizeof uint64_t;
reloc_block->size_block =
relocs.size() * sizeof(win::reloc_entry_t) + sizeof(uint64_t);
reloc_block->next()->base_rva = 0ull;
reloc_block->next()->size_block = 0ull;
for ( auto idx = 0u; idx < relocs.size(); ++idx )
{
for (auto idx = 0u; idx < relocs.size(); ++idx) {
reloc_block->entries[idx].type = win::reloc_type_id::rel_based_dir64;
reloc_block->entries[idx].offset = relocs[idx];
}
@ -316,20 +310,18 @@ namespace engine
return true;
}
void unpack_t::local_alloc_hook( uc_engine *uc_ctx, unpack_t *obj )
{
void unpack_t::local_alloc_hook(uc_engine *uc_ctx, unpack_t *obj) {
uc_err err;
std::uintptr_t rax, rdx;
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RDX, &rdx ) ) )
{
if ((err = uc_reg_read(uc_ctx, UC_X86_REG_RDX, &rdx))) {
std::printf("> failed to read RDX... reason = %d\n", rdx);
return;
}
auto size = ((rdx + PAGE_4KB) & ~0xFFFull);
if ( ( err = uc_mem_map( uc_ctx, HEAP_BASE + obj->heap_offset, size, UC_PROT_ALL ) ) )
{
if ((err = uc_mem_map(uc_ctx, HEAP_BASE + obj->heap_offset, size,
UC_PROT_ALL))) {
std::printf("> failed to allocate memory... reason = %d\n", err);
return;
}
@ -337,32 +329,27 @@ namespace engine
rax = HEAP_BASE + obj->heap_offset;
obj->heap_offset += size;
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RAX, &rax ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RAX, &rax))) {
std::printf("> failed to write rax... reason = %d\n", err);
return;
}
}
void unpack_t::local_free_hook( uc_engine *uc_ctx, unpack_t *obj )
{
void unpack_t::local_free_hook(uc_engine *uc_ctx, unpack_t *obj) {
uc_err err;
std::uintptr_t rax = 0ull;
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RAX, &rax ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RAX, &rax))) {
std::printf("> failed to write rax... reason = %d\n", err);
return;
}
}
void unpack_t::load_library_hook( uc_engine *uc_ctx, unpack_t *obj )
{
void unpack_t::load_library_hook(uc_engine *uc_ctx, unpack_t *obj) {
uc_err err;
std::uintptr_t rcx = 0ull;
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RCX, &rcx ) ) )
{
if ((err = uc_reg_read(uc_ctx, UC_X86_REG_RCX, &rcx))) {
std::printf("> uc_reg_read error, reason = %d\n", err);
return;
}
@ -371,65 +358,65 @@ namespace engine
uc_strcpy(uc_ctx, buff, rcx);
std::printf("> LoadLibraryA(\"%s\")\n", buff);
auto module_base = reinterpret_cast< std::uintptr_t >( LoadLibraryA( buff ) );
if (!obj->loaded_modules[buff]) {
std::vector<std::uint8_t> module_data, tmp;
if (!vm::util::open_binary_file(buff, module_data)) {
std::printf(
"[!] failed to open a dependency... please put %s in the same folder "
"as vmprofiler-cli...\n",
buff);
exit(-1);
}
auto img = reinterpret_cast<win::image_t<> *>(module_data.data());
auto image_size = img->get_nt_headers()->optional_header.size_image;
tmp.resize(image_size);
std::memcpy(tmp.data(), module_data.data(), 0x1000);
std::for_each(img->get_nt_headers()->get_sections(),
img->get_nt_headers()->get_sections() +
img->get_nt_headers()->file_header.num_sections,
[&](const auto &section_header) {
std::memcpy(
tmp.data() + section_header.virtual_address,
module_data.data() + section_header.ptr_raw_data,
section_header.size_raw_data);
});
auto module_size =
reinterpret_cast< win::image_t<> * >( module_base )->get_nt_headers()->optional_header.size_image;
const auto module_base = reinterpret_cast<std::uintptr_t>(tmp.data());
const auto image_base = img->get_nt_headers()->optional_header.image_base;
const auto alloc_addr = module_base & ~0x1000ull;
obj->loaded_modules[buff] = alloc_addr;
if ( std::find( obj->loaded_modules.begin(), obj->loaded_modules.end(), module_base ) !=
obj->loaded_modules.end() )
{
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RAX, &module_base ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RAX, &alloc_addr))) {
std::printf("> failed to set rax... reason = %d\n", err);
return;
}
}
else
{
if ( ( err = uc_mem_map( uc_ctx, module_base, module_size, UC_PROT_ALL ) ) )
{
std::printf( "> failed to load library... reason = %d\n", err );
return;
}
if ( ( err = uc_mem_write( uc_ctx, module_base, reinterpret_cast< void * >( module_base ), module_size ) ) )
{
std::printf( "> failed to copy module into emulator... reason = %d\n", err );
return;
}
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RAX, &module_base ) ) )
{
} else {
const auto alloc_addr = obj->loaded_modules[buff];
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RAX, &alloc_addr))) {
std::printf("> failed to set rax... reason = %d\n", err);
return;
}
obj->loaded_modules.push_back( module_base );
}
}
} // namespace engine
void unpack_t::uc_strcpy( uc_engine *uc_ctx, char *buff, std::uintptr_t addr )
{
void unpack_t::uc_strcpy(uc_engine *uc_ctx, char *buff, std::uintptr_t addr) {
uc_err err;
char i = 0u;
auto idx = 0ul;
do
{
if ( ( err = uc_mem_read( uc_ctx, addr + idx, &i, sizeof i ) ) )
break;
do {
if ((err = uc_mem_read(uc_ctx, addr + idx, &i, sizeof i))) break;
} while ((buff[idx++] = i));
}
bool unpack_t::iat_dispatcher( uc_engine *uc, uint64_t address, uint32_t size, unpack_t *unpack )
{
bool unpack_t::iat_dispatcher(uc_engine *uc, uint64_t address, uint32_t size,
unpack_t *unpack) {
auto vec = address - IAT_VECTOR_TABLE;
for ( auto &[ iat_name, iat_hook_data ] : unpack->iat_hooks )
{
if ( iat_hook_data.first == vec )
{
for (auto &[iat_name, iat_hook_data] : unpack->iat_hooks) {
if (iat_hook_data.first == vec) {
std::printf("> hooking import = %s\n", iat_name.c_str());
iat_hook_data.second(uc, unpack);
return true;
@ -438,29 +425,32 @@ namespace engine
return false;
}
bool unpack_t::code_exec_callback( uc_engine *uc, uint64_t address, uint32_t size, unpack_t *unpack )
{
bool unpack_t::code_exec_callback(uc_engine *uc, uint64_t address,
uint32_t size, unpack_t *unpack) {
static ZydisDecoder decoder;
static ZydisFormatter formatter;
static ZydisDecodedInstruction instr;
if ( static std::atomic< bool > once{ false }; !once.exchange( true ) )
{
ZydisDecoderInit( &decoder, ZYDIS_MACHINE_MODE_LONG_64, ZYDIS_ADDRESS_WIDTH_64 );
if (static std::atomic<bool> once{false}; !once.exchange(true)) {
ZydisDecoderInit(&decoder, ZYDIS_MACHINE_MODE_LONG_64,
ZYDIS_ADDRESS_WIDTH_64);
ZydisFormatterInit(&formatter, ZYDIS_FORMATTER_STYLE_INTEL);
}
auto instr_ptr = reinterpret_cast< void * >( unpack->map_bin.data() + ( address - unpack->img_base ) );
if ( ZYAN_SUCCESS( ZydisDecoderDecodeBuffer( &decoder, instr_ptr, PAGE_4KB, &instr ) ) )
{
if ( instr.mnemonic == ZYDIS_MNEMONIC_CALL && instr.operands[ 0 ].type == ZYDIS_OPERAND_TYPE_REGISTER &&
instr.operands[ 0 ].reg.value == ZYDIS_REGISTER_RAX )
{
auto instr_ptr = reinterpret_cast<void *>(unpack->map_bin.data() +
(address - unpack->img_base));
if (ZYAN_SUCCESS(
ZydisDecoderDecodeBuffer(&decoder, instr_ptr, PAGE_4KB, &instr))) {
if (instr.mnemonic == ZYDIS_MNEMONIC_CALL &&
instr.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER &&
instr.operands[0].reg.value == ZYDIS_REGISTER_RAX) {
std::uintptr_t rax = 0u, rip = 0u;
uc_reg_read(uc, UC_X86_REG_RAX, &rax);
uc_reg_read(uc, UC_X86_REG_RIP, &rip);
if ( rax > unpack->img_base + unpack->img_size ) // skip calls to kernel32.dll...
if (rax > unpack->img_base + unpack->img_size ||
rax < unpack->img_base) // skip calls to kernel32.dll...
{
rip += instr.length;
uc_reg_write(uc, UC_X86_REG_RIP, &rip);
@ -471,11 +461,10 @@ namespace engine
return true;
}
bool unpack_t::unpack_section_callback( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value,
unpack_t *unpack )
{
if ( address == unpack->pack_section_offset + unpack->img_base )
{
bool unpack_t::unpack_section_callback(uc_engine *uc, uc_mem_type type,
uint64_t address, int size,
int64_t value, unpack_t *unpack) {
if (address == unpack->pack_section_offset + unpack->img_base) {
std::printf("> dumping...\n");
uc_emu_stop(uc);
return false;
@ -483,21 +472,22 @@ namespace engine
return true;
}
void unpack_t::invalid_mem( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value,
unpack_t *unpack )
{
switch ( type )
{
void unpack_t::invalid_mem(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, unpack_t *unpack) {
switch (type) {
case UC_MEM_READ_UNMAPPED:
std::printf( ">>> reading invalid memory at address = 0x%p, size = 0x%x\n", address, size );
std::printf(">>> reading invalid memory at address = 0x%p, size = 0x%x\n",
address, size);
break;
case UC_MEM_WRITE_UNMAPPED:
std::printf( ">>> writing invalid memory at address = 0x%p, size = 0x%x, val = 0x%x\n", address, size,
value );
std::printf(
">>> writing invalid memory at address = 0x%p, size = 0x%x, val = "
"0x%x\n",
address, size, value);
break;
case UC_MEM_FETCH_UNMAPPED:
{
std::printf( ">>> fetching invalid instructions at address = 0x%p\n", address );
case UC_MEM_FETCH_UNMAPPED: {
std::printf(">>> fetching invalid instructions at address = 0x%p\n",
address);
break;
}
default:

@ -1,83 +1,77 @@
#include "vmemu_t.hpp"
namespace vm
{
namespace vm {
emu_t::emu_t(vm::ctx_t *vm_ctx)
: g_vm_ctx( vm_ctx ), uc_ctx( nullptr ), img_base( vm_ctx->image_base ), img_size( vm_ctx->image_size )
{
}
: g_vm_ctx(vm_ctx),
uc_ctx(nullptr),
img_base(vm_ctx->image_base),
img_size(vm_ctx->image_size) {}
emu_t::~emu_t()
{
if ( uc_ctx )
uc_close( uc_ctx );
emu_t::~emu_t() {
if (uc_ctx) uc_close(uc_ctx);
}
bool emu_t::init()
{
bool emu_t::init() {
uc_err err;
if ( ( err = uc_open( UC_ARCH_X86, UC_MODE_64, &uc_ctx ) ) )
{
if ((err = uc_open(UC_ARCH_X86, UC_MODE_64, &uc_ctx))) {
std::printf("> uc_open err = %d\n", err);
return false;
}
if ( ( err = uc_mem_map( uc_ctx, STACK_BASE, STACK_SIZE, UC_PROT_ALL ) ) )
{
if ((err = uc_mem_map(uc_ctx, STACK_BASE, STACK_SIZE, UC_PROT_ALL))) {
std::printf("> uc_mem_map stack err, reason = %d\n", err);
return false;
}
if ( ( err = uc_mem_map( uc_ctx, g_vm_ctx->module_base, img_size, UC_PROT_ALL ) ) )
{
if ((err =
uc_mem_map(uc_ctx, g_vm_ctx->module_base, img_size, UC_PROT_ALL))) {
std::printf("> map memory failed, reason = %d\n", err);
return false;
}
if ( ( err = uc_mem_write( uc_ctx, g_vm_ctx->module_base, reinterpret_cast< void * >( g_vm_ctx->module_base ),
img_size ) ) )
{
if ((err = uc_mem_write(uc_ctx, g_vm_ctx->module_base,
reinterpret_cast<void *>(g_vm_ctx->module_base),
img_size))) {
std::printf("> failed to write memory... reason = %d\n", err);
return false;
}
if ( ( err = uc_hook_add( uc_ctx, &code_exec_hook, UC_HOOK_CODE, &vm::emu_t::code_exec_callback, this,
g_vm_ctx->module_base, g_vm_ctx->module_base + img_size ) ) )
{
if ((err = uc_hook_add(uc_ctx, &code_exec_hook, UC_HOOK_CODE,
(void *)&vm::emu_t::code_exec_callback, this,
g_vm_ctx->module_base,
g_vm_ctx->module_base + img_size))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
if ( ( err = uc_hook_add( uc_ctx, &int_hook, UC_HOOK_INTR, &vm::emu_t::int_callback, this, 0ull, 0ull ) ) )
{
if ((err = uc_hook_add(uc_ctx, &int_hook, UC_HOOK_INTR,
(void *)&vm::emu_t::int_callback, this, 0ull, 0ull))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
if ( ( err = uc_hook_add( uc_ctx, &invalid_mem_hook,
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED | UC_HOOK_MEM_FETCH_UNMAPPED |
UC_HOOK_INSN_INVALID,
&vm::emu_t::invalid_mem, this, true, false ) ) )
{
if ((err =
uc_hook_add(uc_ctx, &invalid_mem_hook,
UC_HOOK_MEM_READ_UNMAPPED | UC_HOOK_MEM_WRITE_UNMAPPED |
UC_HOOK_MEM_FETCH_UNMAPPED | UC_HOOK_INSN_INVALID,
(void *)&vm::emu_t::invalid_mem, this, true, false))) {
std::printf("> uc_hook_add error, reason = %d\n", err);
return false;
}
return true;
}
bool emu_t::get_trace( std::vector< vm::instrs::code_block_t > &entries )
{
bool emu_t::get_trace(std::vector<vm::instrs::code_block_t> &entries) {
uc_err err;
std::uintptr_t rip = g_vm_ctx->vm_entry_rva + g_vm_ctx->module_base, rsp = STACK_BASE + STACK_SIZE - PAGE_4KB;
std::uintptr_t rip = g_vm_ctx->vm_entry_rva + g_vm_ctx->module_base,
rsp = STACK_BASE + STACK_SIZE - PAGE_4KB;
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RSP, &rsp ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RSP, &rsp))) {
std::printf("> uc_reg_write error, reason = %d\n", err);
return false;
}
if ( ( err = uc_reg_write( uc_ctx, UC_X86_REG_RIP, &rip ) ) )
{
if ((err = uc_reg_write(uc_ctx, UC_X86_REG_RIP, &rip))) {
std::printf("> uc_reg_write error, reason = %d\n", err);
return false;
}
@ -87,33 +81,28 @@ namespace vm
cc_block = &code_block;
std::printf("> beginning execution at = 0x%p\n", rip);
if ( ( err = uc_emu_start( uc_ctx, rip, 0ull, 0ull, 0ull ) ) )
{
if ((err = uc_emu_start(uc_ctx, rip, 0ull, 0ull, 0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
if ( cc_block )
code_blocks.push_back( code_block );
if (cc_block) code_blocks.push_back(code_block);
// code_blocks.size() will continue to grow as all branches are traced...
// when idx is > code_blocks.size() then we have traced all branches...
for ( auto idx = 0u; idx < code_blocks.size(); ++idx )
{
for (auto idx = 0u; idx < code_blocks.size(); ++idx) {
const auto _code_block = code_blocks[idx];
if ( !_code_block.code_block.jcc.has_jcc )
continue;
if (!_code_block.code_block.jcc.has_jcc) continue;
switch ( _code_block.code_block.jcc.type )
{
case vm::instrs::jcc_type::branching:
{
if ( std::find( vip_begins.begin(), vip_begins.end(), _code_block.code_block.jcc.block_addr[ 1 ] ) ==
vip_begins.end() )
{
switch (_code_block.code_block.jcc.type) {
case vm::instrs::jcc_type::branching: {
if (std::find(vip_begins.begin(), vip_begins.end(),
_code_block.code_block.jcc.block_addr[1]) ==
vip_begins.end()) {
std::uintptr_t rbp = 0ull;
std::uint32_t branch_rva =
( _code_block.code_block.jcc.block_addr[ 1 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
std::uint32_t branch_rva = (_code_block.code_block.jcc.block_addr[1] -
g_vm_ctx->module_base) +
g_vm_ctx->image_base;
// setup object globals so that the tracing will work...
code_block_data_t branch_block{{}, nullptr, nullptr};
@ -121,36 +110,37 @@ namespace vm
g_vm_ctx = _code_block.g_vm_ctx.get();
// restore register values...
if ( ( err = uc_context_restore( uc_ctx, _code_block.cpu_ctx->context ) ) )
{
std::printf( "> failed to restore emu context... reason = %d\n", err );
if ((err =
uc_context_restore(uc_ctx, _code_block.cpu_ctx->context))) {
std::printf("> failed to restore emu context... reason = %d\n",
err);
return false;
}
// restore stack values...
if ( ( err = uc_mem_write( uc_ctx, STACK_BASE, _code_block.cpu_ctx->stack, STACK_SIZE ) ) )
{
if ((err = uc_mem_write(uc_ctx, STACK_BASE,
_code_block.cpu_ctx->stack, STACK_SIZE))) {
std::printf("> failed to restore stack... reason = %d\n", err);
return false;
}
// get the address in rbp (top of vsp)... then patch the branch rva...
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RBP, &rbp ) ) )
{
if ((err = uc_reg_read(uc_ctx, UC_X86_REG_RBP, &rbp))) {
std::printf("> failed to read rbp... reason = %d\n", err);
return false;
}
// patch the branch rva...
if ( ( err = uc_mem_write( uc_ctx, rbp, &branch_rva, sizeof branch_rva ) ) )
{
if ((err =
uc_mem_write(uc_ctx, rbp, &branch_rva, sizeof branch_rva))) {
std::printf("> failed to patch branch rva... reason = %d\n", err);
return false;
}
std::printf( "> beginning execution at = 0x%p\n", _code_block.cpu_ctx->rip );
if ( ( err = uc_emu_start( uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull, 0ull ) ) )
{
std::printf("> beginning execution at = 0x%p\n",
_code_block.cpu_ctx->rip);
if ((err = uc_emu_start(uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull,
0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
@ -162,15 +152,14 @@ namespace vm
// drop down and execute the absolute case as well since that
// will trace the first branch...
}
case vm::instrs::jcc_type::absolute:
{
if ( std::find( vip_begins.begin(), vip_begins.end(), _code_block.code_block.jcc.block_addr[ 0 ] ) ==
vip_begins.end() )
{
case vm::instrs::jcc_type::absolute: {
if (std::find(vip_begins.begin(), vip_begins.end(),
_code_block.code_block.jcc.block_addr[0]) ==
vip_begins.end()) {
std::uintptr_t rbp = 0ull;
std::uint32_t branch_rva =
( _code_block.code_block.jcc.block_addr[ 0 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
std::uint32_t branch_rva = (_code_block.code_block.jcc.block_addr[0] -
g_vm_ctx->module_base) +
g_vm_ctx->image_base;
// setup object globals so that the tracing will work...
code_block_data_t branch_block{{}, nullptr, nullptr};
@ -178,36 +167,37 @@ namespace vm
g_vm_ctx = _code_block.g_vm_ctx.get();
// restore register values...
if ( ( err = uc_context_restore( uc_ctx, _code_block.cpu_ctx->context ) ) )
{
std::printf( "> failed to restore emu context... reason = %d\n", err );
if ((err =
uc_context_restore(uc_ctx, _code_block.cpu_ctx->context))) {
std::printf("> failed to restore emu context... reason = %d\n",
err);
return false;
}
// restore stack values...
if ( ( err = uc_mem_write( uc_ctx, STACK_BASE, _code_block.cpu_ctx->stack, STACK_SIZE ) ) )
{
if ((err = uc_mem_write(uc_ctx, STACK_BASE,
_code_block.cpu_ctx->stack, STACK_SIZE))) {
std::printf("> failed to restore stack... reason = %d\n", err);
return false;
}
// get the address in rbp (top of vsp)... then patch the branch rva...
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RBP, &rbp ) ) )
{
if ((err = uc_reg_read(uc_ctx, UC_X86_REG_RBP, &rbp))) {
std::printf("> failed to read rbp... reason = %d\n", err);
return false;
}
// patch the branch rva...
if ( ( err = uc_mem_write( uc_ctx, rbp, &branch_rva, sizeof branch_rva ) ) )
{
if ((err =
uc_mem_write(uc_ctx, rbp, &branch_rva, sizeof branch_rva))) {
std::printf("> failed to patch branch rva... reason = %d\n", err);
return false;
}
std::printf( "> beginning execution at = 0x%p\n", _code_block.cpu_ctx->rip );
if ( ( err = uc_emu_start( uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull, 0ull ) ) )
{
std::printf("> beginning execution at = 0x%p\n",
_code_block.cpu_ctx->rip);
if ((err = uc_emu_start(uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull,
0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
@ -218,17 +208,18 @@ namespace vm
}
break;
}
case vm::instrs::jcc_type::switch_case:
{
for ( auto _idx = 0u; _idx < _code_block.code_block.jcc.block_addr.size(); ++_idx )
{
case vm::instrs::jcc_type::switch_case: {
for (auto _idx = 0u;
_idx < _code_block.code_block.jcc.block_addr.size(); ++_idx) {
if (std::find(vip_begins.begin(), vip_begins.end(),
_code_block.code_block.jcc.block_addr[ _idx ] ) != vip_begins.end() )
_code_block.code_block.jcc.block_addr[_idx]) !=
vip_begins.end())
continue;
std::uintptr_t rbp = 0ull;
std::uint32_t branch_rva =
( _code_block.code_block.jcc.block_addr[ _idx ] - g_vm_ctx->module_base ) +
(_code_block.code_block.jcc.block_addr[_idx] -
g_vm_ctx->module_base) +
g_vm_ctx->image_base;
// setup object globals so that the tracing will work...
@ -237,36 +228,37 @@ namespace vm
g_vm_ctx = _code_block.g_vm_ctx.get();
// restore register values...
if ( ( err = uc_context_restore( uc_ctx, _code_block.cpu_ctx->context ) ) )
{
std::printf( "> failed to restore emu context... reason = %d\n", err );
if ((err =
uc_context_restore(uc_ctx, _code_block.cpu_ctx->context))) {
std::printf("> failed to restore emu context... reason = %d\n",
err);
return false;
}
// restore stack values...
if ( ( err = uc_mem_write( uc_ctx, STACK_BASE, _code_block.cpu_ctx->stack, STACK_SIZE ) ) )
{
if ((err = uc_mem_write(uc_ctx, STACK_BASE,
_code_block.cpu_ctx->stack, STACK_SIZE))) {
std::printf("> failed to restore stack... reason = %d\n", err);
return false;
}
// get the address in rbp (top of vsp)... then patch the branch rva...
if ( ( err = uc_reg_read( uc_ctx, UC_X86_REG_RBP, &rbp ) ) )
{
if ((err = uc_reg_read(uc_ctx, UC_X86_REG_RBP, &rbp))) {
std::printf("> failed to read rbp... reason = %d\n", err);
return false;
}
// patch the branch rva...
if ( ( err = uc_mem_write( uc_ctx, rbp, &branch_rva, sizeof branch_rva ) ) )
{
if ((err =
uc_mem_write(uc_ctx, rbp, &branch_rva, sizeof branch_rva))) {
std::printf("> failed to patch branch rva... reason = %d\n", err);
return false;
}
std::printf( "> beginning execution at = 0x%p\n", _code_block.cpu_ctx->rip );
if ( ( err = uc_emu_start( uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull, 0ull ) ) )
{
std::printf("> beginning execution at = 0x%p\n",
_code_block.cpu_ctx->rip);
if ((err = uc_emu_start(uc_ctx, _code_block.cpu_ctx->rip, 0ull, 0ull,
0ull))) {
std::printf("> error starting emu... reason = %d\n", err);
return false;
}
@ -280,30 +272,28 @@ namespace vm
}
}
for ( auto &[ code_block, cpu_ctx, vm_ctx ] : code_blocks )
{
for (auto &[code_block, cpu_ctx, vm_ctx] : code_blocks) {
// convert linear virtual addresses to image based addresses...
code_block.vip_begin = ( code_block.vip_begin - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
if ( code_block.jcc.has_jcc )
{
switch ( code_block.jcc.type )
{
case vm::instrs::jcc_type::branching:
{
code_block.vip_begin =
(code_block.vip_begin - g_vm_ctx->module_base) + g_vm_ctx->image_base;
if (code_block.jcc.has_jcc) {
switch (code_block.jcc.type) {
case vm::instrs::jcc_type::branching: {
code_block.jcc.block_addr[1] =
( code_block.jcc.block_addr[ 1 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
(code_block.jcc.block_addr[1] - g_vm_ctx->module_base) +
g_vm_ctx->image_base;
}
case vm::instrs::jcc_type::absolute:
{
case vm::instrs::jcc_type::absolute: {
code_block.jcc.block_addr[0] =
( code_block.jcc.block_addr[ 0 ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
(code_block.jcc.block_addr[0] - g_vm_ctx->module_base) +
g_vm_ctx->image_base;
break;
}
case vm::instrs::jcc_type::switch_case:
{
case vm::instrs::jcc_type::switch_case: {
for (auto idx = 0u; idx < code_block.jcc.block_addr.size(); ++idx)
code_block.jcc.block_addr[idx] =
( code_block.jcc.block_addr[ idx ] - g_vm_ctx->module_base ) + g_vm_ctx->image_base;
(code_block.jcc.block_addr[idx] - g_vm_ctx->module_base) +
g_vm_ctx->image_base;
break;
}
}
@ -314,8 +304,7 @@ namespace vm
return true;
}
uc_err emu_t::create_entry( vmp2::v2::entry_t *entry )
{
uc_err emu_t::create_entry(vmp2::v2::entry_t *entry) {
uc_reg_read(uc_ctx, UC_X86_REG_R15, &entry->regs.r15);
uc_reg_read(uc_ctx, UC_X86_REG_R14, &entry->regs.r14);
uc_reg_read(uc_ctx, UC_X86_REG_R13, &entry->regs.r13);
@ -338,20 +327,22 @@ namespace vm
entry->decrypt_key = entry->regs.rbx;
uc_err err;
if ( ( err = uc_mem_read( uc_ctx, entry->regs.rdi, entry->vregs.raw, sizeof entry->vregs.raw ) ) )
if ((err = uc_mem_read(uc_ctx, entry->regs.rdi, entry->vregs.raw,
sizeof entry->vregs.raw)))
return err;
// copy virtual stack values...
for (auto idx = 0u; idx < sizeof(entry->vsp) / 8; ++idx)
if ( ( err = uc_mem_read( uc_ctx, entry->regs.rbp + ( idx * 8 ), &entry->vsp.qword[ idx ],
sizeof entry->vsp.qword[ idx ] ) ) )
if ((err =
uc_mem_read(uc_ctx, entry->regs.rbp + (idx * 8),
&entry->vsp.qword[idx], sizeof entry->vsp.qword[idx])))
return err;
return UC_ERR_OK;
}
bool emu_t::code_exec_callback( uc_engine *uc, uint64_t address, uint32_t size, emu_t *obj )
{
bool emu_t::code_exec_callback(uc_engine *uc, uint64_t address, uint32_t size,
emu_t *obj) {
uc_err err;
vmp2::v2::entry_t vinstr_entry;
std::uint8_t vm_handler_table_idx = 0u;
@ -365,44 +356,42 @@ namespace vm
static ZydisFormatter formatter;
static ZydisDecodedInstruction instr;
if ( static std::atomic< bool > once{ false }; !once.exchange( true ) )
{
ZydisDecoderInit( &decoder, ZYDIS_MACHINE_MODE_LONG_64, ZYDIS_ADDRESS_WIDTH_64 );
if (static std::atomic<bool> once{false}; !once.exchange(true)) {
ZydisDecoderInit(&decoder, ZYDIS_MACHINE_MODE_LONG_64,
ZYDIS_ADDRESS_WIDTH_64);
ZydisFormatterInit(&formatter, ZYDIS_FORMATTER_STYLE_INTEL);
}
if ( !ZYAN_SUCCESS(
ZydisDecoderDecodeBuffer( &decoder, reinterpret_cast< void * >( address ), PAGE_4KB, &instr ) ) )
{
if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(
&decoder, reinterpret_cast<void *>(address), PAGE_4KB, &instr))) {
std::printf("> failed to decode instruction at = 0x%p\n", address);
if ( ( err = uc_emu_stop( uc ) ) )
{
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
return false;
}
if ( instr.mnemonic == ZYDIS_MNEMONIC_INVALID )
{
if (instr.mnemonic == ZYDIS_MNEMONIC_INVALID) {
obj->cc_block = nullptr;
uc_emu_stop(uc);
return false;
}
// if there are over 4k instructions executed before a JMP is found then we are gunna stop emulation
// this is a sanity check to prevent inf loops...
if ( ++inst_cnt > 0x1000 )
{
// if there are over 4k instructions executed before a JMP is found then we
// are gunna stop emulation this is a sanity check to prevent inf loops...
if (++inst_cnt > 0x1000) {
obj->cc_block = nullptr, inst_cnt = 0ull;
uc_emu_stop(uc);
return false;
}
// if the native instruction is a jmp rcx/rdx... then AL will contain the vm handler
// table index of the vm handler that the emulator is about to jmp too...
if ( !( instr.mnemonic == ZYDIS_MNEMONIC_JMP && instr.operands[ 0 ].type == ZYDIS_OPERAND_TYPE_REGISTER &&
// if the native instruction is a jmp rcx/rdx... then AL will contain the vm
// handler table index of the vm handler that the emulator is about to jmp
// too...
if (!(instr.mnemonic == ZYDIS_MNEMONIC_JMP &&
instr.operands[0].type == ZYDIS_OPERAND_TYPE_REGISTER &&
(instr.operands[0].reg.value == ZYDIS_REGISTER_RCX ||
instr.operands[0].reg.value == ZYDIS_REGISTER_RDX)))
return true;
@ -411,27 +400,24 @@ namespace vm
inst_cnt = 0ull;
// extract address of vm handler table...
switch ( instr.operands[ 0 ].reg.value )
{
switch (instr.operands[0].reg.value) {
case ZYDIS_REGISTER_RCX:
if ( ( err = uc_reg_read( uc, UC_X86_REG_RCX, &vm_handler_addr ) ) )
{
if ((err = uc_reg_read(uc, UC_X86_REG_RCX, &vm_handler_addr))) {
std::printf("> failed to read rcx... reason = %d\n", err);
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
return false;
}
break;
case ZYDIS_REGISTER_RDX:
if ( ( err = uc_reg_read( uc, UC_X86_REG_RDX, &vm_handler_addr ) ) )
{
if ((err = uc_reg_read(uc, UC_X86_REG_RDX, &vm_handler_addr))) {
std::printf("> failed to read rdx... reason = %d\n", err);
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
return false;
@ -439,11 +425,9 @@ namespace vm
break;
}
if ( ( err = uc_reg_read( obj->uc_ctx, UC_X86_REG_AL, &vm_handler_table_idx ) ) )
{
if ((err = uc_reg_read(obj->uc_ctx, UC_X86_REG_AL, &vm_handler_table_idx))) {
std::printf("> failed to read register... reason = %d\n", err);
if ( ( err = uc_emu_stop( uc ) ) )
{
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
@ -452,28 +436,27 @@ namespace vm
auto &vm_handler = obj->g_vm_ctx->vm_handlers[vm_handler_table_idx];
if ( ( err = obj->create_entry( &vinstr_entry ) ) )
{
if ((err = obj->create_entry(&vinstr_entry))) {
std::printf("> failed to create vinstr entry... reason = %d\n", err);
if ( ( err = uc_emu_stop( uc ) ) )
{
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
return false;
}
// quick check to ensure sanity... things can get crazy so this is good to check...
// quick check to ensure sanity... things can get crazy so this is good to
// check...
if (vm_handler.address != vm_handler_addr ||
vinstr_entry.vip >= obj->g_vm_ctx->module_base + obj->g_vm_ctx->image_size ||
vinstr_entry.vip < obj->g_vm_ctx->module_base )
{
std::printf( "> vm handler index (%d) does not match vm handler address (%p)...\n", vm_handler_table_idx,
vm_handler_addr );
vinstr_entry.vip >=
obj->g_vm_ctx->module_base + obj->g_vm_ctx->image_size ||
vinstr_entry.vip < obj->g_vm_ctx->module_base) {
std::printf(
"> vm handler index (%d) does not match vm handler address (%p)...\n",
vm_handler_table_idx, vm_handler_addr);
obj->cc_block = nullptr;
if ( ( err = uc_emu_stop( uc ) ) )
{
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
@ -481,28 +464,24 @@ namespace vm
return false;
}
if ( !vm_handler.profile )
{
if ( !g_force_emu )
obj->cc_block = nullptr;
if (!vm_handler.profile) {
if (!g_force_emu) obj->cc_block = nullptr;
std::printf("> please define virtual machine handler (0x%p): \n\n",
( vm_handler_addr - obj->g_vm_ctx->module_base ) + obj->g_vm_ctx->image_base );
(vm_handler_addr - obj->g_vm_ctx->module_base) +
obj->g_vm_ctx->image_base);
vm::util::print(vm_handler.instrs);
std::printf("\n\n");
if ( !g_force_emu )
exit( 0 );
if (!g_force_emu) exit(0);
}
auto vinstr = vm::instrs::get(*obj->g_vm_ctx, vinstr_entry);
if ( !vinstr.has_value() )
{
if (!vinstr.has_value()) {
std::printf("> failed to decode virtual instruction...\n");
if ( ( err = uc_emu_stop( uc ) ) )
{
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
@ -510,57 +489,58 @@ namespace vm
}
// log this virtual blocks vip_begin...
if ( obj->cc_block->code_block.vinstrs.empty() )
{
if (obj->cc_block->code_block.vinstrs.empty()) {
obj->cc_block->code_block.vip_begin =
obj->g_vm_ctx->exec_type == vmp2::exec_type_t::forward ? vinstr_entry.vip - 1 : vinstr_entry.vip + 1;
obj->g_vm_ctx->exec_type == vmp2::exec_type_t::forward
? vinstr_entry.vip - 1
: vinstr_entry.vip + 1;
obj->vip_begins.push_back(obj->cc_block->code_block.vip_begin);
}
vinstr.value().trace_data.vm_handler_rva = ( vm_handler_addr - obj->g_vm_ctx->module_base );
vinstr.value().trace_data.vm_handler_rva =
(vm_handler_addr - obj->g_vm_ctx->module_base);
obj->cc_block->code_block.vinstrs.push_back(vinstr.value());
if ( vm_handler.profile )
{
switch ( vm_handler.profile->mnemonic )
{
case vm::handler::VMEXIT:
{
if (vm_handler.profile) {
switch (vm_handler.profile->mnemonic) {
case vm::handler::VMEXIT: {
obj->cc_block->code_block.jcc.has_jcc = false;
obj->cc_block->code_block.jcc.type = vm::instrs::jcc_type::none;
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
break;
}
case vm::handler::JMP:
{
// get jcc data about the virtual instruction code block that was just emulated...
auto jcc_data = vm::instrs::get_jcc_data( *obj->g_vm_ctx, obj->cc_block->code_block );
case vm::handler::JMP: {
// get jcc data about the virtual instruction code block that was just
// emulated...
auto jcc_data =
vm::instrs::get_jcc_data(*obj->g_vm_ctx, obj->cc_block->code_block);
obj->cc_block->code_block.jcc = jcc_data.value();
// allocate space for the cpu context and stack...
auto new_cpu_ctx = std::make_shared<vm::emu_t::cpu_ctx_t>();
// optimize so that we dont need to create a new vm::ctx_t every single virtual JMP...
if ( obj->vm_ctxs.find( vm_handler_addr ) == obj->vm_ctxs.end() )
{
obj->vm_ctxs[ vm_handler_addr ] =
std::make_shared< vm::ctx_t >( obj->g_vm_ctx->module_base, obj->img_base, obj->img_size,
// optimize so that we dont need to create a new vm::ctx_t every single
// virtual JMP...
if (obj->vm_ctxs.find(vm_handler_addr) == obj->vm_ctxs.end()) {
obj->vm_ctxs[vm_handler_addr] = std::make_shared<vm::ctx_t>(
obj->g_vm_ctx->module_base, obj->img_base, obj->img_size,
vm_handler_addr - obj->g_vm_ctx->module_base);
if ( !obj->vm_ctxs[ vm_handler_addr ]->init() )
{
std::printf( "> failed to init vm::ctx_t for virtual jmp... vip = 0x%p, jmp handler = 0x%p\n",
if (!obj->vm_ctxs[vm_handler_addr]->init()) {
std::printf(
"> failed to init vm::ctx_t for virtual jmp... vip = 0x%p, jmp "
"handler = 0x%p\n",
vinstr_entry.vip, vm_handler_addr);
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_emu_stop(uc))) {
std::printf(
"> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
return false;
@ -568,12 +548,12 @@ namespace vm
}
_jmp_ctx = obj->vm_ctxs[vm_handler_addr];
if ( ( err = uc_context_alloc( uc, &new_cpu_ctx->context ) ) )
{
std::printf( "> failed to allocate a unicorn context... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_context_alloc(uc, &new_cpu_ctx->context))) {
std::printf("> failed to allocate a unicorn context... reason = %d\n",
err);
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
return false;
@ -581,32 +561,32 @@ namespace vm
// save the cpu's registers...
new_cpu_ctx->rip = vm_handler_addr;
if ( ( err = uc_context_save( uc, new_cpu_ctx->context ) ) )
{
std::printf( "> failed to save emulator context... reason = %d\n", err );
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_context_save(uc, new_cpu_ctx->context))) {
std::printf("> failed to save emulator context... reason = %d\n",
err);
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
return false;
}
// save the entire stack...
if ( ( err = uc_mem_read( uc, STACK_BASE, new_cpu_ctx->stack, STACK_SIZE ) ) )
{
if ((err =
uc_mem_read(uc, STACK_BASE, new_cpu_ctx->stack, STACK_SIZE))) {
std::printf("> failed to read stack... reason = %d\n", err);
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
return false;
}
if ( ( err = uc_emu_stop( uc ) ) )
{
std::printf( "> failed to stop emulation, exiting... reason = %d\n", err );
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n",
err);
exit(0);
}
@ -621,29 +601,26 @@ namespace vm
return true;
}
void emu_t::int_callback( uc_engine *uc, std::uint32_t intno, emu_t *obj )
{
void emu_t::int_callback(uc_engine *uc, std::uint32_t intno, emu_t *obj) {
uc_err err;
std::uintptr_t rip = 0ull;
static ZydisDecoder decoder;
static ZydisDecodedInstruction instr;
if (static std::atomic<bool> once{false}; !once.exchange(true))
ZydisDecoderInit( &decoder, ZYDIS_MACHINE_MODE_LONG_64, ZYDIS_ADDRESS_WIDTH_64 );
ZydisDecoderInit(&decoder, ZYDIS_MACHINE_MODE_LONG_64,
ZYDIS_ADDRESS_WIDTH_64);
if ( ( err = uc_reg_read( uc, UC_X86_REG_RIP, &rip ) ) )
{
if ((err = uc_reg_read(uc, UC_X86_REG_RIP, &rip))) {
std::printf("> failed to read rip... reason = %d\n", err);
return;
}
if ( !ZYAN_SUCCESS(
ZydisDecoderDecodeBuffer( &decoder, reinterpret_cast< void * >( rip ), PAGE_4KB, &instr ) ) )
{
if (!ZYAN_SUCCESS(ZydisDecoderDecodeBuffer(
&decoder, reinterpret_cast<void *>(rip), PAGE_4KB, &instr))) {
std::printf("> failed to decode instruction at = 0x%p\n", rip);
if ( ( err = uc_emu_stop( uc ) ) )
{
if ((err = uc_emu_stop(uc))) {
std::printf("> failed to stop emulation, exiting... reason = %d\n", err);
exit(0);
}
@ -653,33 +630,32 @@ namespace vm
// advance rip over the instruction that caused the exception...
rip += instr.length;
if ( ( err = uc_reg_write( uc, UC_X86_REG_RIP, &rip ) ) )
{
if ((err = uc_reg_write(uc, UC_X86_REG_RIP, &rip))) {
std::printf("> failed to write rip... reason = %d\n", err);
return;
}
}
void emu_t::invalid_mem( uc_engine *uc, uc_mem_type type, uint64_t address, int size, int64_t value, emu_t *obj )
{
switch ( type )
{
case UC_MEM_READ_UNMAPPED:
{
void emu_t::invalid_mem(uc_engine *uc, uc_mem_type type, uint64_t address,
int size, int64_t value, emu_t *obj) {
switch (type) {
case UC_MEM_READ_UNMAPPED: {
uc_mem_map(uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL);
std::printf( ">>> reading invalid memory at address = 0x%p, size = 0x%x\n", address, size );
std::printf(">>> reading invalid memory at address = 0x%p, size = 0x%x\n",
address, size);
break;
}
case UC_MEM_WRITE_UNMAPPED:
{
case UC_MEM_WRITE_UNMAPPED: {
uc_mem_map(uc, address & ~0xFFFull, PAGE_4KB, UC_PROT_ALL);
std::printf( ">>> writing invalid memory at address = 0x%p, size = 0x%x, val = 0x%x\n", address, size,
value );
std::printf(
">>> writing invalid memory at address = 0x%p, size = 0x%x, val = "
"0x%x\n",
address, size, value);
break;
}
case UC_MEM_FETCH_UNMAPPED:
{
std::printf( ">>> fetching invalid instructions at address = 0x%p\n", address );
case UC_MEM_FETCH_UNMAPPED: {
std::printf(">>> fetching invalid instructions at address = 0x%p\n",
address);
break;
}
default:

Loading…
Cancel
Save