You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
vmprofiler/src/vminstrs.cpp

284 lines
13 KiB

#include <vmprofiler.hpp>
namespace vm
{
namespace instrs
{
std::pair< std::uint64_t, std::uint64_t > decrypt_operand( transform::map_t &transforms, std::uint64_t operand,
std::uint64_t rolling_key )
{
const auto &generic_decrypt_0 = transforms[ transform::type::generic0 ];
const auto &key_decrypt = transforms[ transform::type::rolling_key ];
const auto &generic_decrypt_1 = transforms[ transform::type::generic1 ];
const auto &generic_decrypt_2 = transforms[ transform::type::generic2 ];
const auto &generic_decrypt_3 = transforms[ transform::type::generic3 ];
const auto &update_key = transforms[ transform::type::update_key ];
if ( generic_decrypt_0.mnemonic != ZYDIS_MNEMONIC_INVALID )
{
operand = transform::apply(
generic_decrypt_0.operands[ 0 ].size, generic_decrypt_0.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_0 ) ? generic_decrypt_0.operands[ 1 ].imm.value.u : 0 );
}
// apply transformation with rolling decrypt key...
operand = transform::apply( key_decrypt.operands[ 0 ].size, key_decrypt.mnemonic, operand, rolling_key );
// apply three generic transformations...
{
operand = transform::apply(
generic_decrypt_1.operands[ 0 ].size, generic_decrypt_1.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_1 ) ? generic_decrypt_1.operands[ 1 ].imm.value.u : 0 );
operand = transform::apply(
generic_decrypt_2.operands[ 0 ].size, generic_decrypt_2.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_2 ) ? generic_decrypt_2.operands[ 1 ].imm.value.u : 0 );
operand = transform::apply(
generic_decrypt_3.operands[ 0 ].size, generic_decrypt_3.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_3 ) ? generic_decrypt_3.operands[ 1 ].imm.value.u : 0 );
}
// update rolling key...
auto result = transform::apply( update_key.operands[ 0 ].size, update_key.mnemonic, rolling_key, operand );
// update decryption key correctly...
switch ( update_key.operands[ 0 ].size )
{
case 8:
rolling_key = ( rolling_key & ~0xFFull ) + result;
break;
case 16:
rolling_key = ( rolling_key & ~0xFFFFull ) + result;
break;
default:
rolling_key = result;
break;
}
return { operand, rolling_key };
}
std::pair< std::uint64_t, std::uint64_t > encrypt_operand( transform::map_t &transforms, std::uint64_t operand,
std::uint64_t rolling_key )
{
transform::map_t inverse;
inverse_transforms( transforms, inverse );
const auto &generic_decrypt_0 = inverse[ transform::type::generic0 ];
const auto &key_decrypt = inverse[ transform::type::rolling_key ];
const auto &generic_decrypt_1 = inverse[ transform::type::generic1 ];
const auto &generic_decrypt_2 = inverse[ transform::type::generic2 ];
const auto &generic_decrypt_3 = inverse[ transform::type::generic3 ];
const auto &update_key = inverse[ transform::type::update_key ];
auto result = transform::apply( update_key.operands[ 0 ].size, update_key.mnemonic, rolling_key, operand );
// make sure we update the rolling decryption key correctly...
switch ( update_key.operands[ 0 ].size )
{
case 8:
rolling_key = ( rolling_key & ~0xFFull ) + result;
break;
case 16:
rolling_key = ( rolling_key & ~0xFFFFull ) + result;
break;
default:
rolling_key = result;
break;
}
{
operand = transform::apply(
generic_decrypt_3.operands[ 0 ].size, generic_decrypt_3.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_3 ) ? generic_decrypt_3.operands[ 1 ].imm.value.u : 0 );
operand = transform::apply(
generic_decrypt_2.operands[ 0 ].size, generic_decrypt_2.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_2 ) ? generic_decrypt_2.operands[ 1 ].imm.value.u : 0 );
operand = transform::apply(
generic_decrypt_1.operands[ 0 ].size, generic_decrypt_1.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_1 ) ? generic_decrypt_1.operands[ 1 ].imm.value.u : 0 );
}
operand = transform::apply( key_decrypt.operands[ 0 ].size, key_decrypt.mnemonic, operand, rolling_key );
if ( generic_decrypt_0.mnemonic != ZYDIS_MNEMONIC_INVALID )
{
operand = transform::apply(
generic_decrypt_0.operands[ 0 ].size, generic_decrypt_0.mnemonic, operand,
// check to see if this instruction has an IMM...
transform::has_imm( &generic_decrypt_0 ) ? generic_decrypt_0.operands[ 1 ].imm.value.u : 0 );
}
return { operand, rolling_key };
}
bool get_rva_decrypt( const zydis_routine_t &vm_entry, std::vector< zydis_decoded_instr_t > &transform_instrs )
{
//
// find mov esi, [rsp+0xA0]
//
auto result =
std::find_if( vm_entry.begin(), vm_entry.end(), []( const zydis_instr_t &instr_data ) -> bool {
if ( instr_data.instr.mnemonic == ZYDIS_MNEMONIC_MOV && instr_data.instr.operand_count == 2 &&
instr_data.instr.operands[ 0 ].reg.value == ZYDIS_REGISTER_ESI &&
instr_data.instr.operands[ 1 ].mem.base == ZYDIS_REGISTER_RSP &&
instr_data.instr.operands[ 1 ].mem.disp.has_displacement &&
instr_data.instr.operands[ 1 ].mem.disp.value == 0xA0 )
return true;
return false;
} );
if ( result == vm_entry.end() )
return false;
//
// find the next three instruction with ESI as the dest...
//
for ( auto idx = 0u; idx < 3; ++idx )
{
result = std::find_if( ++result, vm_entry.end(), []( const zydis_instr_t &instr_data ) -> bool {
return instr_data.instr.operands[ 0 ].reg.value == ZYDIS_REGISTER_ESI;
} );
if ( result == vm_entry.end() )
return false;
transform_instrs.push_back( result->instr );
}
return true;
}
std::optional< std::uint64_t > get_imm( vm::ctx_t &ctx, std::uint8_t imm_size, std::uintptr_t vip )
{
if ( !imm_size )
return {};
std::uint64_t result = 0u;
if ( ctx.exec_type == vmp2::exec_type_t::forward )
std::memcpy( &result, reinterpret_cast< void * >( vip ), imm_size / 8 );
else // else the second operand is below vip...
std::memcpy( &result, reinterpret_cast< void * >( vip - ( imm_size / 8 ) ), imm_size / 8 );
return result;
}
std::optional< virt_instr_t > get( vm::ctx_t &ctx, vmp2::v2::entry_t &entry )
{
virt_instr_t result;
auto &vm_handler = ctx.vm_handlers[ entry.handler_idx ];
const auto profile = vm_handler.profile;
result.mnemonic_t = profile ? profile->mnemonic : vm::handler::INVALID;
result.opcode = entry.handler_idx;
result.trace_data = entry;
if ( vm_handler.imm_size )
{
result.operand.has_imm = true;
result.operand.imm.imm_size = vm_handler.imm_size;
const auto imm_val = get_imm( ctx, vm_handler.imm_size, entry.vip );
if ( !imm_val.has_value() )
return {};
result.operand.imm.u =
vm::instrs::decrypt_operand( vm_handler.transforms, imm_val.value(), entry.decrypt_key ).first;
}
else
result.operand.has_imm = false;
return result;
}
std::optional< jcc_data > get_jcc_data( vm::ctx_t &vmctx, code_block_t &code_block )
{
// there is no branch for this as this is a vmexit...
if ( code_block.vinstrs.back().mnemonic_t == vm::handler::VMEXIT )
return {};
// find the last LCONSTDW... the imm value is the JMP xor decrypt key...
// we loop backwards here (using rbegin and rend)...
auto result = std::find_if( code_block.vinstrs.rbegin(), code_block.vinstrs.rend(),
[]( const vm::instrs::virt_instr_t &vinstr ) -> bool {
auto profile = vm::handler::get_profile( vinstr.mnemonic_t );
return profile && profile->mnemonic == vm::handler::LCONSTDW;
} );
jcc_data jcc;
const auto xor_key = static_cast< std::uint32_t >( result->operand.imm.u );
const auto &last_trace = code_block.vinstrs.back().trace_data;
// since result is already a variable and is a reverse itr
// im going to be using rbegin and rend here again...
//
// look for PUSHVSP virtual instructions with two encrypted virtual
// instruction rva's ontop of the virtual stack...
result = std::find_if( code_block.vinstrs.rbegin(), code_block.vinstrs.rend(),
[ & ]( const vm::instrs::virt_instr_t &vinstr ) -> bool {
auto profile = vm::handler::get_profile( vinstr.mnemonic_t );
if ( profile && profile->mnemonic == vm::handler::PUSHVSP )
{
const auto possible_block_1 =
code_block_addr( vmctx, vinstr.trace_data.vsp.qword[ 0 ] ^ xor_key );
const auto possible_block_2 =
code_block_addr( vmctx, vinstr.trace_data.vsp.qword[ 1 ] ^ xor_key );
// if this returns too many false positives we might have to get
// our hands dirty and look into trying to emulate each branch
// to see if the first instruction is an SREGQ...
return possible_block_1 > vmctx.module_base &&
possible_block_1 < vmctx.module_base + vmctx.image_size &&
possible_block_2 > vmctx.module_base &&
possible_block_2 < vmctx.module_base + vmctx.image_size;
}
return false;
} );
// if there is not two branches...
if ( result == code_block.vinstrs.rend() )
{
jcc.block_addr[ 0 ] = code_block_addr( vmctx, last_trace );
jcc.has_jcc = false;
jcc.type = jcc_type::absolute;
}
// else there are two branches...
else
{
jcc.block_addr[ 0 ] = code_block_addr( vmctx, result->trace_data.vsp.qword[ 0 ] ^ xor_key );
jcc.block_addr[ 1 ] = code_block_addr( vmctx, result->trace_data.vsp.qword[ 1 ] ^ xor_key );
jcc.has_jcc = true;
jcc.type = jcc_type::branching;
}
return jcc;
}
std::uintptr_t code_block_addr( const vm::ctx_t &ctx, const vmp2::v2::entry_t &entry )
{
return ( ( entry.vsp.qword[ 0 ] + ( ctx.image_base & ~0xFFFFFFFFull ) ) - ctx.image_base ) +
ctx.module_base;
}
std::uintptr_t code_block_addr( const vm::ctx_t &ctx, const std::uint32_t lower_32bits )
{
return ( ( lower_32bits + ( ctx.image_base & ~0xFFFFFFFFull ) ) - ctx.image_base ) + ctx.module_base;
}
} // namespace instrs
} // namespace vm